iVOD / 160443

Field Value
IVOD_ID 160443
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160443
日期 2025-04-22
會議資料.會議代碼 院會-11-3-8
會議資料.會議代碼:str 第11屆第3會期第8次會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 8
會議資料.種類 院會
會議資料.標題 第11屆第3會期第8次會議
影片種類 Clip
開始時間 2025-04-22T15:01:27+08:00
結束時間 2025-04-22T15:17:04+08:00
影片長度 00:15:37
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfcb33c81b5f4f3f6a70ac451e596a6a75b01fba8380de05328b61d8df1607bee845366a77bfd4645ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 徐巧芯
委員發言時間 15:01:27 - 15:17:04
會議時間 2025-04-22T09:00:00+08:00
會議名稱 第11屆第3會期第8次會議(事由:一、對行政院院長提出施政方針及施政報告繼續質詢。二、4月18日上午9時至10時為國是論壇時間。三、4月22日下午2時15分至2時30分為處理臨時提案時間。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 10.78034375
transcript.pyannote[0].end 13.83471875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 13.98659375
transcript.pyannote[1].end 14.93159375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 15.77534375
transcript.pyannote[2].end 16.82159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 25.71471875
transcript.pyannote[3].end 26.25471875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 26.40659375
transcript.pyannote[4].end 31.46909375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 31.63784375
transcript.pyannote[5].end 39.94034375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 41.72909375
transcript.pyannote[6].end 43.93971875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 45.17159375
transcript.pyannote[7].end 46.38659375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 47.23034375
transcript.pyannote[8].end 49.23846875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 48.00659375
transcript.pyannote[9].end 50.06534375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 50.62221875
transcript.pyannote[10].end 51.83721875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 52.15784375
transcript.pyannote[11].end 60.57846875
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 60.49409375
transcript.pyannote[12].end 91.71284375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 60.81471875
transcript.pyannote[13].end 61.87784375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 71.83409375
transcript.pyannote[14].end 71.96909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 71.96909375
transcript.pyannote[15].end 72.23909375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 91.98284375
transcript.pyannote[16].end 96.37034375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 96.67409375
transcript.pyannote[17].end 108.82409375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 107.40659375
transcript.pyannote[18].end 108.79034375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 108.82409375
transcript.pyannote[19].end 110.59596875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 110.96721875
transcript.pyannote[20].end 115.79346875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 112.26659375
transcript.pyannote[21].end 112.36784375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 113.66721875
transcript.pyannote[22].end 115.67534375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 115.99596875
transcript.pyannote[23].end 120.16409375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 119.75909375
transcript.pyannote[24].end 126.17159375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 124.06221875
transcript.pyannote[25].end 129.22596875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 126.77909375
transcript.pyannote[26].end 127.97721875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 129.32721875
transcript.pyannote[27].end 136.29659375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 136.19534375
transcript.pyannote[28].end 138.57471875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 139.06409375
transcript.pyannote[29].end 139.97534375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 139.21596875
transcript.pyannote[30].end 140.02596875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 139.97534375
transcript.pyannote[31].end 140.41409375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 140.02596875
transcript.pyannote[32].end 140.26221875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 140.26221875
transcript.pyannote[33].end 140.38034375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 140.38034375
transcript.pyannote[34].end 140.46471875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 140.41409375
transcript.pyannote[35].end 141.25784375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 140.46471875
transcript.pyannote[36].end 140.85284375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 140.85284375
transcript.pyannote[37].end 161.57534375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 141.81471875
transcript.pyannote[38].end 141.91596875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 141.91596875
transcript.pyannote[39].end 142.10159375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 142.10159375
transcript.pyannote[40].end 142.16909375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 142.16909375
transcript.pyannote[41].end 142.37159375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 142.37159375
transcript.pyannote[42].end 142.42221875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 142.42221875
transcript.pyannote[43].end 142.43909375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 142.43909375
transcript.pyannote[44].end 142.50659375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 142.50659375
transcript.pyannote[45].end 142.52346875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 142.52346875
transcript.pyannote[46].end 142.57409375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 161.57534375
transcript.pyannote[47].end 164.91659375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 161.87909375
transcript.pyannote[48].end 165.96284375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 165.99659375
transcript.pyannote[49].end 166.03034375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 166.04721875
transcript.pyannote[50].end 170.77221875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 170.97471875
transcript.pyannote[51].end 174.82221875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 175.36221875
transcript.pyannote[52].end 176.25659375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 177.45471875
transcript.pyannote[53].end 183.74909375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 183.86721875
transcript.pyannote[54].end 184.13721875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 184.13721875
transcript.pyannote[55].end 188.05221875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 187.64721875
transcript.pyannote[56].end 192.59159375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 193.21596875
transcript.pyannote[57].end 198.48096875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 197.16471875
transcript.pyannote[58].end 197.53596875
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 197.67096875
transcript.pyannote[59].end 201.77159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 202.48034375
transcript.pyannote[60].end 204.21846875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 204.23534375
transcript.pyannote[61].end 205.46721875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 206.26034375
transcript.pyannote[62].end 208.04909375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 208.23471875
transcript.pyannote[63].end 217.81971875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 219.08534375
transcript.pyannote[64].end 219.37221875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 220.26659375
transcript.pyannote[65].end 225.68346875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 224.60346875
transcript.pyannote[66].end 224.94096875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 225.75096875
transcript.pyannote[67].end 228.16409375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 228.61971875
transcript.pyannote[68].end 231.55596875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 230.25659375
transcript.pyannote[69].end 235.92659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 235.58909375
transcript.pyannote[70].end 240.88784375
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 236.34846875
transcript.pyannote[71].end 237.24284375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 239.62221875
transcript.pyannote[72].end 240.26346875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 241.74846875
transcript.pyannote[73].end 242.87909375
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 243.97596875
transcript.pyannote[74].end 247.03034375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 247.63784375
transcript.pyannote[75].end 268.93409375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 269.81159375
transcript.pyannote[76].end 272.83221875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 272.91659375
transcript.pyannote[77].end 294.98909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 275.39721875
transcript.pyannote[78].end 275.58284375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 275.58284375
transcript.pyannote[79].end 275.92034375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 275.92034375
transcript.pyannote[80].end 275.93721875
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 295.09034375
transcript.pyannote[81].end 317.53409375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 295.90034375
transcript.pyannote[82].end 297.33471875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 317.53409375
transcript.pyannote[83].end 317.56784375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 317.58471875
transcript.pyannote[84].end 318.46221875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 318.73221875
transcript.pyannote[85].end 323.60909375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 321.36471875
transcript.pyannote[86].end 321.39846875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 321.39846875
transcript.pyannote[87].end 321.49971875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 321.49971875
transcript.pyannote[88].end 321.66846875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 324.23346875
transcript.pyannote[89].end 332.72159375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 331.50659375
transcript.pyannote[90].end 331.72596875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 331.72596875
transcript.pyannote[91].end 333.66659375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 332.72159375
transcript.pyannote[92].end 333.37971875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 333.37971875
transcript.pyannote[93].end 335.84346875
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 333.66659375
transcript.pyannote[94].end 337.83471875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 338.69534375
transcript.pyannote[95].end 346.12034375
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 346.54221875
transcript.pyannote[96].end 347.13284375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 348.53346875
transcript.pyannote[97].end 349.20846875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 350.33909375
transcript.pyannote[98].end 352.16159375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 351.65534375
transcript.pyannote[99].end 358.43909375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 359.18159375
transcript.pyannote[100].end 363.40034375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 363.46784375
transcript.pyannote[101].end 364.73346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 363.67034375
transcript.pyannote[102].end 363.88971875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 364.46346875
transcript.pyannote[103].end 364.49721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 364.73346875
transcript.pyannote[104].end 364.75034375
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 364.90221875
transcript.pyannote[105].end 364.93596875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 364.93596875
transcript.pyannote[106].end 366.62346875
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 364.95284375
transcript.pyannote[107].end 371.63534375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 371.70284375
transcript.pyannote[108].end 374.31846875
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 374.62221875
transcript.pyannote[109].end 410.02596875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 410.73471875
transcript.pyannote[110].end 411.10596875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 411.57846875
transcript.pyannote[111].end 411.93284375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 412.84409375
transcript.pyannote[112].end 413.99159375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 414.95346875
transcript.pyannote[113].end 416.72534375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 417.01221875
transcript.pyannote[114].end 419.56034375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 420.06659375
transcript.pyannote[115].end 420.57284375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 421.02846875
transcript.pyannote[116].end 423.74534375
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 423.05346875
transcript.pyannote[117].end 425.66909375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 425.80409375
transcript.pyannote[118].end 431.57534375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 432.65534375
transcript.pyannote[119].end 433.65096875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 433.54971875
transcript.pyannote[120].end 438.66284375
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 439.97909375
transcript.pyannote[121].end 440.77221875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 441.64971875
transcript.pyannote[122].end 441.78471875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 441.78471875
transcript.pyannote[123].end 444.73784375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 444.94034375
transcript.pyannote[124].end 448.90596875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 450.82971875
transcript.pyannote[125].end 451.28534375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 451.77471875
transcript.pyannote[126].end 456.22971875
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 457.59659375
transcript.pyannote[127].end 461.42721875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 462.03471875
transcript.pyannote[128].end 476.31096875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 477.05346875
transcript.pyannote[129].end 479.97284375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 480.29346875
transcript.pyannote[130].end 488.14034375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 488.46096875
transcript.pyannote[131].end 494.09721875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 494.23221875
transcript.pyannote[132].end 495.91971875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 496.10534375
transcript.pyannote[133].end 499.90221875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 500.86409375
transcript.pyannote[134].end 501.91034375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 502.29846875
transcript.pyannote[135].end 503.91846875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 504.12096875
transcript.pyannote[136].end 509.28471875
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 506.53409375
transcript.pyannote[137].end 542.03909375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 511.07346875
transcript.pyannote[138].end 512.40659375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 542.03909375
transcript.pyannote[139].end 542.32596875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 543.94596875
transcript.pyannote[140].end 547.75971875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 548.67096875
transcript.pyannote[141].end 554.76284375
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 554.76284375
transcript.pyannote[142].end 561.19221875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 558.84659375
transcript.pyannote[143].end 559.89284375
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 561.41159375
transcript.pyannote[144].end 567.97596875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 561.64784375
transcript.pyannote[145].end 561.90096875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 561.95159375
transcript.pyannote[146].end 561.96846875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 561.98534375
transcript.pyannote[147].end 562.00221875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 562.59284375
transcript.pyannote[148].end 563.74034375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 568.97159375
transcript.pyannote[149].end 575.01284375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 574.79346875
transcript.pyannote[150].end 599.12721875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 599.66721875
transcript.pyannote[151].end 605.75909375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 601.57409375
transcript.pyannote[152].end 601.62471875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 601.62471875
transcript.pyannote[153].end 603.19409375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 603.19409375
transcript.pyannote[154].end 603.24471875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 603.56534375
transcript.pyannote[155].end 604.22346875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 606.01221875
transcript.pyannote[156].end 607.71659375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 606.50159375
transcript.pyannote[157].end 606.63659375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 606.85596875
transcript.pyannote[158].end 614.85471875
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 611.58096875
transcript.pyannote[159].end 646.12409375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 646.52909375
transcript.pyannote[160].end 649.09409375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 649.46534375
transcript.pyannote[161].end 650.78159375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 650.08971875
transcript.pyannote[162].end 653.12721875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 652.53659375
transcript.pyannote[163].end 656.36721875
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 655.89471875
transcript.pyannote[164].end 658.30784375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 657.95346875
transcript.pyannote[165].end 658.64534375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 658.64534375
transcript.pyannote[166].end 663.67409375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 664.60221875
transcript.pyannote[167].end 665.44596875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 665.86784375
transcript.pyannote[168].end 667.57221875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 667.90971875
transcript.pyannote[169].end 675.68909375
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 669.95159375
transcript.pyannote[170].end 670.22159375
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 674.98034375
transcript.pyannote[171].end 710.02971875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 691.23096875
transcript.pyannote[172].end 691.24784375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 691.24784375
transcript.pyannote[173].end 691.97346875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 691.97346875
transcript.pyannote[174].end 692.05784375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 696.69846875
transcript.pyannote[175].end 697.28909375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 697.40721875
transcript.pyannote[176].end 697.76159375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 710.60346875
transcript.pyannote[177].end 720.69471875
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 712.00409375
transcript.pyannote[178].end 712.42596875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 721.31909375
transcript.pyannote[179].end 734.24534375
transcript.pyannote[180].speaker SPEAKER_03
transcript.pyannote[180].start 729.89159375
transcript.pyannote[180].end 732.03471875
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 733.21596875
transcript.pyannote[181].end 734.38034375
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 734.56596875
transcript.pyannote[182].end 734.85284375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 735.03846875
transcript.pyannote[183].end 741.28221875
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 742.14284375
transcript.pyannote[184].end 744.53909375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 744.82596875
transcript.pyannote[185].end 749.61846875
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 747.27284375
transcript.pyannote[186].end 763.69221875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 753.24659375
transcript.pyannote[187].end 753.98909375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 758.61284375
transcript.pyannote[188].end 759.82784375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 761.51534375
transcript.pyannote[189].end 762.52784375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 763.74284375
transcript.pyannote[190].end 765.61596875
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 765.10971875
transcript.pyannote[191].end 778.10346875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 768.83909375
transcript.pyannote[192].end 769.39596875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 778.10346875
transcript.pyannote[193].end 785.35971875
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 781.69784375
transcript.pyannote[194].end 781.73159375
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 782.44034375
transcript.pyannote[195].end 820.59471875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 802.52159375
transcript.pyannote[196].end 802.97721875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 802.97721875
transcript.pyannote[197].end 804.04034375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 820.83096875
transcript.pyannote[198].end 822.77159375
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 822.87284375
transcript.pyannote[199].end 823.10909375
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 823.10909375
transcript.pyannote[200].end 823.12596875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 823.12596875
transcript.pyannote[201].end 828.57659375
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 823.15971875
transcript.pyannote[202].end 824.44221875
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 828.37409375
transcript.pyannote[203].end 836.15346875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 834.44909375
transcript.pyannote[204].end 834.88784375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 835.00596875
transcript.pyannote[205].end 835.02284375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 835.03971875
transcript.pyannote[206].end 844.32096875
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 842.81909375
transcript.pyannote[207].end 856.03221875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 849.92346875
transcript.pyannote[208].end 850.00784375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 850.00784375
transcript.pyannote[209].end 850.04159375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 850.04159375
transcript.pyannote[210].end 850.05846875
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 850.05846875
transcript.pyannote[211].end 850.21034375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 850.21034375
transcript.pyannote[212].end 850.26096875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 850.26096875
transcript.pyannote[213].end 850.27784375
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 855.37409375
transcript.pyannote[214].end 862.49534375
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 856.60596875
transcript.pyannote[215].end 856.97721875
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 860.20034375
transcript.pyannote[216].end 862.47846875
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 862.49534375
transcript.pyannote[217].end 862.57971875
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 862.64721875
transcript.pyannote[218].end 900.39659375
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 900.88596875
transcript.pyannote[219].end 905.44221875
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 905.44221875
transcript.pyannote[220].end 906.64034375
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 905.45909375
transcript.pyannote[221].end 905.49284375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 905.52659375
transcript.pyannote[222].end 905.57721875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 906.57284375
transcript.pyannote[223].end 906.60659375
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 906.64034375
transcript.pyannote[224].end 911.31471875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 911.50034375
transcript.pyannote[225].end 911.55096875
transcript.pyannote[226].speaker SPEAKER_03
transcript.pyannote[226].start 911.55096875
transcript.pyannote[226].end 914.13284375
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 911.68596875
transcript.pyannote[227].end 912.58034375
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 912.81659375
transcript.pyannote[228].end 916.44471875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 916.51221875
transcript.pyannote[229].end 920.91659375
transcript.pyannote[230].speaker SPEAKER_03
transcript.pyannote[230].start 920.64659375
transcript.pyannote[230].end 925.15221875
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 922.35096875
transcript.pyannote[231].end 923.12721875
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 925.15221875
transcript.pyannote[232].end 930.13034375
transcript.pyannote[233].speaker SPEAKER_03
transcript.pyannote[233].start 928.15596875
transcript.pyannote[233].end 930.36659375
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 930.13034375
transcript.pyannote[234].end 930.14721875
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 937.60596875
transcript.pyannote[235].end 937.97721875
transcript.whisperx[0].start 11.276
transcript.whisperx[0].end 16.457
transcript.whisperx[0].text 謝謝主席 那我們有請這個卓院長請卓院長備詢徐文豪院長好 其實呢昨天國人最關心的議題呢就是這個護照的問題我想要先請教一下在2024年的時候我們規劃印製的2025年的護照是規劃印製多少本
transcript.whisperx[1].start 42.116
transcript.whisperx[1].end 48.305
transcript.whisperx[1].text 請外交部來說明 複雜的印製所以你也不清楚嘛好 那我直接講 請說去年
transcript.whisperx[2].start 50.66
transcript.whisperx[2].end 72.001
transcript.whisperx[2].text 我們根據歷年來的印製護照量我們去年確實是規劃印製180萬本所以去年預計規劃是180萬本然後你們其實護照過去都是不夠的時候會有加印而且常常會比如說現在不夠了那就再加印再加印
transcript.whisperx[3].start 72.621
transcript.whisperx[3].end 95.948
transcript.whisperx[3].text 這個沒有錯嘛昨天林佳龍部長也有說所以確實我們在去年的時候規劃的是180萬本而不是後來追加的209萬本好那再來呢根據2024年的估算值呢其實跟林佳龍部長說的只能印185萬本差不多不是嗎所以209萬這個數字是在什麼時候才增加出來的
transcript.whisperx[4].start 96.701
transcript.whisperx[4].end 101.487
transcript.whisperx[4].text 好 報告委員 先講2024的時候我們總共是印製了285萬本那209萬本是根據今年1月到4月總共 180萬吧 前面對 現在180萬本嘛 209萬本是什麼時候決定
transcript.whisperx[5].start 116.085
transcript.whisperx[5].end 137.915
transcript.whisperx[5].text 根據需要我們一定要因為我要節省工廠我們不能一下印太多那什麼時候決定改成從一百八改成兩百零九萬本你具體告訴我的時候最近不是因為一到四月我們的使用的護照大概用了七十幾萬本那根據這個一到四月七十萬本我們預估今年會使用到兩百零九萬本所以這件事情跟商運算有什麼關係啊
transcript.whisperx[6].start 139.09
transcript.whisperx[6].end 161.204
transcript.whisperx[6].text 本來你就是可以印185萬本然後呢實際上面你的預算可以印180萬本只差5萬本而已你在4月的時候增加變成要加印到209萬本那也是事後的事情了不是嗎那也是在所謂的預算之後所發生的事情不是嗎你剛剛的時序講得非常的清楚就是如此啊
transcript.whisperx[7].start 161.604
transcript.whisperx[7].end 171.836
transcript.whisperx[7].text 好那再来呢如果说过去好我要问下一个问题了过去2023年的这个护照护照的编列预算2023年2023年那可以印几本2023年
transcript.whisperx[8].start 178.323
transcript.whisperx[8].end 201.632
transcript.whisperx[8].text 2023年我們本來原來編列了6億多可以印130多萬本但是後來因為那個不足因為COVID-19的關係所以後來有很高的需求量對不對對因為那個COVID-19結束之後那個需求突然暴增所以原本預計印幾本後來印了幾本後來印製348萬本本來預計印幾本
transcript.whisperx[9].start 206.294
transcript.whisperx[9].end 217.623
transcript.whisperx[9].text 本來預計136萬本所以從136萬本變成348萬本那中間那個數字呢是用什麼樣的方式支出的照我們來說預算不夠啊沒有錢啊對
transcript.whisperx[10].start 220.659
transcript.whisperx[10].end 238.046
transcript.whisperx[10].text 應該是後來有追加預算去把它印出來追加預算?我們本來應該在裡面的業務費印出來院長,你隔壁的市場說是用追加預算的方式你們確定嗎?追加就是我們裡面的業務費有公主的費用是嗎?我們看一下
transcript.whisperx[11].start 244.022
transcript.whisperx[11].end 268.123
transcript.whisperx[11].text 你們是用第二日備金做支出啊剛剛都在跟我胡扯亂講一通啊一百一十二年度動用了第二日備金的九億兩千四百五十萬一千元來支應所以我的意思是說如果你們四月的時候你的估值需要加印一百八十萬的本本的部分不夠的話你當然可以像之前一樣動用第二日備金有錯嗎院長
transcript.whisperx[12].start 269.881
transcript.whisperx[12].end 294.394
transcript.whisperx[12].text 第二預備金的使用有它法定的原因跟項目當然 可是問題是 院長剛才他所說囉 他說原本我們今年度的預算是要編180萬本是4月的時候才追加到需要209萬本所以本來就不含在預算裡面的話那請問是不是如果你要加印 是動用第二預備金就像是當時疫情過後那個樣子
transcript.whisperx[13].start 295.694
transcript.whisperx[13].end 322.914
transcript.whisperx[13].text 你有剛剛有聽到說嗎是四月的時候才認為有加印的需求在去年年度編列預算的時候是認為說呢只需要一百八十萬本而已跟最後的一百八十五萬本相差不多所以額外新增在四月新增的部分是不是動用預備金可以做呢為什麼不做跟委員報告第二預備金使用有他的法定的條件原因那如果這個預算
transcript.whisperx[14].start 324.275
transcript.whisperx[14].end 334.324
transcript.whisperx[14].text 上次用的這個預算是用到是業務費用沒有錯如果他裡面自己的業務費用足夠我們看業務費用如果足夠的話可以使用對不對來我問一下去年113年我們編列我們招標了180萬的晶片護照是花了多少錢來次長
transcript.whisperx[15].start 352.995
transcript.whisperx[15].end 366.964
transcript.whisperx[15].text 去年我們編了多少?180萬本的晶片護照去絕標出去嗎?我這邊看到是去年我們總共印了285萬本不是啦,我問的今年我們花了我們印了180萬本的絕標,這個部分是多少錢?9億9千萬
transcript.whisperx[16].start 375.013
transcript.whisperx[16].end 402.396
transcript.whisperx[16].text 是7億3嘛因為9億是你整個總預算編列的金額但是你們當初4月絕標的時候180萬本的部分是7億3我意思是說你們如果連我問這麼清楚的數字都搞不清楚的話國人這麼關心這個議題你要大家怎麼去信任你們呢好然後再來去年預算書我們今年的預算書我們對護照的印製編列金額是多少你剛剛已經講了就是9.9億嘛對不對
transcript.whisperx[17].start 403.797
transcript.whisperx[17].end 427.762
transcript.whisperx[17].text 好 那一般事務費統三百分之十之後在這個項目裡面還有多少能夠使用的請問 院長你剛剛問一般業務費在這個項目裡面還有多少錢可以用一般業務費被統三百分之十之後這個外交部還有多少的金額可以是這個護照的部分嘛剛剛你算啊 我們來算數學嘛剛剛講說我們有編了9.9億沒有錯吧
transcript.whisperx[18].start 433.751
transcript.whisperx[18].end 445.974
transcript.whisperx[18].text 對 編了9.9億之後 事務費統三百分之十之後 剩下多少8.9億吧 蘇玄沒有錯吧 8.9億之後扣掉了7.3億的180萬本護照之後 剩下多少1億多好 1.58億嘛 一本護照的平均成本是多少400多嘛 所以除下來你還有39萬本可以印耶
transcript.whisperx[19].start 462.173
transcript.whisperx[19].end 474.443
transcript.whisperx[19].text 你們自己根本數學都沒有算清楚所以在那邊胡講一些東西讓大家都覺得說哎呀是因為什麼預算的問題不是是因為你們數學根本不好的問題喔在接下來我要問下一個問題了關稅談判那個
transcript.whisperx[20].start 477.725
transcript.whisperx[20].end 479.426
transcript.whisperx[20].text 我一再強調很多預算預算本身被刪的部分或是沒有刪
transcript.whisperx[21].start 500.879
transcript.whisperx[21].end 504.223
transcript.whisperx[21].text 我問的就是晶片護照的部分而已嘛我今天只針對晶片護照你從過去本來規劃的180萬本
transcript.whisperx[22].start 515.899
transcript.whisperx[22].end 541.828
transcript.whisperx[22].text 四月多了這個變成209萬本你不去使用二倍金你四月才多出來你不去使用二倍金就算了你還想用一般業務費一般業務費我算給你看還可以額外有39萬本的餘額你不用告訴我們說你印不出十月就印不出護照了這不是沒有邏輯的一個事情嗎你不要跟我去扯其他的部分我現在只有問國人昨天點閱率最高最關心的護照
transcript.whisperx[23].start 544.373
transcript.whisperx[23].end 566.179
transcript.whisperx[23].text 39萬本為什麼不印預算也許沒有影響到但是很多的業務費被刪掉之後要來做這項工作的業務費甚至包括人事費用都被刪減了我給你看啦還有39萬本的扣打是可以印的嗎你還有1.58億耶你的統商之後還有那我問你嘛是不是還有1.58億來 有或沒有
transcript.whisperx[24].start 569.665
transcript.whisperx[24].end 575.608
transcript.whisperx[24].text 外交部在執行發包的時候他們非常的節儉非常的用心把它縮下來了所以過去180萬本的這個部分在今年4月有做決標嘛決標之後才新增了要變成209萬本嘛
transcript.whisperx[25].start 584.511
transcript.whisperx[25].end 596.207
transcript.whisperx[25].text 但是209萬本的這個數字即使在今年你們在錯估的時候他們當時編沒有編那麼多本現在要增加之後你還是有多出1.58億的業務費可以印39萬本的護照
transcript.whisperx[26].start 599.671
transcript.whisperx[26].end 622.276
transcript.whisperx[26].text 那為什麼不做呢所以好了兩個結論第一你可以用業務費來使用對不對第二有39萬本報告委員我們並沒有不做我現在講說現在預算正好是我們沒有說你不做我是說你們說有缺啊你們是說10月份就印不出來啦但是我算給你看並不是這樣嘛所以兩個管道第一業務費還有剩餘1.58億
transcript.whisperx[27].start 624.156
transcript.whisperx[27].end 644.832
transcript.whisperx[27].text 第二 如果真的不夠的話法定的第二預備金過去你們就是這樣做的接下來我要問關稅談判的問題我們呢 延了這個90天所以我們也希望政府能夠一切談判順利但是我想要問一下我們現在目前有沒有在做具體的影響評估報告給民眾跟產業 院長我們跟產業界舉行了
transcript.whisperx[28].start 649.64
transcript.whisperx[28].end 666.965
transcript.whisperx[28].text 市場 民眾 民眾我知道產業界有舉行 一般的民眾我們提供了190線的專線電話專線電話讓我們自己打進去就對了那另外支持這個產業的880億你會不會覺得過於保守我們是衡量事情發生之後各種
transcript.whisperx[29].start 667.892
transcript.whisperx[29].end 672.377
transcript.whisperx[29].text 第一推估 剛高推估 後來是高的推估所算出來的 現在產業界也認為在某些項目上應該要開始 我認為應該要提高 而且我會支持那再來呢 我要問說 那既然你們說都有評估嘛還有專線可以打電話進去嘛 那我想問喔 因為
transcript.whisperx[30].start 685.171
transcript.whisperx[30].end 709.77
transcript.whisperx[30].text 三十多趴 雖然他現在延九十天可是他們其實規定裡面有一個基礎的基本的百分之十那仍然會對每一個國家都造成攻擊 包括中華民國那我請問一下 你們說你們有評估那在基礎關稅十趴的狀況下 我是台北市的立委我想要請教 主要會受到影響的產業大概你們分析評估有哪一些
transcript.whisperx[31].start 710.626
transcript.whisperx[31].end 726.04
transcript.whisperx[31].text 大的產業還是在我們在台北市的產業要往美國的大宗物品當中電子通訊業這個為主就是包括它的顯示卡制服器等等這個才是影響最大的其他有關係的就是未來我們進行
transcript.whisperx[32].start 726.887
transcript.whisperx[32].end 742.638
transcript.whisperx[32].text 排除非關稅貿易障礙的農產品農產品的部分我列為很重要的談判的內容那這樣子的一個10%的衝擊就你們的評估占台北市的營業額百分之多少你們有評估過嗎針對各縣市的評估
transcript.whisperx[33].start 744.838
transcript.whisperx[33].end 760.144
transcript.whisperx[33].text 我手上是沒有針對各縣市評估的沒有針對各縣市去評估只有全國性沒有各縣市因為每一個縣市他產業發展不一樣他所會在10%或32%的關稅衝擊上也完全不一樣所以您今天告訴我的是沒有針對區域去做評估只有全國去做評估
transcript.whisperx[34].start 764.006
transcript.whisperx[34].end 769.65
transcript.whisperx[34].text 不同產業可是每一個縣市的他的產業別跟他的產業比例跟他的產業人數都不一樣啊如果你只做全國性的跟產業別的沒有針對縣市的話我認為是不夠的院長你不覺得嗎那我們會在這個談判到最終要定案之前如果他是一個
transcript.whisperx[35].start 782.358
transcript.whisperx[35].end 786.219
transcript.whisperx[35].text 我告訴您 實際上我已經去算了針對台北市 總計營業額會影響5%左右影響到的業者大概有2800多家還有年營收會影響到台北市的9200億元這個是在10%的金儲關稅之下所算出來的數字
transcript.whisperx[36].start 804.184
transcript.whisperx[36].end 820.371
transcript.whisperx[36].text 所以我希望我們在評估的時候不要只針對產業別然後全國性的評估也應該針對每一個縣市去做評估這樣子會更精確的在後期談判的時候能夠更精確的做出決定好嗎院長這個部分應該可以吧
transcript.whisperx[37].start 821.231
transcript.whisperx[37].end 839.869
transcript.whisperx[37].text 各縣市不同的狀況 談判桌來講好像不是那麼急迫但是我會要求我們做這樣的評估這最基本都要有的嘛 全國性的 產業性的 然後區域性的不都應該分成三個階層嗎現在變成我們國家台北 台中 高雄各種不同的衝擊這個放到未來談判桌來談的機會應該是不大
transcript.whisperx[38].start 844.573
transcript.whisperx[38].end 857.137
transcript.whisperx[38].text 因為你不是剛剛有講專線嗎那我是台北市的市民我要問說那對台北市的影響有多大的時候那請問電話客服人員要怎麼回答我啊他根本沒有相關的數據嘛你是什麼樣的產業那你目前訂單有沒有什麼削減那我們要來問下一個問題
transcript.whisperx[39].start 863.96
transcript.whisperx[39].end 882.829
transcript.whisperx[39].text 針對台灣跟美國之間的關稅談判我們可以看到日本首相他是非常強硬的表態包含他說過守護日本的農業然後美債不宜當關稅談判標的日本人的軍費日本人自己決定匯率要按照公平原則安全貿易不應該一起討論我想請問一下
transcript.whisperx[40].start 885.75
transcript.whisperx[40].end 900.08
transcript.whisperx[40].text 日本他很具體的向美國說明他們的要求跟底線我想問一下關於關稅貿易壁壘的問題如果美國要求不得標示非基因改造食品行政院這裡會同意嗎
transcript.whisperx[41].start 900.896
transcript.whisperx[41].end 929.511
transcript.whisperx[41].text 我們這次談判的原則也是爭取國家最大利益維持產業國際競爭力所以有可能會同意排除這個關稅貿易障礙的這個議題裡面有非常多項我剛剛就指問你基因改造食品工業的項目當中我們可以合理討論工業的部分在雙方接觸底下四個原則要得標示美豬牛的產地這個部分我們會堅守嗎這個原則第一個國人的健康最優先所以剛剛講兩個你們都會堅守嘛
transcript.whisperx[42].start 937.662
transcript.whisperx[42].end 937.684
transcript.whisperx[42].text