iVOD / 160358

Field Value
IVOD_ID 160358
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160358
日期 2025-04-17
會議資料.會議代碼 委員會-11-3-26-6
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第6次全體委員會議
影片種類 Clip
開始時間 2025-04-17T12:41:37+08:00
結束時間 2025-04-17T12:51:00+08:00
影片長度 00:09:23
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/c2d17dc46794b9a41f12bbb305cd5cb1db8644d80871ec8675aa7aeb25548b49942b5e30a9ca234d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 張啓楷
委員發言時間 12:41:37 - 12:51:00
會議時間 2025-04-17T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第6次全體委員會議(事由:一、邀請環境部部長、經濟部、外交部就「因應美國退出巴黎氣候協定並提出對等關稅,對國內產業淨零轉型造成衝擊」進行專題報告,並備質詢。 二、邀請環境部部長、勞動部、教育部、經濟部針對「國內校園、賣場及工作場域之室內空氣污染物管理及防制精進作為」進行專題報告,並備質詢。 【專題報告綜合詢答】 【4月16日及17日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 11.01659375
transcript.pyannote[0].end 13.95284375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 12.78846875
transcript.pyannote[1].end 13.86846875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 14.12159375
transcript.pyannote[2].end 17.66534375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 17.95221875
transcript.pyannote[3].end 17.96909375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 17.96909375
transcript.pyannote[4].end 18.76221875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 20.01096875
transcript.pyannote[5].end 20.46659375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 20.93909375
transcript.pyannote[6].end 21.05721875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 21.42846875
transcript.pyannote[7].end 24.95534375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 25.81596875
transcript.pyannote[8].end 27.60471875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 28.44846875
transcript.pyannote[9].end 29.10659375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 29.41034375
transcript.pyannote[10].end 33.73034375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 30.67596875
transcript.pyannote[11].end 30.76034375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 34.08471875
transcript.pyannote[12].end 42.04971875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 42.16784375
transcript.pyannote[13].end 49.91346875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 50.38596875
transcript.pyannote[14].end 54.03096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 54.40221875
transcript.pyannote[15].end 54.85784375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 56.03909375
transcript.pyannote[16].end 63.51471875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 63.97034375
transcript.pyannote[17].end 66.72096875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 66.88971875
transcript.pyannote[18].end 69.91034375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 70.43346875
transcript.pyannote[19].end 77.09909375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 77.28471875
transcript.pyannote[20].end 77.41971875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 77.41971875
transcript.pyannote[21].end 77.43659375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 77.43659375
transcript.pyannote[22].end 77.75721875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 78.07784375
transcript.pyannote[23].end 107.03534375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 90.02534375
transcript.pyannote[24].end 90.76784375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 92.10096875
transcript.pyannote[25].end 92.40471875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 107.49096875
transcript.pyannote[26].end 124.24784375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 108.31784375
transcript.pyannote[27].end 108.53721875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 124.43346875
transcript.pyannote[28].end 128.01096875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 128.34846875
transcript.pyannote[29].end 135.73971875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 136.48221875
transcript.pyannote[30].end 137.93346875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 138.49034375
transcript.pyannote[31].end 145.84784375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 142.72596875
transcript.pyannote[32].end 143.60346875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 147.92346875
transcript.pyannote[33].end 149.12159375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 149.74596875
transcript.pyannote[34].end 155.46659375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 155.48346875
transcript.pyannote[35].end 155.51721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 155.51721875
transcript.pyannote[36].end 155.83784375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 155.83784375
transcript.pyannote[37].end 157.67721875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 158.31846875
transcript.pyannote[38].end 159.82034375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 160.93409375
transcript.pyannote[39].end 166.51971875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 167.24534375
transcript.pyannote[40].end 167.98784375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 169.86096875
transcript.pyannote[41].end 172.99971875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 173.57346875
transcript.pyannote[42].end 175.69971875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 175.93596875
transcript.pyannote[43].end 176.81346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 177.57284375
transcript.pyannote[44].end 186.01034375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 187.25909375
transcript.pyannote[45].end 187.74846875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 188.33909375
transcript.pyannote[46].end 189.11534375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 189.77346875
transcript.pyannote[47].end 191.42721875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 191.49471875
transcript.pyannote[48].end 192.76034375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 193.55346875
transcript.pyannote[49].end 195.84846875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 197.14784375
transcript.pyannote[50].end 212.50409375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 214.17471875
transcript.pyannote[51].end 215.55846875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 216.01409375
transcript.pyannote[52].end 225.21096875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 226.59471875
transcript.pyannote[53].end 226.88159375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 227.92784375
transcript.pyannote[54].end 232.56846875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 232.80471875
transcript.pyannote[55].end 235.70721875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 236.63534375
transcript.pyannote[56].end 237.90096875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 238.93034375
transcript.pyannote[57].end 241.37721875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 242.08596875
transcript.pyannote[58].end 242.47409375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 243.58784375
transcript.pyannote[59].end 244.34721875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 244.65096875
transcript.pyannote[60].end 245.69721875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 245.96721875
transcript.pyannote[61].end 249.47721875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 249.93284375
transcript.pyannote[62].end 253.91534375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 254.37096875
transcript.pyannote[63].end 256.68284375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 257.18909375
transcript.pyannote[64].end 261.34034375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 262.01534375
transcript.pyannote[65].end 263.16284375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 263.28096875
transcript.pyannote[66].end 265.71096875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 266.26784375
transcript.pyannote[67].end 268.90034375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 270.11534375
transcript.pyannote[68].end 273.72659375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 274.60409375
transcript.pyannote[69].end 276.94971875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 277.30409375
transcript.pyannote[70].end 278.14784375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 278.77221875
transcript.pyannote[71].end 279.46409375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 279.48096875
transcript.pyannote[72].end 280.98284375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 281.30346875
transcript.pyannote[73].end 282.51846875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 283.19346875
transcript.pyannote[74].end 284.32409375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 285.08346875
transcript.pyannote[75].end 288.40784375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 289.45409375
transcript.pyannote[76].end 292.17096875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 292.55909375
transcript.pyannote[77].end 294.75284375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 295.54596875
transcript.pyannote[78].end 308.75909375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 310.24409375
transcript.pyannote[79].end 311.32409375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 312.01596875
transcript.pyannote[80].end 313.19721875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 314.09159375
transcript.pyannote[81].end 315.25596875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 316.23471875
transcript.pyannote[82].end 318.00659375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 318.51284375
transcript.pyannote[83].end 319.27221875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 319.81221875
transcript.pyannote[84].end 320.94284375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 321.92159375
transcript.pyannote[85].end 322.57971875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 323.76096875
transcript.pyannote[86].end 324.45284375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 325.16159375
transcript.pyannote[87].end 326.14034375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 326.93346875
transcript.pyannote[88].end 328.70534375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 328.70534375
transcript.pyannote[89].end 328.82346875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 328.97534375
transcript.pyannote[90].end 329.00909375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 329.22846875
transcript.pyannote[91].end 331.06784375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 331.15221875
transcript.pyannote[92].end 353.03909375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 353.03909375
transcript.pyannote[93].end 359.43471875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 359.87346875
transcript.pyannote[94].end 361.71284375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 362.69159375
transcript.pyannote[95].end 370.25159375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 370.89284375
transcript.pyannote[96].end 372.14159375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 372.86721875
transcript.pyannote[97].end 376.10721875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 376.49534375
transcript.pyannote[98].end 377.84534375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 378.72284375
transcript.pyannote[99].end 379.09409375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 380.62971875
transcript.pyannote[100].end 381.74346875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 382.16534375
transcript.pyannote[101].end 383.41409375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 384.03846875
transcript.pyannote[102].end 386.24909375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 387.19409375
transcript.pyannote[103].end 389.64096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 390.07971875
transcript.pyannote[104].end 392.74596875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 393.52221875
transcript.pyannote[105].end 395.44596875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 396.00284375
transcript.pyannote[106].end 396.96471875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 398.26409375
transcript.pyannote[107].end 400.96409375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 401.63909375
transcript.pyannote[108].end 402.02721875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 402.68534375
transcript.pyannote[109].end 410.70096875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 411.10596875
transcript.pyannote[110].end 415.07159375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 415.37534375
transcript.pyannote[111].end 415.89846875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 416.28659375
transcript.pyannote[112].end 417.46784375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 417.97409375
transcript.pyannote[113].end 420.47159375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 421.04534375
transcript.pyannote[114].end 422.26034375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 422.73284375
transcript.pyannote[115].end 425.68596875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 426.12471875
transcript.pyannote[116].end 427.81221875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 428.36909375
transcript.pyannote[117].end 434.86596875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 436.04721875
transcript.pyannote[118].end 439.16909375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 439.57409375
transcript.pyannote[119].end 441.37971875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 441.76784375
transcript.pyannote[120].end 447.97784375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 448.53471875
transcript.pyannote[121].end 452.66909375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 455.16659375
transcript.pyannote[122].end 455.75721875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 456.80346875
transcript.pyannote[123].end 460.44846875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 460.76909375
transcript.pyannote[124].end 461.19096875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 460.87034375
transcript.pyannote[125].end 460.95471875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 461.89971875
transcript.pyannote[126].end 477.93096875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 464.02596875
transcript.pyannote[127].end 464.04284375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 464.04284375
transcript.pyannote[128].end 464.58284375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 464.58284375
transcript.pyannote[129].end 464.65034375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 465.02159375
transcript.pyannote[130].end 465.78096875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 478.35284375
transcript.pyannote[131].end 478.82534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 479.04471875
transcript.pyannote[132].end 486.57096875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 487.33034375
transcript.pyannote[133].end 490.51971875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 490.80659375
transcript.pyannote[134].end 493.06784375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 494.60346875
transcript.pyannote[135].end 494.63721875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 494.63721875
transcript.pyannote[136].end 499.17659375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 495.22784375
transcript.pyannote[137].end 496.49346875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 499.17659375
transcript.pyannote[138].end 499.59846875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 499.59846875
transcript.pyannote[139].end 502.36596875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 502.77096875
transcript.pyannote[140].end 504.69471875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 505.01534375
transcript.pyannote[141].end 515.74784375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 516.27096875
transcript.pyannote[142].end 535.62659375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 517.36784375
transcript.pyannote[143].end 518.17784375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 536.04846875
transcript.pyannote[144].end 537.41534375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 538.05659375
transcript.pyannote[145].end 539.27159375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 539.35596875
transcript.pyannote[146].end 542.86596875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 543.11909375
transcript.pyannote[147].end 543.43971875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 543.54096875
transcript.pyannote[148].end 544.87409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 545.16096875
transcript.pyannote[149].end 545.51534375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 546.07221875
transcript.pyannote[150].end 547.03409375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 547.72596875
transcript.pyannote[151].end 548.16471875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 547.86096875
transcript.pyannote[152].end 547.99596875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 548.16471875
transcript.pyannote[153].end 548.63721875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 548.46846875
transcript.pyannote[154].end 554.40846875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 552.94034375
transcript.pyannote[155].end 553.75034375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 554.40846875
transcript.pyannote[156].end 555.21846875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 554.59409375
transcript.pyannote[157].end 559.01534375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 559.47096875
transcript.pyannote[158].end 561.14159375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 559.97721875
transcript.pyannote[159].end 560.16284375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 562.37346875
transcript.pyannote[160].end 562.96409375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 562.96409375
transcript.pyannote[161].end 563.67284375
transcript.whisperx[0].start 12.039
transcript.whisperx[0].end 26.793
transcript.whisperx[0].text 請請彭部長還有這個勞動部職業安全衛生署的林益棠林副署長林副署長委員好保安局很高興剛才聽到你說你說台東那個美麗的海岸線不會被破壞啦
transcript.whisperx[1].start 28.536
transcript.whisperx[1].end 53.543
transcript.whisperx[1].text 生態環境優先嘛對不對我剛才聽到一句話我覺得要肯定你說啊如果當地的居民強烈反對的這要傾聽民意要重視就不會成嘛所以我今天一方面肯定就是說台東這個美麗的海岸啊沒有被破壞的不只環境部部長已經明確講了經濟部部長也說他不會允許這個開發我們今天應該可以可以幾乎可以公佈啦跟台東的這個民眾跟全團民眾講這個
transcript.whisperx[2].start 56.087
transcript.whisperx[2].end 77.506
transcript.whisperx[2].text 台東這個海岸線的這個路上風機應該乘的機率是很低的這是個好消息第一我跟他進一步問你剛講說要傾聽民意啊我經常要問你這個基隆市街嘛對不對我也希望你多傾聽那邊的民意好不好多去注意那邊一方面是生態跟它的這個環境如果它有污染那天我們有共識了嘛盡快去改善它好不好
transcript.whisperx[3].start 78.386
transcript.whisperx[3].end 106.488
transcript.whisperx[3].text 包委員那個我們3月26號已經派人去查了我們用這個介紹介閉者保護法我組成一個團隊我希望大概月底或是5月初有一個報告再給委員參考已經去查了已經去查了已經率隊去台電裡面查了現在要等一段時間因為我們已經要求台電提供相關的資料了如果他有隱秘的話我相信因為目前我知道已經檢調也在查了所以如果檢調如果有會跟我們要資料我們會提供給檢調那如果我們有結果也會再跟委員報告
transcript.whisperx[4].start 107.591
transcript.whisperx[4].end 135.254
transcript.whisperx[4].text 第一個盡快啦第一個絕對不允許在污染的地方更重要的不要污染造成當地民眾的傷害戴奧心那個致癌的嘛好不好我們一定要做到這點第二個當地居民為什麼那麼反對世界不是不能討論喔是他們反映很多意見嘛例如說現在的郵輪台灣郵輪都是從吉隆港進來對不對你現在放了那個世界天然氣存儲在那邊會不會影響到他們其實大家知道嘛以前台灣每次有發生戰爭啊
transcript.whisperx[5].start 136.53
transcript.whisperx[5].end 145.619
transcript.whisperx[5].text 都是從基隆港登陸的所以當地民眾有這聲音,你剛提的很好請聽民意,好不好?請您副署長副署長恭喜聽說你下禮拜就要升任這個署長了嘛先給你恭喜啦不過,任重道遠我先來問一個很重要的事情很多那個地方政府啊
transcript.whisperx[6].start 160.984
transcript.whisperx[6].end 167.928
transcript.whisperx[6].text 都在埋怨一件事這可能也是你上任應該馬上解決的就是這個勞檢嚴從2016年開始他們就在哀怨說快過勞快過勞了結果到現在為止勞動部還在說他們要做一些改善要支持什麼草案做一些9任的獎金的留任他的根本問題出在這個地方
transcript.whisperx[7].start 187.321
transcript.whisperx[7].end 210.217
transcript.whisperx[7].text 副所長 你知道你們屬於跟你們勞動部給這個勞檢員訂的那個一年的KPI是多少跟委員報告 我們這個KPI基本上是因為我們是補助地方政府去聘用勞動條件檢查員所以就會有所謂的工作量所以大概我們現在一年的工作量勞檢的話是200場次
transcript.whisperx[8].start 214.212
transcript.whisperx[8].end 225.137
transcript.whisperx[8].text 你這樣賣頂到先我拐這個等一下我會進一步跟你講這個連監察院都提出檢討報告要你們改你到現在沒有改一天你上班公務員一天上班幾天扣掉休假日結果你平均一年的KPI你現在要檢查200件這怎麼做得來呢這幾乎天天都在勞檢對不對
transcript.whisperx[9].start 243.732
transcript.whisperx[9].end 268.636
transcript.whisperx[9].text 這太高了啦我來給你看現在地方政府反應是兩個你訂了這個勞檢勞檢員這個KPI這麼高勞檢員就是去檢查人家有沒有問題的啊結果你本身又過勞這不是很碰刺嗎這是第一個點那現在老實講現在因為我們人口在減少嘛很多地方又是用那個遠距的有沒有你很多地方應該可以做一個修正了那另外
transcript.whisperx[10].start 270.294
transcript.whisperx[10].end 292.889
transcript.whisperx[10].text 我是很希望你們趕快去檢討這個KPI要怎麼講我給你看一個齁這不是只有地方的這個政府在反應監察院啊來你看一下我給你看監察院的調查監察院的調查啊他說每一個案子啊每一個案子你要去檢查你要做什麼事情第一個你要先看他的出勤的紀錄比對薪資的這個情緒這個第一
transcript.whisperx[11].start 295.612
transcript.whisperx[11].end 308.101
transcript.whisperx[11].text 第二你還要跟僱主說明相關的這個法規第三你要撰寫檢討的這個檢討報告的這個通知第四你可能要開裁處書至少要長達一個月以上一個案子出去勞檢平均起來差不多二十點鐘這個你比較清楚嘛對不對你訂兩百一個案子出去二十個小時監察已經調查了叫你們改
transcript.whisperx[12].start 323.907
transcript.whisperx[12].end 325.983
transcript.whisperx[12].text 所以你下禮拜上陣以後
transcript.whisperx[13].start 326.997
transcript.whisperx[13].end 352.187
transcript.whisperx[13].text 列地要認趕快把它做一個檢討做一個處理好不好謝謝委員關心這個我們第一線勞動檢查員的辛勞確實那這個部分我們其實持續在做一些不管是在工具面或是說剛剛講的廠市面怎麼去換算因為並不一定說每一位這個200廠市一定是勞檢有時候我們在做一些仿試的話也會把它記為工作量這個我們就陸續在做一些優化跟精進謝謝委員關心
transcript.whisperx[14].start 354.268
transcript.whisperx[14].end 377.283
transcript.whisperx[14].text 監察院調查完之後他是有明確要你做一些改正的啦他明明確確的你看以後你單列的這個時數啊你會增加的工作量太大嘛所以他有時候你看一個月的那個工作時間加班數超過50點鐘超過50個小時甚至各個機關加班費有時候規定只能給20那你就違規啊對不對
transcript.whisperx[15].start 380.663
transcript.whisperx[15].end 400.056
transcript.whisperx[15].text 你這個強人所難啊 你導致你的這個你自己的勞工 自己的員工過勞嘛 然後又違反規定嘛欸 勞動部去年底那個霸凌案啊引起很大的仙人大波 到現在都還沒有完全解決勞動不是很多人工作時間是過場的
transcript.whisperx[16].start 402.725
transcript.whisperx[16].end 425.195
transcript.whisperx[16].text 不是只有勞檢員要整體去檢討特別去年這個事情一定要引以為戒不要霸凌自己的員工好不好不要讓他們工作時間太長後來檢察官不是也進去調你們所有加班的時數嗎打卡的對不對這事情到現在還在查啊勞檢員你在地方你又害得他們不只是工作時間這麼長連加班時數都明定啦你就20個小時結果你給了50個小時這就違規了嘛
transcript.whisperx[17].start 428.596
transcript.whisperx[17].end 452.676
transcript.whisperx[17].text 所以那時候監察院明確要求你們說你要嘛用什麼方式減少他們這個工作量這樣他可以做得更好啊不然你就增加人力嘛對不對另外一個他提那你對於他們的這個對於他們這個加班的這個方式啊你要有一個核實的一個專案加班最重要的就是這個事情嘛到現在都沒做啊來我具體來我現在今天具體的做三個要求好第一個
transcript.whisperx[18].start 456.84
transcript.whisperx[18].end 459.467
transcript.whisperx[18].text 我請你中央啊 要去了解整個地方勞檢的這個狀況
transcript.whisperx[19].start 462.14
transcript.whisperx[19].end 486.383
transcript.whisperx[19].text 你長久都在做這個事情嘛跟著副署長接著署長以後更要做你現在要很完整的深刻的去了解地方整個勞檢這個狀況然後作為你過去編預算的這個參考為什麼要這樣做因為每年預算都在滾動嘛對不對都在滾動嘛然後請勞動部你統計出來今年十月底跟去年一整年的
transcript.whisperx[20].start 487.404
transcript.whisperx[20].end 515.58
transcript.whisperx[20].text 整個那個腦檢的那個狀況跟那個件數好不好好你這個提出來這個一個禮拜給我可以嗎你是不是再給我們一段時間一個禮拜上任那一個月啦好 謝謝一個月給我一個月給我這個資料這個就是OK然後第二個請你趕快提出一個具體的一個改善方案就是說這個KPI真的一年200件真的太多了去檢討一下甚至很多人都建議啊降到150 100多都合理啦
transcript.whisperx[21].start 516.981
transcript.whisperx[21].end 536.743
transcript.whisperx[21].text 檢討一下這個要你在這個一個月內好不好檢討完以後給我一個報告不要再造成那個地方的這些工作人員真的是太辛苦了第三個請你們要提出新的工作分配改善方式包括你這個補助型計畫業務越來越偏低然後你要求地方這個勞檢員做了一堆那個他們現在不是只有勞檢的問題
transcript.whisperx[22].start 538.103
transcript.whisperx[22].end 559.828
transcript.whisperx[22].text 你看他們還碰到一堆什麼不是勞檢類型的分類工作你還在那邊辦什麼說明會整堆的你整個都要納進去好不好整體做一個盤整好不好本席今天非常具體的三個要求那恭喜你下禮拜上任請把他列為第一要任好不好那一個月內給我一個檢討的這個方針跟改變跟改善好不好好謝謝好謝謝張祺可