IVOD_ID |
160443 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160443 |
日期 |
2025-04-22 |
會議資料.會議代碼 |
院會-11-3-8 |
會議資料.會議代碼:str |
第11屆第3會期第8次會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
8 |
會議資料.種類 |
院會 |
會議資料.標題 |
第11屆第3會期第8次會議 |
影片種類 |
Clip |
開始時間 |
2025-04-22T15:01:27+08:00 |
結束時間 |
2025-04-22T15:17:04+08:00 |
影片長度 |
00:15:37 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfcb33c81b5f4f3f6a70ac451e596a6a75b01fba8380de05328b61d8df1607bee845366a77bfd4645ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
徐巧芯 |
委員發言時間 |
15:01:27 - 15:17:04 |
會議時間 |
2025-04-22T09:00:00+08:00 |
會議名稱 |
第11屆第3會期第8次會議(事由:一、對行政院院長提出施政方針及施政報告繼續質詢。二、4月18日上午9時至10時為國是論壇時間。三、4月22日下午2時15分至2時30分為處理臨時提案時間。) |
transcript.pyannote[0].speaker |
SPEAKER_03 |
transcript.pyannote[0].start |
10.78034375 |
transcript.pyannote[0].end |
13.83471875 |
transcript.pyannote[1].speaker |
SPEAKER_03 |
transcript.pyannote[1].start |
13.98659375 |
transcript.pyannote[1].end |
14.93159375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
15.77534375 |
transcript.pyannote[2].end |
16.82159375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
25.71471875 |
transcript.pyannote[3].end |
26.25471875 |
transcript.pyannote[4].speaker |
SPEAKER_03 |
transcript.pyannote[4].start |
26.40659375 |
transcript.pyannote[4].end |
31.46909375 |
transcript.pyannote[5].speaker |
SPEAKER_03 |
transcript.pyannote[5].start |
31.63784375 |
transcript.pyannote[5].end |
39.94034375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
41.72909375 |
transcript.pyannote[6].end |
43.93971875 |
transcript.pyannote[7].speaker |
SPEAKER_03 |
transcript.pyannote[7].start |
45.17159375 |
transcript.pyannote[7].end |
46.38659375 |
transcript.pyannote[8].speaker |
SPEAKER_03 |
transcript.pyannote[8].start |
47.23034375 |
transcript.pyannote[8].end |
49.23846875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
48.00659375 |
transcript.pyannote[9].end |
50.06534375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
50.62221875 |
transcript.pyannote[10].end |
51.83721875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
52.15784375 |
transcript.pyannote[11].end |
60.57846875 |
transcript.pyannote[12].speaker |
SPEAKER_03 |
transcript.pyannote[12].start |
60.49409375 |
transcript.pyannote[12].end |
91.71284375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
60.81471875 |
transcript.pyannote[13].end |
61.87784375 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
71.83409375 |
transcript.pyannote[14].end |
71.96909375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
71.96909375 |
transcript.pyannote[15].end |
72.23909375 |
transcript.pyannote[16].speaker |
SPEAKER_03 |
transcript.pyannote[16].start |
91.98284375 |
transcript.pyannote[16].end |
96.37034375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
96.67409375 |
transcript.pyannote[17].end |
108.82409375 |
transcript.pyannote[18].speaker |
SPEAKER_03 |
transcript.pyannote[18].start |
107.40659375 |
transcript.pyannote[18].end |
108.79034375 |
transcript.pyannote[19].speaker |
SPEAKER_03 |
transcript.pyannote[19].start |
108.82409375 |
transcript.pyannote[19].end |
110.59596875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
110.96721875 |
transcript.pyannote[20].end |
115.79346875 |
transcript.pyannote[21].speaker |
SPEAKER_03 |
transcript.pyannote[21].start |
112.26659375 |
transcript.pyannote[21].end |
112.36784375 |
transcript.pyannote[22].speaker |
SPEAKER_03 |
transcript.pyannote[22].start |
113.66721875 |
transcript.pyannote[22].end |
115.67534375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
115.99596875 |
transcript.pyannote[23].end |
120.16409375 |
transcript.pyannote[24].speaker |
SPEAKER_03 |
transcript.pyannote[24].start |
119.75909375 |
transcript.pyannote[24].end |
126.17159375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
124.06221875 |
transcript.pyannote[25].end |
129.22596875 |
transcript.pyannote[26].speaker |
SPEAKER_03 |
transcript.pyannote[26].start |
126.77909375 |
transcript.pyannote[26].end |
127.97721875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
129.32721875 |
transcript.pyannote[27].end |
136.29659375 |
transcript.pyannote[28].speaker |
SPEAKER_03 |
transcript.pyannote[28].start |
136.19534375 |
transcript.pyannote[28].end |
138.57471875 |
transcript.pyannote[29].speaker |
SPEAKER_03 |
transcript.pyannote[29].start |
139.06409375 |
transcript.pyannote[29].end |
139.97534375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
139.21596875 |
transcript.pyannote[30].end |
140.02596875 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
139.97534375 |
transcript.pyannote[31].end |
140.41409375 |
transcript.pyannote[32].speaker |
SPEAKER_03 |
transcript.pyannote[32].start |
140.02596875 |
transcript.pyannote[32].end |
140.26221875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
140.26221875 |
transcript.pyannote[33].end |
140.38034375 |
transcript.pyannote[34].speaker |
SPEAKER_03 |
transcript.pyannote[34].start |
140.38034375 |
transcript.pyannote[34].end |
140.46471875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
140.41409375 |
transcript.pyannote[35].end |
141.25784375 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
140.46471875 |
transcript.pyannote[36].end |
140.85284375 |
transcript.pyannote[37].speaker |
SPEAKER_03 |
transcript.pyannote[37].start |
140.85284375 |
transcript.pyannote[37].end |
161.57534375 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
141.81471875 |
transcript.pyannote[38].end |
141.91596875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
141.91596875 |
transcript.pyannote[39].end |
142.10159375 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
142.10159375 |
transcript.pyannote[40].end |
142.16909375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
142.16909375 |
transcript.pyannote[41].end |
142.37159375 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
142.37159375 |
transcript.pyannote[42].end |
142.42221875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
142.42221875 |
transcript.pyannote[43].end |
142.43909375 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
142.43909375 |
transcript.pyannote[44].end |
142.50659375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
142.50659375 |
transcript.pyannote[45].end |
142.52346875 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
142.52346875 |
transcript.pyannote[46].end |
142.57409375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
161.57534375 |
transcript.pyannote[47].end |
164.91659375 |
transcript.pyannote[48].speaker |
SPEAKER_03 |
transcript.pyannote[48].start |
161.87909375 |
transcript.pyannote[48].end |
165.96284375 |
transcript.pyannote[49].speaker |
SPEAKER_03 |
transcript.pyannote[49].start |
165.99659375 |
transcript.pyannote[49].end |
166.03034375 |
transcript.pyannote[50].speaker |
SPEAKER_03 |
transcript.pyannote[50].start |
166.04721875 |
transcript.pyannote[50].end |
170.77221875 |
transcript.pyannote[51].speaker |
SPEAKER_03 |
transcript.pyannote[51].start |
170.97471875 |
transcript.pyannote[51].end |
174.82221875 |
transcript.pyannote[52].speaker |
SPEAKER_03 |
transcript.pyannote[52].start |
175.36221875 |
transcript.pyannote[52].end |
176.25659375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
177.45471875 |
transcript.pyannote[53].end |
183.74909375 |
transcript.pyannote[54].speaker |
SPEAKER_03 |
transcript.pyannote[54].start |
183.86721875 |
transcript.pyannote[54].end |
184.13721875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
184.13721875 |
transcript.pyannote[55].end |
188.05221875 |
transcript.pyannote[56].speaker |
SPEAKER_03 |
transcript.pyannote[56].start |
187.64721875 |
transcript.pyannote[56].end |
192.59159375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
193.21596875 |
transcript.pyannote[57].end |
198.48096875 |
transcript.pyannote[58].speaker |
SPEAKER_03 |
transcript.pyannote[58].start |
197.16471875 |
transcript.pyannote[58].end |
197.53596875 |
transcript.pyannote[59].speaker |
SPEAKER_03 |
transcript.pyannote[59].start |
197.67096875 |
transcript.pyannote[59].end |
201.77159375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
202.48034375 |
transcript.pyannote[60].end |
204.21846875 |
transcript.pyannote[61].speaker |
SPEAKER_03 |
transcript.pyannote[61].start |
204.23534375 |
transcript.pyannote[61].end |
205.46721875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
206.26034375 |
transcript.pyannote[62].end |
208.04909375 |
transcript.pyannote[63].speaker |
SPEAKER_03 |
transcript.pyannote[63].start |
208.23471875 |
transcript.pyannote[63].end |
217.81971875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
219.08534375 |
transcript.pyannote[64].end |
219.37221875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
220.26659375 |
transcript.pyannote[65].end |
225.68346875 |
transcript.pyannote[66].speaker |
SPEAKER_03 |
transcript.pyannote[66].start |
224.60346875 |
transcript.pyannote[66].end |
224.94096875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
225.75096875 |
transcript.pyannote[67].end |
228.16409375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
228.61971875 |
transcript.pyannote[68].end |
231.55596875 |
transcript.pyannote[69].speaker |
SPEAKER_03 |
transcript.pyannote[69].start |
230.25659375 |
transcript.pyannote[69].end |
235.92659375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
235.58909375 |
transcript.pyannote[70].end |
240.88784375 |
transcript.pyannote[71].speaker |
SPEAKER_03 |
transcript.pyannote[71].start |
236.34846875 |
transcript.pyannote[71].end |
237.24284375 |
transcript.pyannote[72].speaker |
SPEAKER_03 |
transcript.pyannote[72].start |
239.62221875 |
transcript.pyannote[72].end |
240.26346875 |
transcript.pyannote[73].speaker |
SPEAKER_03 |
transcript.pyannote[73].start |
241.74846875 |
transcript.pyannote[73].end |
242.87909375 |
transcript.pyannote[74].speaker |
SPEAKER_03 |
transcript.pyannote[74].start |
243.97596875 |
transcript.pyannote[74].end |
247.03034375 |
transcript.pyannote[75].speaker |
SPEAKER_03 |
transcript.pyannote[75].start |
247.63784375 |
transcript.pyannote[75].end |
268.93409375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
269.81159375 |
transcript.pyannote[76].end |
272.83221875 |
transcript.pyannote[77].speaker |
SPEAKER_03 |
transcript.pyannote[77].start |
272.91659375 |
transcript.pyannote[77].end |
294.98909375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
275.39721875 |
transcript.pyannote[78].end |
275.58284375 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
275.58284375 |
transcript.pyannote[79].end |
275.92034375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
275.92034375 |
transcript.pyannote[80].end |
275.93721875 |
transcript.pyannote[81].speaker |
SPEAKER_03 |
transcript.pyannote[81].start |
295.09034375 |
transcript.pyannote[81].end |
317.53409375 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
295.90034375 |
transcript.pyannote[82].end |
297.33471875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
317.53409375 |
transcript.pyannote[83].end |
317.56784375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
317.58471875 |
transcript.pyannote[84].end |
318.46221875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
318.73221875 |
transcript.pyannote[85].end |
323.60909375 |
transcript.pyannote[86].speaker |
SPEAKER_03 |
transcript.pyannote[86].start |
321.36471875 |
transcript.pyannote[86].end |
321.39846875 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
321.39846875 |
transcript.pyannote[87].end |
321.49971875 |
transcript.pyannote[88].speaker |
SPEAKER_03 |
transcript.pyannote[88].start |
321.49971875 |
transcript.pyannote[88].end |
321.66846875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
324.23346875 |
transcript.pyannote[89].end |
332.72159375 |
transcript.pyannote[90].speaker |
SPEAKER_03 |
transcript.pyannote[90].start |
331.50659375 |
transcript.pyannote[90].end |
331.72596875 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
331.72596875 |
transcript.pyannote[91].end |
333.66659375 |
transcript.pyannote[92].speaker |
SPEAKER_03 |
transcript.pyannote[92].start |
332.72159375 |
transcript.pyannote[92].end |
333.37971875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
333.37971875 |
transcript.pyannote[93].end |
335.84346875 |
transcript.pyannote[94].speaker |
SPEAKER_03 |
transcript.pyannote[94].start |
333.66659375 |
transcript.pyannote[94].end |
337.83471875 |
transcript.pyannote[95].speaker |
SPEAKER_03 |
transcript.pyannote[95].start |
338.69534375 |
transcript.pyannote[95].end |
346.12034375 |
transcript.pyannote[96].speaker |
SPEAKER_03 |
transcript.pyannote[96].start |
346.54221875 |
transcript.pyannote[96].end |
347.13284375 |
transcript.pyannote[97].speaker |
SPEAKER_03 |
transcript.pyannote[97].start |
348.53346875 |
transcript.pyannote[97].end |
349.20846875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
350.33909375 |
transcript.pyannote[98].end |
352.16159375 |
transcript.pyannote[99].speaker |
SPEAKER_03 |
transcript.pyannote[99].start |
351.65534375 |
transcript.pyannote[99].end |
358.43909375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
359.18159375 |
transcript.pyannote[100].end |
363.40034375 |
transcript.pyannote[101].speaker |
SPEAKER_03 |
transcript.pyannote[101].start |
363.46784375 |
transcript.pyannote[101].end |
364.73346875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
363.67034375 |
transcript.pyannote[102].end |
363.88971875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
364.46346875 |
transcript.pyannote[103].end |
364.49721875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
364.73346875 |
transcript.pyannote[104].end |
364.75034375 |
transcript.pyannote[105].speaker |
SPEAKER_03 |
transcript.pyannote[105].start |
364.90221875 |
transcript.pyannote[105].end |
364.93596875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
364.93596875 |
transcript.pyannote[106].end |
366.62346875 |
transcript.pyannote[107].speaker |
SPEAKER_03 |
transcript.pyannote[107].start |
364.95284375 |
transcript.pyannote[107].end |
371.63534375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
371.70284375 |
transcript.pyannote[108].end |
374.31846875 |
transcript.pyannote[109].speaker |
SPEAKER_03 |
transcript.pyannote[109].start |
374.62221875 |
transcript.pyannote[109].end |
410.02596875 |
transcript.pyannote[110].speaker |
SPEAKER_03 |
transcript.pyannote[110].start |
410.73471875 |
transcript.pyannote[110].end |
411.10596875 |
transcript.pyannote[111].speaker |
SPEAKER_03 |
transcript.pyannote[111].start |
411.57846875 |
transcript.pyannote[111].end |
411.93284375 |
transcript.pyannote[112].speaker |
SPEAKER_03 |
transcript.pyannote[112].start |
412.84409375 |
transcript.pyannote[112].end |
413.99159375 |
transcript.pyannote[113].speaker |
SPEAKER_03 |
transcript.pyannote[113].start |
414.95346875 |
transcript.pyannote[113].end |
416.72534375 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
417.01221875 |
transcript.pyannote[114].end |
419.56034375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
420.06659375 |
transcript.pyannote[115].end |
420.57284375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
421.02846875 |
transcript.pyannote[116].end |
423.74534375 |
transcript.pyannote[117].speaker |
SPEAKER_03 |
transcript.pyannote[117].start |
423.05346875 |
transcript.pyannote[117].end |
425.66909375 |
transcript.pyannote[118].speaker |
SPEAKER_03 |
transcript.pyannote[118].start |
425.80409375 |
transcript.pyannote[118].end |
431.57534375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
432.65534375 |
transcript.pyannote[119].end |
433.65096875 |
transcript.pyannote[120].speaker |
SPEAKER_03 |
transcript.pyannote[120].start |
433.54971875 |
transcript.pyannote[120].end |
438.66284375 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
439.97909375 |
transcript.pyannote[121].end |
440.77221875 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
441.64971875 |
transcript.pyannote[122].end |
441.78471875 |
transcript.pyannote[123].speaker |
SPEAKER_03 |
transcript.pyannote[123].start |
441.78471875 |
transcript.pyannote[123].end |
444.73784375 |
transcript.pyannote[124].speaker |
SPEAKER_03 |
transcript.pyannote[124].start |
444.94034375 |
transcript.pyannote[124].end |
448.90596875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
450.82971875 |
transcript.pyannote[125].end |
451.28534375 |
transcript.pyannote[126].speaker |
SPEAKER_03 |
transcript.pyannote[126].start |
451.77471875 |
transcript.pyannote[126].end |
456.22971875 |
transcript.pyannote[127].speaker |
SPEAKER_03 |
transcript.pyannote[127].start |
457.59659375 |
transcript.pyannote[127].end |
461.42721875 |
transcript.pyannote[128].speaker |
SPEAKER_03 |
transcript.pyannote[128].start |
462.03471875 |
transcript.pyannote[128].end |
476.31096875 |
transcript.pyannote[129].speaker |
SPEAKER_03 |
transcript.pyannote[129].start |
477.05346875 |
transcript.pyannote[129].end |
479.97284375 |
transcript.pyannote[130].speaker |
SPEAKER_03 |
transcript.pyannote[130].start |
480.29346875 |
transcript.pyannote[130].end |
488.14034375 |
transcript.pyannote[131].speaker |
SPEAKER_03 |
transcript.pyannote[131].start |
488.46096875 |
transcript.pyannote[131].end |
494.09721875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
494.23221875 |
transcript.pyannote[132].end |
495.91971875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
496.10534375 |
transcript.pyannote[133].end |
499.90221875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
500.86409375 |
transcript.pyannote[134].end |
501.91034375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
502.29846875 |
transcript.pyannote[135].end |
503.91846875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
504.12096875 |
transcript.pyannote[136].end |
509.28471875 |
transcript.pyannote[137].speaker |
SPEAKER_03 |
transcript.pyannote[137].start |
506.53409375 |
transcript.pyannote[137].end |
542.03909375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
511.07346875 |
transcript.pyannote[138].end |
512.40659375 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
542.03909375 |
transcript.pyannote[139].end |
542.32596875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
543.94596875 |
transcript.pyannote[140].end |
547.75971875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
548.67096875 |
transcript.pyannote[141].end |
554.76284375 |
transcript.pyannote[142].speaker |
SPEAKER_03 |
transcript.pyannote[142].start |
554.76284375 |
transcript.pyannote[142].end |
561.19221875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
558.84659375 |
transcript.pyannote[143].end |
559.89284375 |
transcript.pyannote[144].speaker |
SPEAKER_03 |
transcript.pyannote[144].start |
561.41159375 |
transcript.pyannote[144].end |
567.97596875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
561.64784375 |
transcript.pyannote[145].end |
561.90096875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
561.95159375 |
transcript.pyannote[146].end |
561.96846875 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
561.98534375 |
transcript.pyannote[147].end |
562.00221875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
562.59284375 |
transcript.pyannote[148].end |
563.74034375 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
568.97159375 |
transcript.pyannote[149].end |
575.01284375 |
transcript.pyannote[150].speaker |
SPEAKER_03 |
transcript.pyannote[150].start |
574.79346875 |
transcript.pyannote[150].end |
599.12721875 |
transcript.pyannote[151].speaker |
SPEAKER_03 |
transcript.pyannote[151].start |
599.66721875 |
transcript.pyannote[151].end |
605.75909375 |
transcript.pyannote[152].speaker |
SPEAKER_02 |
transcript.pyannote[152].start |
601.57409375 |
transcript.pyannote[152].end |
601.62471875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
601.62471875 |
transcript.pyannote[153].end |
603.19409375 |
transcript.pyannote[154].speaker |
SPEAKER_02 |
transcript.pyannote[154].start |
603.19409375 |
transcript.pyannote[154].end |
603.24471875 |
transcript.pyannote[155].speaker |
SPEAKER_02 |
transcript.pyannote[155].start |
603.56534375 |
transcript.pyannote[155].end |
604.22346875 |
transcript.pyannote[156].speaker |
SPEAKER_03 |
transcript.pyannote[156].start |
606.01221875 |
transcript.pyannote[156].end |
607.71659375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
606.50159375 |
transcript.pyannote[157].end |
606.63659375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
606.85596875 |
transcript.pyannote[158].end |
614.85471875 |
transcript.pyannote[159].speaker |
SPEAKER_03 |
transcript.pyannote[159].start |
611.58096875 |
transcript.pyannote[159].end |
646.12409375 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
646.52909375 |
transcript.pyannote[160].end |
649.09409375 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
649.46534375 |
transcript.pyannote[161].end |
650.78159375 |
transcript.pyannote[162].speaker |
SPEAKER_03 |
transcript.pyannote[162].start |
650.08971875 |
transcript.pyannote[162].end |
653.12721875 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
652.53659375 |
transcript.pyannote[163].end |
656.36721875 |
transcript.pyannote[164].speaker |
SPEAKER_03 |
transcript.pyannote[164].start |
655.89471875 |
transcript.pyannote[164].end |
658.30784375 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
657.95346875 |
transcript.pyannote[165].end |
658.64534375 |
transcript.pyannote[166].speaker |
SPEAKER_03 |
transcript.pyannote[166].start |
658.64534375 |
transcript.pyannote[166].end |
663.67409375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
664.60221875 |
transcript.pyannote[167].end |
665.44596875 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
665.86784375 |
transcript.pyannote[168].end |
667.57221875 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
667.90971875 |
transcript.pyannote[169].end |
675.68909375 |
transcript.pyannote[170].speaker |
SPEAKER_03 |
transcript.pyannote[170].start |
669.95159375 |
transcript.pyannote[170].end |
670.22159375 |
transcript.pyannote[171].speaker |
SPEAKER_03 |
transcript.pyannote[171].start |
674.98034375 |
transcript.pyannote[171].end |
710.02971875 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
691.23096875 |
transcript.pyannote[172].end |
691.24784375 |
transcript.pyannote[173].speaker |
SPEAKER_02 |
transcript.pyannote[173].start |
691.24784375 |
transcript.pyannote[173].end |
691.97346875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
691.97346875 |
transcript.pyannote[174].end |
692.05784375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
696.69846875 |
transcript.pyannote[175].end |
697.28909375 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
697.40721875 |
transcript.pyannote[176].end |
697.76159375 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
710.60346875 |
transcript.pyannote[177].end |
720.69471875 |
transcript.pyannote[178].speaker |
SPEAKER_03 |
transcript.pyannote[178].start |
712.00409375 |
transcript.pyannote[178].end |
712.42596875 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
721.31909375 |
transcript.pyannote[179].end |
734.24534375 |
transcript.pyannote[180].speaker |
SPEAKER_03 |
transcript.pyannote[180].start |
729.89159375 |
transcript.pyannote[180].end |
732.03471875 |
transcript.pyannote[181].speaker |
SPEAKER_03 |
transcript.pyannote[181].start |
733.21596875 |
transcript.pyannote[181].end |
734.38034375 |
transcript.pyannote[182].speaker |
SPEAKER_03 |
transcript.pyannote[182].start |
734.56596875 |
transcript.pyannote[182].end |
734.85284375 |
transcript.pyannote[183].speaker |
SPEAKER_03 |
transcript.pyannote[183].start |
735.03846875 |
transcript.pyannote[183].end |
741.28221875 |
transcript.pyannote[184].speaker |
SPEAKER_03 |
transcript.pyannote[184].start |
742.14284375 |
transcript.pyannote[184].end |
744.53909375 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
744.82596875 |
transcript.pyannote[185].end |
749.61846875 |
transcript.pyannote[186].speaker |
SPEAKER_03 |
transcript.pyannote[186].start |
747.27284375 |
transcript.pyannote[186].end |
763.69221875 |
transcript.pyannote[187].speaker |
SPEAKER_01 |
transcript.pyannote[187].start |
753.24659375 |
transcript.pyannote[187].end |
753.98909375 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
758.61284375 |
transcript.pyannote[188].end |
759.82784375 |
transcript.pyannote[189].speaker |
SPEAKER_01 |
transcript.pyannote[189].start |
761.51534375 |
transcript.pyannote[189].end |
762.52784375 |
transcript.pyannote[190].speaker |
SPEAKER_01 |
transcript.pyannote[190].start |
763.74284375 |
transcript.pyannote[190].end |
765.61596875 |
transcript.pyannote[191].speaker |
SPEAKER_03 |
transcript.pyannote[191].start |
765.10971875 |
transcript.pyannote[191].end |
778.10346875 |
transcript.pyannote[192].speaker |
SPEAKER_01 |
transcript.pyannote[192].start |
768.83909375 |
transcript.pyannote[192].end |
769.39596875 |
transcript.pyannote[193].speaker |
SPEAKER_01 |
transcript.pyannote[193].start |
778.10346875 |
transcript.pyannote[193].end |
785.35971875 |
transcript.pyannote[194].speaker |
SPEAKER_03 |
transcript.pyannote[194].start |
781.69784375 |
transcript.pyannote[194].end |
781.73159375 |
transcript.pyannote[195].speaker |
SPEAKER_03 |
transcript.pyannote[195].start |
782.44034375 |
transcript.pyannote[195].end |
820.59471875 |
transcript.pyannote[196].speaker |
SPEAKER_02 |
transcript.pyannote[196].start |
802.52159375 |
transcript.pyannote[196].end |
802.97721875 |
transcript.pyannote[197].speaker |
SPEAKER_00 |
transcript.pyannote[197].start |
802.97721875 |
transcript.pyannote[197].end |
804.04034375 |
transcript.pyannote[198].speaker |
SPEAKER_01 |
transcript.pyannote[198].start |
820.83096875 |
transcript.pyannote[198].end |
822.77159375 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
822.87284375 |
transcript.pyannote[199].end |
823.10909375 |
transcript.pyannote[200].speaker |
SPEAKER_03 |
transcript.pyannote[200].start |
823.10909375 |
transcript.pyannote[200].end |
823.12596875 |
transcript.pyannote[201].speaker |
SPEAKER_01 |
transcript.pyannote[201].start |
823.12596875 |
transcript.pyannote[201].end |
828.57659375 |
transcript.pyannote[202].speaker |
SPEAKER_03 |
transcript.pyannote[202].start |
823.15971875 |
transcript.pyannote[202].end |
824.44221875 |
transcript.pyannote[203].speaker |
SPEAKER_03 |
transcript.pyannote[203].start |
828.37409375 |
transcript.pyannote[203].end |
836.15346875 |
transcript.pyannote[204].speaker |
SPEAKER_01 |
transcript.pyannote[204].start |
834.44909375 |
transcript.pyannote[204].end |
834.88784375 |
transcript.pyannote[205].speaker |
SPEAKER_01 |
transcript.pyannote[205].start |
835.00596875 |
transcript.pyannote[205].end |
835.02284375 |
transcript.pyannote[206].speaker |
SPEAKER_01 |
transcript.pyannote[206].start |
835.03971875 |
transcript.pyannote[206].end |
844.32096875 |
transcript.pyannote[207].speaker |
SPEAKER_03 |
transcript.pyannote[207].start |
842.81909375 |
transcript.pyannote[207].end |
856.03221875 |
transcript.pyannote[208].speaker |
SPEAKER_02 |
transcript.pyannote[208].start |
849.92346875 |
transcript.pyannote[208].end |
850.00784375 |
transcript.pyannote[209].speaker |
SPEAKER_01 |
transcript.pyannote[209].start |
850.00784375 |
transcript.pyannote[209].end |
850.04159375 |
transcript.pyannote[210].speaker |
SPEAKER_02 |
transcript.pyannote[210].start |
850.04159375 |
transcript.pyannote[210].end |
850.05846875 |
transcript.pyannote[211].speaker |
SPEAKER_01 |
transcript.pyannote[211].start |
850.05846875 |
transcript.pyannote[211].end |
850.21034375 |
transcript.pyannote[212].speaker |
SPEAKER_02 |
transcript.pyannote[212].start |
850.21034375 |
transcript.pyannote[212].end |
850.26096875 |
transcript.pyannote[213].speaker |
SPEAKER_01 |
transcript.pyannote[213].start |
850.26096875 |
transcript.pyannote[213].end |
850.27784375 |
transcript.pyannote[214].speaker |
SPEAKER_01 |
transcript.pyannote[214].start |
855.37409375 |
transcript.pyannote[214].end |
862.49534375 |
transcript.pyannote[215].speaker |
SPEAKER_03 |
transcript.pyannote[215].start |
856.60596875 |
transcript.pyannote[215].end |
856.97721875 |
transcript.pyannote[216].speaker |
SPEAKER_03 |
transcript.pyannote[216].start |
860.20034375 |
transcript.pyannote[216].end |
862.47846875 |
transcript.pyannote[217].speaker |
SPEAKER_03 |
transcript.pyannote[217].start |
862.49534375 |
transcript.pyannote[217].end |
862.57971875 |
transcript.pyannote[218].speaker |
SPEAKER_03 |
transcript.pyannote[218].start |
862.64721875 |
transcript.pyannote[218].end |
900.39659375 |
transcript.pyannote[219].speaker |
SPEAKER_01 |
transcript.pyannote[219].start |
900.88596875 |
transcript.pyannote[219].end |
905.44221875 |
transcript.pyannote[220].speaker |
SPEAKER_03 |
transcript.pyannote[220].start |
905.44221875 |
transcript.pyannote[220].end |
906.64034375 |
transcript.pyannote[221].speaker |
SPEAKER_01 |
transcript.pyannote[221].start |
905.45909375 |
transcript.pyannote[221].end |
905.49284375 |
transcript.pyannote[222].speaker |
SPEAKER_01 |
transcript.pyannote[222].start |
905.52659375 |
transcript.pyannote[222].end |
905.57721875 |
transcript.pyannote[223].speaker |
SPEAKER_01 |
transcript.pyannote[223].start |
906.57284375 |
transcript.pyannote[223].end |
906.60659375 |
transcript.pyannote[224].speaker |
SPEAKER_01 |
transcript.pyannote[224].start |
906.64034375 |
transcript.pyannote[224].end |
911.31471875 |
transcript.pyannote[225].speaker |
SPEAKER_01 |
transcript.pyannote[225].start |
911.50034375 |
transcript.pyannote[225].end |
911.55096875 |
transcript.pyannote[226].speaker |
SPEAKER_03 |
transcript.pyannote[226].start |
911.55096875 |
transcript.pyannote[226].end |
914.13284375 |
transcript.pyannote[227].speaker |
SPEAKER_01 |
transcript.pyannote[227].start |
911.68596875 |
transcript.pyannote[227].end |
912.58034375 |
transcript.pyannote[228].speaker |
SPEAKER_01 |
transcript.pyannote[228].start |
912.81659375 |
transcript.pyannote[228].end |
916.44471875 |
transcript.pyannote[229].speaker |
SPEAKER_01 |
transcript.pyannote[229].start |
916.51221875 |
transcript.pyannote[229].end |
920.91659375 |
transcript.pyannote[230].speaker |
SPEAKER_03 |
transcript.pyannote[230].start |
920.64659375 |
transcript.pyannote[230].end |
925.15221875 |
transcript.pyannote[231].speaker |
SPEAKER_01 |
transcript.pyannote[231].start |
922.35096875 |
transcript.pyannote[231].end |
923.12721875 |
transcript.pyannote[232].speaker |
SPEAKER_01 |
transcript.pyannote[232].start |
925.15221875 |
transcript.pyannote[232].end |
930.13034375 |
transcript.pyannote[233].speaker |
SPEAKER_03 |
transcript.pyannote[233].start |
928.15596875 |
transcript.pyannote[233].end |
930.36659375 |
transcript.pyannote[234].speaker |
SPEAKER_02 |
transcript.pyannote[234].start |
930.13034375 |
transcript.pyannote[234].end |
930.14721875 |
transcript.pyannote[235].speaker |
SPEAKER_02 |
transcript.pyannote[235].start |
937.60596875 |
transcript.pyannote[235].end |
937.97721875 |
transcript.whisperx[0].start |
11.276 |
transcript.whisperx[0].end |
16.457 |
transcript.whisperx[0].text |
謝謝主席 那我們有請這個卓院長請卓院長備詢徐文豪院長好 其實呢昨天國人最關心的議題呢就是這個護照的問題我想要先請教一下在2024年的時候我們規劃印製的2025年的護照是規劃印製多少本 |
transcript.whisperx[1].start |
42.116 |
transcript.whisperx[1].end |
48.305 |
transcript.whisperx[1].text |
請外交部來說明 複雜的印製所以你也不清楚嘛好 那我直接講 請說去年 |
transcript.whisperx[2].start |
50.66 |
transcript.whisperx[2].end |
72.001 |
transcript.whisperx[2].text |
我們根據歷年來的印製護照量我們去年確實是規劃印製180萬本所以去年預計規劃是180萬本然後你們其實護照過去都是不夠的時候會有加印而且常常會比如說現在不夠了那就再加印再加印 |
transcript.whisperx[3].start |
72.621 |
transcript.whisperx[3].end |
95.948 |
transcript.whisperx[3].text |
這個沒有錯嘛昨天林佳龍部長也有說所以確實我們在去年的時候規劃的是180萬本而不是後來追加的209萬本好那再來呢根據2024年的估算值呢其實跟林佳龍部長說的只能印185萬本差不多不是嗎所以209萬這個數字是在什麼時候才增加出來的 |
transcript.whisperx[4].start |
96.701 |
transcript.whisperx[4].end |
101.487 |
transcript.whisperx[4].text |
好 報告委員 先講2024的時候我們總共是印製了285萬本那209萬本是根據今年1月到4月總共 180萬吧 前面對 現在180萬本嘛 209萬本是什麼時候決定 |
transcript.whisperx[5].start |
116.085 |
transcript.whisperx[5].end |
137.915 |
transcript.whisperx[5].text |
根據需要我們一定要因為我要節省工廠我們不能一下印太多那什麼時候決定改成從一百八改成兩百零九萬本你具體告訴我的時候最近不是因為一到四月我們的使用的護照大概用了七十幾萬本那根據這個一到四月七十萬本我們預估今年會使用到兩百零九萬本所以這件事情跟商運算有什麼關係啊 |
transcript.whisperx[6].start |
139.09 |
transcript.whisperx[6].end |
161.204 |
transcript.whisperx[6].text |
本來你就是可以印185萬本然後呢實際上面你的預算可以印180萬本只差5萬本而已你在4月的時候增加變成要加印到209萬本那也是事後的事情了不是嗎那也是在所謂的預算之後所發生的事情不是嗎你剛剛的時序講得非常的清楚就是如此啊 |
transcript.whisperx[7].start |
161.604 |
transcript.whisperx[7].end |
171.836 |
transcript.whisperx[7].text |
好那再来呢如果说过去好我要问下一个问题了过去2023年的这个护照护照的编列预算2023年2023年那可以印几本2023年 |
transcript.whisperx[8].start |
178.323 |
transcript.whisperx[8].end |
201.632 |
transcript.whisperx[8].text |
2023年我們本來原來編列了6億多可以印130多萬本但是後來因為那個不足因為COVID-19的關係所以後來有很高的需求量對不對對因為那個COVID-19結束之後那個需求突然暴增所以原本預計印幾本後來印了幾本後來印製348萬本本來預計印幾本 |
transcript.whisperx[9].start |
206.294 |
transcript.whisperx[9].end |
217.623 |
transcript.whisperx[9].text |
本來預計136萬本所以從136萬本變成348萬本那中間那個數字呢是用什麼樣的方式支出的照我們來說預算不夠啊沒有錢啊對 |
transcript.whisperx[10].start |
220.659 |
transcript.whisperx[10].end |
238.046 |
transcript.whisperx[10].text |
應該是後來有追加預算去把它印出來追加預算?我們本來應該在裡面的業務費印出來院長,你隔壁的市場說是用追加預算的方式你們確定嗎?追加就是我們裡面的業務費有公主的費用是嗎?我們看一下 |
transcript.whisperx[11].start |
244.022 |
transcript.whisperx[11].end |
268.123 |
transcript.whisperx[11].text |
你們是用第二日備金做支出啊剛剛都在跟我胡扯亂講一通啊一百一十二年度動用了第二日備金的九億兩千四百五十萬一千元來支應所以我的意思是說如果你們四月的時候你的估值需要加印一百八十萬的本本的部分不夠的話你當然可以像之前一樣動用第二日備金有錯嗎院長 |
transcript.whisperx[12].start |
269.881 |
transcript.whisperx[12].end |
294.394 |
transcript.whisperx[12].text |
第二預備金的使用有它法定的原因跟項目當然 可是問題是 院長剛才他所說囉 他說原本我們今年度的預算是要編180萬本是4月的時候才追加到需要209萬本所以本來就不含在預算裡面的話那請問是不是如果你要加印 是動用第二預備金就像是當時疫情過後那個樣子 |
transcript.whisperx[13].start |
295.694 |
transcript.whisperx[13].end |
322.914 |
transcript.whisperx[13].text |
你有剛剛有聽到說嗎是四月的時候才認為有加印的需求在去年年度編列預算的時候是認為說呢只需要一百八十萬本而已跟最後的一百八十五萬本相差不多所以額外新增在四月新增的部分是不是動用預備金可以做呢為什麼不做跟委員報告第二預備金使用有他的法定的條件原因那如果這個預算 |
transcript.whisperx[14].start |
324.275 |
transcript.whisperx[14].end |
334.324 |
transcript.whisperx[14].text |
上次用的這個預算是用到是業務費用沒有錯如果他裡面自己的業務費用足夠我們看業務費用如果足夠的話可以使用對不對來我問一下去年113年我們編列我們招標了180萬的晶片護照是花了多少錢來次長 |
transcript.whisperx[15].start |
352.995 |
transcript.whisperx[15].end |
366.964 |
transcript.whisperx[15].text |
去年我們編了多少?180萬本的晶片護照去絕標出去嗎?我這邊看到是去年我們總共印了285萬本不是啦,我問的今年我們花了我們印了180萬本的絕標,這個部分是多少錢?9億9千萬 |
transcript.whisperx[16].start |
375.013 |
transcript.whisperx[16].end |
402.396 |
transcript.whisperx[16].text |
是7億3嘛因為9億是你整個總預算編列的金額但是你們當初4月絕標的時候180萬本的部分是7億3我意思是說你們如果連我問這麼清楚的數字都搞不清楚的話國人這麼關心這個議題你要大家怎麼去信任你們呢好然後再來去年預算書我們今年的預算書我們對護照的印製編列金額是多少你剛剛已經講了就是9.9億嘛對不對 |
transcript.whisperx[17].start |
403.797 |
transcript.whisperx[17].end |
427.762 |
transcript.whisperx[17].text |
好 那一般事務費統三百分之十之後在這個項目裡面還有多少能夠使用的請問 院長你剛剛問一般業務費在這個項目裡面還有多少錢可以用一般業務費被統三百分之十之後這個外交部還有多少的金額可以是這個護照的部分嘛剛剛你算啊 我們來算數學嘛剛剛講說我們有編了9.9億沒有錯吧 |
transcript.whisperx[18].start |
433.751 |
transcript.whisperx[18].end |
445.974 |
transcript.whisperx[18].text |
對 編了9.9億之後 事務費統三百分之十之後 剩下多少8.9億吧 蘇玄沒有錯吧 8.9億之後扣掉了7.3億的180萬本護照之後 剩下多少1億多好 1.58億嘛 一本護照的平均成本是多少400多嘛 所以除下來你還有39萬本可以印耶 |
transcript.whisperx[19].start |
462.173 |
transcript.whisperx[19].end |
474.443 |
transcript.whisperx[19].text |
你們自己根本數學都沒有算清楚所以在那邊胡講一些東西讓大家都覺得說哎呀是因為什麼預算的問題不是是因為你們數學根本不好的問題喔在接下來我要問下一個問題了關稅談判那個 |
transcript.whisperx[20].start |
477.725 |
transcript.whisperx[20].end |
479.426 |
transcript.whisperx[20].text |
我一再強調很多預算預算本身被刪的部分或是沒有刪 |
transcript.whisperx[21].start |
500.879 |
transcript.whisperx[21].end |
504.223 |
transcript.whisperx[21].text |
我問的就是晶片護照的部分而已嘛我今天只針對晶片護照你從過去本來規劃的180萬本 |
transcript.whisperx[22].start |
515.899 |
transcript.whisperx[22].end |
541.828 |
transcript.whisperx[22].text |
四月多了這個變成209萬本你不去使用二倍金你四月才多出來你不去使用二倍金就算了你還想用一般業務費一般業務費我算給你看還可以額外有39萬本的餘額你不用告訴我們說你印不出十月就印不出護照了這不是沒有邏輯的一個事情嗎你不要跟我去扯其他的部分我現在只有問國人昨天點閱率最高最關心的護照 |
transcript.whisperx[23].start |
544.373 |
transcript.whisperx[23].end |
566.179 |
transcript.whisperx[23].text |
39萬本為什麼不印預算也許沒有影響到但是很多的業務費被刪掉之後要來做這項工作的業務費甚至包括人事費用都被刪減了我給你看啦還有39萬本的扣打是可以印的嗎你還有1.58億耶你的統商之後還有那我問你嘛是不是還有1.58億來 有或沒有 |
transcript.whisperx[24].start |
569.665 |
transcript.whisperx[24].end |
575.608 |
transcript.whisperx[24].text |
外交部在執行發包的時候他們非常的節儉非常的用心把它縮下來了所以過去180萬本的這個部分在今年4月有做決標嘛決標之後才新增了要變成209萬本嘛 |
transcript.whisperx[25].start |
584.511 |
transcript.whisperx[25].end |
596.207 |
transcript.whisperx[25].text |
但是209萬本的這個數字即使在今年你們在錯估的時候他們當時編沒有編那麼多本現在要增加之後你還是有多出1.58億的業務費可以印39萬本的護照 |
transcript.whisperx[26].start |
599.671 |
transcript.whisperx[26].end |
622.276 |
transcript.whisperx[26].text |
那為什麼不做呢所以好了兩個結論第一你可以用業務費來使用對不對第二有39萬本報告委員我們並沒有不做我現在講說現在預算正好是我們沒有說你不做我是說你們說有缺啊你們是說10月份就印不出來啦但是我算給你看並不是這樣嘛所以兩個管道第一業務費還有剩餘1.58億 |
transcript.whisperx[27].start |
624.156 |
transcript.whisperx[27].end |
644.832 |
transcript.whisperx[27].text |
第二 如果真的不夠的話法定的第二預備金過去你們就是這樣做的接下來我要問關稅談判的問題我們呢 延了這個90天所以我們也希望政府能夠一切談判順利但是我想要問一下我們現在目前有沒有在做具體的影響評估報告給民眾跟產業 院長我們跟產業界舉行了 |
transcript.whisperx[28].start |
649.64 |
transcript.whisperx[28].end |
666.965 |
transcript.whisperx[28].text |
市場 民眾 民眾我知道產業界有舉行 一般的民眾我們提供了190線的專線電話專線電話讓我們自己打進去就對了那另外支持這個產業的880億你會不會覺得過於保守我們是衡量事情發生之後各種 |
transcript.whisperx[29].start |
667.892 |
transcript.whisperx[29].end |
672.377 |
transcript.whisperx[29].text |
第一推估 剛高推估 後來是高的推估所算出來的 現在產業界也認為在某些項目上應該要開始 我認為應該要提高 而且我會支持那再來呢 我要問說 那既然你們說都有評估嘛還有專線可以打電話進去嘛 那我想問喔 因為 |
transcript.whisperx[30].start |
685.171 |
transcript.whisperx[30].end |
709.77 |
transcript.whisperx[30].text |
三十多趴 雖然他現在延九十天可是他們其實規定裡面有一個基礎的基本的百分之十那仍然會對每一個國家都造成攻擊 包括中華民國那我請問一下 你們說你們有評估那在基礎關稅十趴的狀況下 我是台北市的立委我想要請教 主要會受到影響的產業大概你們分析評估有哪一些 |
transcript.whisperx[31].start |
710.626 |
transcript.whisperx[31].end |
726.04 |
transcript.whisperx[31].text |
大的產業還是在我們在台北市的產業要往美國的大宗物品當中電子通訊業這個為主就是包括它的顯示卡制服器等等這個才是影響最大的其他有關係的就是未來我們進行 |
transcript.whisperx[32].start |
726.887 |
transcript.whisperx[32].end |
742.638 |
transcript.whisperx[32].text |
排除非關稅貿易障礙的農產品農產品的部分我列為很重要的談判的內容那這樣子的一個10%的衝擊就你們的評估占台北市的營業額百分之多少你們有評估過嗎針對各縣市的評估 |
transcript.whisperx[33].start |
744.838 |
transcript.whisperx[33].end |
760.144 |
transcript.whisperx[33].text |
我手上是沒有針對各縣市評估的沒有針對各縣市去評估只有全國性沒有各縣市因為每一個縣市他產業發展不一樣他所會在10%或32%的關稅衝擊上也完全不一樣所以您今天告訴我的是沒有針對區域去做評估只有全國去做評估 |
transcript.whisperx[34].start |
764.006 |
transcript.whisperx[34].end |
769.65 |
transcript.whisperx[34].text |
不同產業可是每一個縣市的他的產業別跟他的產業比例跟他的產業人數都不一樣啊如果你只做全國性的跟產業別的沒有針對縣市的話我認為是不夠的院長你不覺得嗎那我們會在這個談判到最終要定案之前如果他是一個 |
transcript.whisperx[35].start |
782.358 |
transcript.whisperx[35].end |
786.219 |
transcript.whisperx[35].text |
我告訴您 實際上我已經去算了針對台北市 總計營業額會影響5%左右影響到的業者大概有2800多家還有年營收會影響到台北市的9200億元這個是在10%的金儲關稅之下所算出來的數字 |
transcript.whisperx[36].start |
804.184 |
transcript.whisperx[36].end |
820.371 |
transcript.whisperx[36].text |
所以我希望我們在評估的時候不要只針對產業別然後全國性的評估也應該針對每一個縣市去做評估這樣子會更精確的在後期談判的時候能夠更精確的做出決定好嗎院長這個部分應該可以吧 |
transcript.whisperx[37].start |
821.231 |
transcript.whisperx[37].end |
839.869 |
transcript.whisperx[37].text |
各縣市不同的狀況 談判桌來講好像不是那麼急迫但是我會要求我們做這樣的評估這最基本都要有的嘛 全國性的 產業性的 然後區域性的不都應該分成三個階層嗎現在變成我們國家台北 台中 高雄各種不同的衝擊這個放到未來談判桌來談的機會應該是不大 |
transcript.whisperx[38].start |
844.573 |
transcript.whisperx[38].end |
857.137 |
transcript.whisperx[38].text |
因為你不是剛剛有講專線嗎那我是台北市的市民我要問說那對台北市的影響有多大的時候那請問電話客服人員要怎麼回答我啊他根本沒有相關的數據嘛你是什麼樣的產業那你目前訂單有沒有什麼削減那我們要來問下一個問題 |
transcript.whisperx[39].start |
863.96 |
transcript.whisperx[39].end |
882.829 |
transcript.whisperx[39].text |
針對台灣跟美國之間的關稅談判我們可以看到日本首相他是非常強硬的表態包含他說過守護日本的農業然後美債不宜當關稅談判標的日本人的軍費日本人自己決定匯率要按照公平原則安全貿易不應該一起討論我想請問一下 |
transcript.whisperx[40].start |
885.75 |
transcript.whisperx[40].end |
900.08 |
transcript.whisperx[40].text |
日本他很具體的向美國說明他們的要求跟底線我想問一下關於關稅貿易壁壘的問題如果美國要求不得標示非基因改造食品行政院這裡會同意嗎 |
transcript.whisperx[41].start |
900.896 |
transcript.whisperx[41].end |
929.511 |
transcript.whisperx[41].text |
我們這次談判的原則也是爭取國家最大利益維持產業國際競爭力所以有可能會同意排除這個關稅貿易障礙的這個議題裡面有非常多項我剛剛就指問你基因改造食品工業的項目當中我們可以合理討論工業的部分在雙方接觸底下四個原則要得標示美豬牛的產地這個部分我們會堅守嗎這個原則第一個國人的健康最優先所以剛剛講兩個你們都會堅守嘛 |
transcript.whisperx[42].start |
937.662 |
transcript.whisperx[42].end |
937.684 |
transcript.whisperx[42].text |
啊 |