iVOD / 160273

Field Value
IVOD_ID 160273
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160273
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-23-7
會議資料.會議代碼:str 第11屆第3會期交通委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 23
會議資料.委員會代碼:str[0] 交通委員會
會議資料.標題 第11屆第3會期交通委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-04-16T12:35:06+08:00
結束時間 2025-04-16T12:44:07+08:00
影片長度 00:09:01
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279dff71f5d70bc54b7cff316f6363e53358e2021fb25ab74fd83ea2fa0b0c1a4ccb95ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 許智傑
委員發言時間 12:35:06 - 12:44:07
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期交通委員會第7次全體委員會議(事由:一、邀請交通部部長陳世凱列席報告業務概況,並備質詢。 二、邀請交通部部長、經濟部次長、外交部次長、財政部次長、行政院經貿談判辦公室就「美國課徵對等關稅對我國交通公私部門之衝擊與因應」進行專題報告,並備質詢。 【4月16日及17日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 2.10659375
transcript.pyannote[0].end 4.35096875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 4.92471875
transcript.pyannote[1].end 5.93721875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 12.78846875
transcript.pyannote[2].end 13.31159375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 14.13846875
transcript.pyannote[3].end 15.50534375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 15.77534375
transcript.pyannote[4].end 26.54159375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 26.77784375
transcript.pyannote[5].end 32.04284375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 32.61659375
transcript.pyannote[6].end 37.07159375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 38.08409375
transcript.pyannote[7].end 48.56346875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 49.32284375
transcript.pyannote[8].end 55.12784375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 55.73534375
transcript.pyannote[9].end 57.76034375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 58.16534375
transcript.pyannote[10].end 66.68721875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 67.21034375
transcript.pyannote[11].end 69.92721875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 70.63596875
transcript.pyannote[12].end 71.49659375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 71.98596875
transcript.pyannote[13].end 73.25159375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 73.80846875
transcript.pyannote[14].end 85.16534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 85.72221875
transcript.pyannote[15].end 93.28221875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 94.00784375
transcript.pyannote[16].end 97.29846875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 98.27721875
transcript.pyannote[17].end 100.62284375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 101.41596875
transcript.pyannote[18].end 115.52346875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 115.91159375
transcript.pyannote[19].end 120.51846875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 120.88971875
transcript.pyannote[20].end 148.17659375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 148.75034375
transcript.pyannote[21].end 155.71971875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 156.34409375
transcript.pyannote[22].end 162.38534375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 164.93346875
transcript.pyannote[23].end 189.65534375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 182.93909375
transcript.pyannote[24].end 183.51284375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 187.25909375
transcript.pyannote[25].end 187.93409375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 189.65534375
transcript.pyannote[26].end 193.55346875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 193.80659375
transcript.pyannote[27].end 206.02409375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 195.67971875
transcript.pyannote[28].end 195.81471875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 200.86034375
transcript.pyannote[29].end 201.02909375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 206.02409375
transcript.pyannote[30].end 215.25471875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 215.20409375
transcript.pyannote[31].end 215.22096875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 215.25471875
transcript.pyannote[32].end 216.08159375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 215.38971875
transcript.pyannote[33].end 225.41346875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 225.88596875
transcript.pyannote[34].end 227.26971875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 227.69159375
transcript.pyannote[35].end 229.71659375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 227.89409375
transcript.pyannote[36].end 228.07971875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 229.32846875
transcript.pyannote[37].end 229.83471875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 229.86846875
transcript.pyannote[38].end 230.77971875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 231.21846875
transcript.pyannote[39].end 236.02784375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 236.55096875
transcript.pyannote[40].end 247.04721875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 247.55346875
transcript.pyannote[41].end 265.79534375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 259.99034375
transcript.pyannote[42].end 260.27721875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 265.79534375
transcript.pyannote[43].end 273.37221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 266.03159375
transcript.pyannote[44].end 266.63909375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 274.30034375
transcript.pyannote[45].end 277.20284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 277.75971875
transcript.pyannote[46].end 283.34534375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 283.91909375
transcript.pyannote[47].end 295.29284375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 295.57971875
transcript.pyannote[48].end 315.88034375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 295.91721875
transcript.pyannote[49].end 295.93409375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 316.57221875
transcript.pyannote[50].end 334.42596875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 335.32034375
transcript.pyannote[51].end 338.83034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 339.53909375
transcript.pyannote[52].end 340.66971875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 341.56409375
transcript.pyannote[53].end 343.26846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 343.26846875
transcript.pyannote[54].end 350.18721875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 350.25471875
transcript.pyannote[55].end 351.79034375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 352.19534375
transcript.pyannote[56].end 363.41721875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 363.90659375
transcript.pyannote[57].end 364.63221875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 365.17221875
transcript.pyannote[58].end 366.62346875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 367.93971875
transcript.pyannote[59].end 369.47534375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 370.62284375
transcript.pyannote[60].end 374.35221875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 374.77409375
transcript.pyannote[61].end 378.14909375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 378.65534375
transcript.pyannote[62].end 380.39346875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 380.95034375
transcript.pyannote[63].end 384.19034375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 384.73034375
transcript.pyannote[64].end 387.85221875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 388.15596875
transcript.pyannote[65].end 390.51846875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 388.32471875
transcript.pyannote[66].end 388.44284375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 391.78409375
transcript.pyannote[67].end 397.48784375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 396.15471875
transcript.pyannote[68].end 399.52971875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 398.04471875
transcript.pyannote[69].end 398.56784375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 399.52971875
transcript.pyannote[70].end 407.20784375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 405.82409375
transcript.pyannote[71].end 408.42284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 408.72659375
transcript.pyannote[72].end 411.73034375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 411.73034375
transcript.pyannote[73].end 412.11846875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 412.05096875
transcript.pyannote[74].end 413.38409375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 413.73846875
transcript.pyannote[75].end 415.02096875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 415.40909375
transcript.pyannote[76].end 420.69096875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 420.69096875
transcript.pyannote[77].end 420.91034375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 420.91034375
transcript.pyannote[78].end 424.08284375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 425.66909375
transcript.pyannote[79].end 431.06909375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 430.14096875
transcript.pyannote[80].end 430.56284375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 430.91721875
transcript.pyannote[81].end 431.05221875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 431.06909375
transcript.pyannote[82].end 431.23784375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 431.23784375
transcript.pyannote[83].end 436.23284375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 435.37221875
transcript.pyannote[84].end 436.21596875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 436.23284375
transcript.pyannote[85].end 437.19471875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 436.90784375
transcript.pyannote[86].end 443.82659375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 443.45534375
transcript.pyannote[87].end 450.49221875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 450.49221875
transcript.pyannote[88].end 450.89721875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 450.82971875
transcript.pyannote[89].end 456.24659375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 456.24659375
transcript.pyannote[90].end 456.68534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 456.68534375
transcript.pyannote[91].end 459.21659375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 459.57096875
transcript.pyannote[92].end 459.58784375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 459.58784375
transcript.pyannote[93].end 464.43096875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 462.84471875
transcript.pyannote[94].end 484.27596875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 484.54596875
transcript.pyannote[95].end 488.07284375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 488.64659375
transcript.pyannote[96].end 496.03784375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 496.30784375
transcript.pyannote[97].end 496.76346875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 496.52721875
transcript.pyannote[98].end 517.28346875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 517.85721875
transcript.pyannote[99].end 521.82284375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 521.82284375
transcript.pyannote[100].end 522.14346875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 522.14346875
transcript.pyannote[101].end 525.14721875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 525.38346875
transcript.pyannote[102].end 530.22659375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 530.68221875
transcript.pyannote[103].end 533.16284375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 531.88034375
transcript.pyannote[104].end 538.02284375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 537.63471875
transcript.pyannote[105].end 537.68534375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 538.02284375
transcript.pyannote[106].end 538.71471875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 538.71471875
transcript.pyannote[107].end 538.73159375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 539.11971875
transcript.pyannote[108].end 540.97596875
transcript.whisperx[0].start 2.691
transcript.whisperx[0].end 3.934
transcript.whisperx[0].text 謝謝主席 我們請部長好 陳部長
transcript.whisperx[1].start 12.83
transcript.whisperx[1].end 36.792
transcript.whisperx[1].text 委員好部長辛苦那個對等關稅前幾天正好卓院長也有到南部去針對我們的產業做談那針對交通的部分事實上也要提醒部長一下就是說整個關稅未來對台灣的影響因為其實川普的關稅其實只是個序幕
transcript.whisperx[2].start 38.137
transcript.whisperx[2].end 54.797
transcript.whisperx[2].text 未來其實最後的目的應該是美國的供應鏈民主國家的供應鏈跟中國的共產國家的供應鏈會分開所以已經會打破以前自由貿易WTO全球化的概念
transcript.whisperx[3].start 55.822
transcript.whisperx[3].end 65.928
transcript.whisperx[3].text 所以這個是一個序幕當然到最後我們要想到最後就中間這個過程可能我們要怎麼應驗比如說我們的大貨車產業我們的那個車體的那個結構那個
transcript.whisperx[4].start 72.719
transcript.whisperx[4].end 100.151
transcript.whisperx[4].text 熱淨鍍芯啦我知道他那個CS就是有一些是整體在中國道路那邊做熱淨鍍芯而有一部分是在台灣他是分不同的部分鍍完再去連接所以像這個部分就是說到底以後如果是以供應鏈的角度來看咦 咱的供應鏈有可能用到他們中工的東西那到底要怎麼去運用
transcript.whisperx[5].start 101.622
transcript.whisperx[5].end 119.764
transcript.whisperx[5].text 像這個東西可能要想很古董的要想很專門的所以就我們的交通事業方面的產業那跟中國供應鏈有關係的可能都一併去做思考這說起來是很多啦但是細節可能要你們交通部去盤點
transcript.whisperx[6].start 121.125
transcript.whisperx[6].end 147.439
transcript.whisperx[6].text 所以希望說交通部我想各部會都會遇到這個問題啦就是說你沒關係公共工程用到所有的機具或者是載具那你就是任何的車產業界都有可能這個供應鏈長期都會受到影響所以這提醒我們各部門就是說可能這個部分要先去預作一下思考不然未來有人回到你再去
transcript.whisperx[7].start 149.161
transcript.whisperx[7].end 150.503
transcript.whisperx[7].text 其實我們一直要求觀光署請署長
transcript.whisperx[8].start 165.143
transcript.whisperx[8].end 181.392
transcript.whisperx[8].text 我想去年觀光署其實有在台北做一個觀光產業數位博覽會那我想這個是一個比較先進的AI技術的融入這個部分其實應該給予觀光署肯定啦我知道不錯的地方先跟你們討論
transcript.whisperx[9].start 183.173
transcript.whisperx[9].end 199.982
transcript.whisperx[9].text 董仁你昨天有答應說6月要到高雄來辦嘛對不對是那不知道現在準備的如何我們也配合仲夏節那麼在柏二會有三天的這種數位的這個策展那跟民眾一起互動
transcript.whisperx[10].start 200.842
transcript.whisperx[10].end 224.721
transcript.whisperx[10].text 那這個部分我們已經整個系統都設計好了那我們會5月23號一起公佈OK 謝謝這個照規劃進行這個我想承諾的東西我要再坎縫一次是不是有答應了有做好這個一定會做謝謝那當然就是說我想再請教一下就是署長這問題今天AI應用到觀光產業那在目前台灣的
transcript.whisperx[11].start 225.982
transcript.whisperx[11].end 246.576
transcript.whisperx[11].text 影響有多大或者是產值有多大因為在應該這麼講AI跟AR的應用其實是在行銷推廣之外還有一個非常重要就是民眾的回饋然後我們要結合大數據的分析跟區塊鏈這樣才能夠精準的掌握市場
transcript.whisperx[12].start 247.637
transcript.whisperx[12].end 273.052
transcript.whisperx[12].text 那麼尤其是在少子化跟高齡化之後我們觀光的產業尤其是旅行業、旅館業、遊樂區業他們也需要有更多的這些我們的數位的這些應用那麼如此的話我們整個觀光的這個旅遊產業才能夠更往前走對 就是上一次我有跟部長跟署長提到就是說到底台灣你來台灣最有吸引力的是什麼
transcript.whisperx[13].start 274.886
transcript.whisperx[13].end 298.438
transcript.whisperx[13].text 那目前來講就是說我們的觀光人數上次也有提到現在是786萬坦白講這個數字我們是相當不滿意啦那我們當時很努力的把觀光局變成觀光署就是希望能夠提高格局那做一個更廣闊的思考
transcript.whisperx[14].start 299.238
transcript.whisperx[14].end 315.568
transcript.whisperx[14].text 所以我們有個概念就是處處都是打卡點 步步都是觀光部那是不是就觀光署在做這個格局的思考的時候我現在覺得你們可能還是被綁在交通部底下的觀光署裡面
transcript.whisperx[15].start 316.918
transcript.whisperx[15].end 338.41
transcript.whisperx[15].text 應該你要跳出來就是說你今天假設是行政院的立場或者是行政院政務委員的立場你來看觀光署應該怎麼發展那該跟各部會跨部會溝通交流的改善的這個該做的要去做要不然你看你的設定的目標去年786萬今年設定的也是
transcript.whisperx[16].start 339.625
transcript.whisperx[16].end 368.908
transcript.whisperx[16].text 一千萬對不對挑戰一千萬對我上次不是有講了你看日本是今年是四千萬二零三年是六千萬那到底我們觀光署交通部在這一部分的長遠的思考有沒有去做改變所以我要要求就是說這個部分希望你們可以改變一下思考就是說不要老是在裡面我再舉個例子那個我曾經到那個
transcript.whisperx[17].start 370.723
transcript.whisperx[17].end 386.912
transcript.whisperx[17].text 去拜訪,就是你去其他各個代表處去拜訪,其實你會發現說,以印尼來講,印尼、印度、法國、加拿大、菲律賓都在這裡辦事處對不對?你過後到底有過後果嗎?
transcript.whisperx[18].start 391.84
transcript.whisperx[18].end 413.122
transcript.whisperx[18].text 那個是遊客中心啦我們是台灣觀光遊客中心最後就是回過頭來看我的786嘛對不對對我們希望雙印的部分能夠設辦事處也就是我們現在目前為止跟外交部怎麼做都是你的戰術策略啦我要看的就是戰略佈局嘛你最後的結果
transcript.whisperx[19].start 413.923
transcript.whisperx[19].end 423.394
transcript.whisperx[19].text 你最後的結果坦白講七八六我今天觀光局變成觀光署照理講是提升一個層次是我的要求應該要提高一個層次
transcript.whisperx[20].start 425.72
transcript.whisperx[20].end 451.655
transcript.whisperx[20].text 是 我們大概是有兩個部分一個是等於是求職的部分 撐職啦對所以我們希望也能夠高端團的部分能夠吸引他們所以我希望說其實然後另外一個部分當然就是我們希望能夠自由行的部分能夠呈現台灣的門號你怎麼去做我都拭目以待但是我要看的就是說你那個格局有沒有提高來是比如說印尼
transcript.whisperx[21].start 452.835
transcript.whisperx[21].end 476.869
transcript.whisperx[21].text 印尼最大的問題其實簽證是個很大的問題是是那你們有沒有想辦法去克服我們一直在跟相關單位在對你懂我意思嗎也就是說我今天要的就是說你今天觀光局變成觀光署我今天786萬是相當的不滿意的那我今天用什麼方式來提高包括我上一次提到的就是你
transcript.whisperx[22].start 477.529
transcript.whisperx[22].end 487.314
transcript.whisperx[22].text 美食小吃啊日本的溫泉啊你要怎麼樣製造特色讓人家想來我覺得你想廣一點想高一點然後要跟各部會怎麼樣去跨部會協調
transcript.whisperx[23].start 489.057
transcript.whisperx[23].end 516.567
transcript.whisperx[23].text 這個部分我是覺得現在你做的當然我是覺得還不錯啦但是就是說總是那個格局看到的是不夠的是不是請署長能夠提高這個格局去做思考希望說部長就是說在跨部會的部分可以給予觀光署協助這樣我們看我就看到他那個做出來的格局決定結局態度決定高度嘛不然你在觀光署裡面交通部的觀光署裡面怕怕不中你做不大步
transcript.whisperx[24].start 518.047
transcript.whisperx[24].end 539.437
transcript.whisperx[24].text 是不是希望說交通部跟公關署這部分可以做不一樣的思考所以下一次我希望看到的就是那個那個目標值啦我希望看到一個更高的戰略目標好不好是 我們持續努力對 那我來下一次再來看那個署長再準備一下好 謝謝謝謝委員好 謝謝我們