iVOD / 160261

Field Value
IVOD_ID 160261
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160261
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-20-8
會議資料.會議代碼:str 第11屆第3會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-04-16T12:32:07+08:00
結束時間 2025-04-16T12:40:32+08:00
影片長度 00:08:25
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279dfc840525cf3dc7661a3fd8a5ba555e8251a52cf64e50924c0b165d9c3a9e3ea845ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 張啓楷
委員發言時間 12:32:07 - 12:40:32
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第8次全體委員會議(事由:邀請財政部莊部長翠雲、經濟部、農業部及公平交易委員會就「防範中國大陸產品低價傾銷及透過台灣洗產地問題之因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 1.92096875
transcript.pyannote[0].end 2.44409375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 16.78784375
transcript.pyannote[1].end 18.67784375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 18.67784375
transcript.pyannote[2].end 19.58909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 18.69471875
transcript.pyannote[3].end 18.76221875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 18.99846875
transcript.pyannote[4].end 23.68971875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 20.93909375
transcript.pyannote[5].end 21.78284375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 22.91346875
transcript.pyannote[6].end 23.97659375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 23.97659375
transcript.pyannote[7].end 24.09471875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 27.18284375
transcript.pyannote[8].end 27.73971875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 32.22846875
transcript.pyannote[9].end 44.09159375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 44.73284375
transcript.pyannote[10].end 46.03221875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 46.31909375
transcript.pyannote[11].end 47.36534375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 48.14159375
transcript.pyannote[12].end 51.56721875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 51.85409375
transcript.pyannote[13].end 53.00159375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 53.91284375
transcript.pyannote[14].end 55.19534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 55.95471875
transcript.pyannote[15].end 58.51971875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 59.00909375
transcript.pyannote[16].end 62.38409375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 62.77221875
transcript.pyannote[17].end 63.21096875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 63.76784375
transcript.pyannote[18].end 66.04596875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 67.48034375
transcript.pyannote[19].end 72.18846875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 72.39096875
transcript.pyannote[20].end 73.63971875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 75.09096875
transcript.pyannote[21].end 75.74909375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 76.47471875
transcript.pyannote[22].end 79.20846875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 79.96784375
transcript.pyannote[23].end 82.83659375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 84.37221875
transcript.pyannote[24].end 92.87721875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 93.23159375
transcript.pyannote[25].end 95.86409375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 94.00784375
transcript.pyannote[26].end 95.99909375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 96.40409375
transcript.pyannote[27].end 98.46284375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 98.69909375
transcript.pyannote[28].end 99.45846875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 99.66096875
transcript.pyannote[29].end 102.91784375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 103.20471875
transcript.pyannote[30].end 106.57971875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 105.95534375
transcript.pyannote[31].end 108.36846875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 107.64284375
transcript.pyannote[32].end 108.95909375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 108.84096875
transcript.pyannote[33].end 111.72659375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 111.60846875
transcript.pyannote[34].end 111.92909375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 112.33409375
transcript.pyannote[35].end 113.38034375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 114.61221875
transcript.pyannote[36].end 115.27034375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 114.84846875
transcript.pyannote[37].end 121.91909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 116.70471875
transcript.pyannote[38].end 118.37534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 120.43409375
transcript.pyannote[39].end 120.83909375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 121.81784375
transcript.pyannote[40].end 125.47971875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 125.90159375
transcript.pyannote[41].end 129.63096875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 130.20471875
transcript.pyannote[42].end 135.63846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 136.00971875
transcript.pyannote[43].end 136.81971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 137.08971875
transcript.pyannote[44].end 138.16971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 138.57471875
transcript.pyannote[45].end 149.02034375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 143.51909375
transcript.pyannote[46].end 144.90284375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 148.73346875
transcript.pyannote[47].end 161.22096875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 161.22096875
transcript.pyannote[48].end 164.73096875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 164.96721875
transcript.pyannote[49].end 170.33346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 170.87346875
transcript.pyannote[50].end 173.79284375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 174.38346875
transcript.pyannote[51].end 175.48034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 176.22284375
transcript.pyannote[52].end 178.26471875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 178.77096875
transcript.pyannote[53].end 180.49221875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 181.28534375
transcript.pyannote[54].end 184.18784375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 185.70659375
transcript.pyannote[55].end 187.46159375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 188.01846875
transcript.pyannote[56].end 198.26159375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 198.56534375
transcript.pyannote[57].end 204.60659375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 205.09596875
transcript.pyannote[58].end 207.30659375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 207.67784375
transcript.pyannote[59].end 209.11221875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 209.70284375
transcript.pyannote[60].end 211.76159375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 212.13284375
transcript.pyannote[61].end 212.41971875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 213.58409375
transcript.pyannote[62].end 213.97221875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 215.03534375
transcript.pyannote[63].end 219.18659375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 219.79409375
transcript.pyannote[64].end 220.85721875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 221.14409375
transcript.pyannote[65].end 222.62909375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 222.73034375
transcript.pyannote[66].end 223.35471875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 224.11409375
transcript.pyannote[67].end 226.03784375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 226.96596875
transcript.pyannote[68].end 230.93159375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 231.85971875
transcript.pyannote[69].end 232.70346875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 234.20534375
transcript.pyannote[70].end 234.47534375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 234.81284375
transcript.pyannote[71].end 235.20096875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 236.53409375
transcript.pyannote[72].end 237.19221875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 237.79971875
transcript.pyannote[73].end 240.43221875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 242.67659375
transcript.pyannote[74].end 245.29221875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 246.67596875
transcript.pyannote[75].end 248.24534375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 248.83596875
transcript.pyannote[76].end 251.46846875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 252.93659375
transcript.pyannote[77].end 254.70846875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 256.37909375
transcript.pyannote[78].end 257.64471875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 258.38721875
transcript.pyannote[79].end 259.11284375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 259.66971875
transcript.pyannote[80].end 260.69909375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 261.12096875
transcript.pyannote[81].end 262.82534375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 264.15846875
transcript.pyannote[82].end 266.62221875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 265.87971875
transcript.pyannote[83].end 268.03971875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 268.81596875
transcript.pyannote[84].end 270.58784375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 270.73971875
transcript.pyannote[85].end 272.35971875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 272.71409375
transcript.pyannote[86].end 277.33784375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 278.70471875
transcript.pyannote[87].end 281.03346875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 281.23596875
transcript.pyannote[88].end 282.68721875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 283.64909375
transcript.pyannote[89].end 286.43346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 286.66971875
transcript.pyannote[90].end 287.90159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 288.76221875
transcript.pyannote[91].end 289.69034375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 290.61846875
transcript.pyannote[92].end 291.44534375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 292.42409375
transcript.pyannote[93].end 293.80784375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 294.34784375
transcript.pyannote[94].end 297.65534375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 298.58346875
transcript.pyannote[95].end 298.95471875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 300.06846875
transcript.pyannote[96].end 302.19471875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 302.56596875
transcript.pyannote[97].end 303.22409375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 303.08909375
transcript.pyannote[98].end 303.13971875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 303.22409375
transcript.pyannote[99].end 303.24096875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 303.35909375
transcript.pyannote[100].end 303.89909375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 304.16909375
transcript.pyannote[101].end 305.02971875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 305.63721875
transcript.pyannote[102].end 314.83409375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 307.47659375
transcript.pyannote[103].end 310.19346875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 314.95221875
transcript.pyannote[104].end 320.38596875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 320.70659375
transcript.pyannote[105].end 321.76971875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 322.52909375
transcript.pyannote[106].end 324.94221875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 327.45659375
transcript.pyannote[107].end 335.65784375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 336.09659375
transcript.pyannote[108].end 336.67034375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 337.19346875
transcript.pyannote[109].end 339.31971875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 339.62346875
transcript.pyannote[110].end 340.38284375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 341.05784375
transcript.pyannote[111].end 341.90159375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 342.44159375
transcript.pyannote[112].end 343.70721875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 343.70721875
transcript.pyannote[113].end 346.81221875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 345.63096875
transcript.pyannote[114].end 358.05096875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 347.28471875
transcript.pyannote[115].end 347.53784375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 355.11471875
transcript.pyannote[116].end 355.14846875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 355.14846875
transcript.pyannote[117].end 358.03409375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 358.03409375
transcript.pyannote[118].end 358.30409375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 358.59096875
transcript.pyannote[119].end 359.82284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 360.68346875
transcript.pyannote[120].end 362.94471875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 362.89409375
transcript.pyannote[121].end 364.24409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 364.14284375
transcript.pyannote[122].end 364.15971875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 364.17659375
transcript.pyannote[123].end 367.02846875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 367.66971875
transcript.pyannote[124].end 369.54284375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 369.99846875
transcript.pyannote[125].end 371.31471875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 371.83784375
transcript.pyannote[126].end 372.44534375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 372.32721875
transcript.pyannote[127].end 372.56346875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 372.78284375
transcript.pyannote[128].end 373.45784375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 374.30159375
transcript.pyannote[129].end 376.71471875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 377.50784375
transcript.pyannote[130].end 378.35159375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 378.48659375
transcript.pyannote[131].end 382.50284375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 380.32596875
transcript.pyannote[132].end 382.95846875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 383.51534375
transcript.pyannote[133].end 387.59909375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 388.47659375
transcript.pyannote[134].end 390.97409375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 391.75034375
transcript.pyannote[135].end 393.42096875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 393.67409375
transcript.pyannote[136].end 395.63159375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 396.32346875
transcript.pyannote[137].end 398.17971875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 398.50034375
transcript.pyannote[138].end 400.33971875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 400.71096875
transcript.pyannote[139].end 402.70221875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 404.22096875
transcript.pyannote[140].end 405.21659375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 405.79034375
transcript.pyannote[141].end 410.76846875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 410.86971875
transcript.pyannote[142].end 413.75534375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 414.58221875
transcript.pyannote[143].end 415.67909375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 415.91534375
transcript.pyannote[144].end 418.05846875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 419.15534375
transcript.pyannote[145].end 423.44159375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 425.73659375
transcript.pyannote[146].end 428.14971875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 426.10784375
transcript.pyannote[147].end 427.23846875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 427.59284375
transcript.pyannote[148].end 427.87971875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 428.41971875
transcript.pyannote[149].end 429.34784375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 430.02284375
transcript.pyannote[150].end 430.83284375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 431.18721875
transcript.pyannote[151].end 435.47346875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 435.72659375
transcript.pyannote[152].end 439.23659375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 439.82721875
transcript.pyannote[153].end 442.12221875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 442.99971875
transcript.pyannote[154].end 444.16409375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 444.40034375
transcript.pyannote[155].end 445.63221875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 445.93596875
transcript.pyannote[156].end 447.18471875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 447.42096875
transcript.pyannote[157].end 457.96784375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 458.18721875
transcript.pyannote[158].end 459.21659375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 459.65534375
transcript.pyannote[159].end 461.14034375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 462.13596875
transcript.pyannote[160].end 463.46909375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 463.82346875
transcript.pyannote[161].end 465.91596875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 467.29971875
transcript.pyannote[162].end 471.56909375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 471.72096875
transcript.pyannote[163].end 473.69534375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 473.93159375
transcript.pyannote[164].end 474.57284375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 475.23096875
transcript.pyannote[165].end 478.42034375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 478.85909375
transcript.pyannote[166].end 479.24721875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 479.75346875
transcript.pyannote[167].end 483.97221875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 484.59659375
transcript.pyannote[168].end 489.77721875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 485.06909375
transcript.pyannote[169].end 485.08596875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 485.08596875
transcript.pyannote[170].end 485.99721875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 489.76034375
transcript.pyannote[171].end 490.30034375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 490.31721875
transcript.pyannote[172].end 492.34221875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 491.83596875
transcript.pyannote[173].end 492.64596875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 493.03409375
transcript.pyannote[174].end 495.12659375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 493.33784375
transcript.pyannote[175].end 498.55221875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 495.21096875
transcript.pyannote[176].end 495.88596875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 496.74659375
transcript.pyannote[177].end 505.08284375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 501.64034375
transcript.pyannote[178].end 505.08284375
transcript.whisperx[0].start 18.033
transcript.whisperx[0].end 20.995
transcript.whisperx[0].text 請莊部長還有經濟部的江次長還有農業部的杜次長
transcript.whisperx[1].start 32.247
transcript.whisperx[1].end 45.573
transcript.whisperx[1].text 大家這段時間辛苦了我們現在共體時間在共護國難那個江市長還特別代表我們代表團去跟美國談判等一下有些進度我要請教你那我先問一個比較關鍵的其實這段時間這個談判引起大家最大衝擊的其實就是我們在總統說的從零關稅
transcript.whisperx[2].start 54.359
transcript.whisperx[2].end 72.534
transcript.whisperx[2].text 開始談起那至少有三個層面影響會非常的大第一個是我們關稅直接會減損多少第二個如果真的是零關稅或者關稅非常低那對產業衝擊會很大還有非關稅的這個障礙我先來請教柏定 再見柏定關稅如果用從零關稅或很低的關稅去談馬上影響到就是你的關稅收入減少對不對
transcript.whisperx[3].start 84.397
transcript.whisperx[3].end 95.164
transcript.whisperx[3].text 我們統計過113年從美國進口的貨物我們實際課真的關稅大概是7.5億美元大概247億7.5億美元你去年整體的關稅收入多少差不多1500億1609股尼關稅的收入是1609那美國呢
transcript.whisperx[4].start 114.599
transcript.whisperx[4].end 117.8
transcript.whisperx[4].text 所以美國是247億我剛剛講是7.5億的美元在我們關稅的佔比高達15.38所以現在要跟全民講清楚如果真的我們的關稅歸零
transcript.whisperx[5].start 130.445
transcript.whisperx[5].end 158.818
transcript.whisperx[5].text 對美的關稅歸零 從零關稅來算我們的稅損就是224億的新台幣了在我們關稅的15.38所以保定 你要極力 也要試著要去爭取歸零這對全民的關稅收入影響非常的大在談判的時候 我想我們的談判團隊會有各種不同的相關的策略跟情境來做討論我想這個部分不是 就像委員講說
transcript.whisperx[6].start 159.838
transcript.whisperx[6].end 183.794
transcript.whisperx[6].text 全部都歸零啦好的談判就是有給也有拿所以我才說你要給跟拿的同時你要抓好你要知道跟全民講說這邊牽扯到247億而且它更重要它不是只有美國如果是美國零的話零關稅那我們跟其他國家FTA那個會有很大衝擊欸最近我們光是跟紐西蘭你看一個先來
transcript.whisperx[7].start 185.745
transcript.whisperx[7].end 211.126
transcript.whisperx[7].text 一個先生現在要零關稅進來對不對你看那個對台灣的那個產業就已經影響很大了對我們關稅也有影響啊所以部長我先問你這個問題我們讓全民知道關稅的損失零關稅是這麼大的那如果一趴兩趴當然損害會很大所以問財政部要盡量幫我們人民爭取權利另外裡面牽扯到一個比較大的這個進口關稅如果是零啊農業部的次長在現場我來問一下杜Sir
transcript.whisperx[8].start 215.063
transcript.whisperx[8].end 240.291
transcript.whisperx[8].text 我看那個養雞協會歷史上有照出來說如果零關稅 聽到這個 他們嚇都嚇死對不對 你有看到嗎 養豬協會也是緊張到所有跟農業跟畜牧業有關的看到這個零 或者關稅很低 都嚇到了我問你一下 我們現在米啊米 現在每一年從國外配合進來的米有多少
transcript.whisperx[9].start 242.725
transcript.whisperx[9].end 251.049
transcript.whisperx[9].text 大概有14萬公噸14萬4720公噸美國就佔了其中的45%其中就佔了45%然後我跟你講你知道我們台灣平均起來一公斤的米大概多少錢一公斤到哪裡?40塊左右,來我們農糧署來
transcript.whisperx[10].start 269.068
transcript.whisperx[10].end 297.541
transcript.whisperx[10].text 你現在平均一公斤多少錢平均白米是四十塊四十多嘛白米再加其他米大概五十米夠了米夠米差不多一公斤多少大概三十五塊左右三十到三十五嘛所以你看美國是大面積耕種他的米很多價格又比我們少那米如果進來你如果真的用你把取消配額我們現在用一個配額在那邊美國已經佔了我們的四十五趴了
transcript.whisperx[11].start 300.253
transcript.whisperx[11].end 324.405
transcript.whisperx[11].text 配額現在是賣多少?一公斤四十五嘛配額內是賣多少?配額內是零關稅配額外四十五塊還有權利金權利金平均起來大概十幾塊所以你看我們台灣米差不多四兆到四十五塊美國米大概三十到三五他們配額進來四十五那你現在把它全部要降到零關稅
transcript.whisperx[12].start 327.867
transcript.whisperx[12].end 340.126
transcript.whisperx[12].text 那這完蛋了等於是美國將近30塊米進來打垮了我們台灣的50塊的這個米所以這米這一塊我明確的要求次長回去跟部長講清楚今天招信員都在米啊
transcript.whisperx[13].start 341.107
transcript.whisperx[13].end 353.096
transcript.whisperx[13].text 不能零關稅而且價格不能太低所有談判都會以農業保障那些農民最優先一定要保障到農民的那個要不然的話我跟你講不只是那個整個米價整個被衝擊了我們30萬那個跟農有關係的到農生活就受影響了這就是內容喔我們的那個整個那個
transcript.whisperx[14].start 360.751
transcript.whisperx[14].end 370.654
transcript.whisperx[14].text 整個那個農業會很大影響保障台灣農業最優先牛肉是10.10%嘛對不對豬肉12.5%雞肉雞肉傷20%影響最大雞肉如果是從20%以下降到零的話那就太慘了也要幫我們台灣的農業做最優勝的事情我知道大家主席已經站起來了我做個結論
transcript.whisperx[15].start 388.513
transcript.whisperx[15].end 417.908
transcript.whisperx[15].text 我做要求三個結論 部長你聽一下現在我們都看到了 你看戴文老將 現在處境真的很艱困啊川普是從最高的32先丟出來 然後往下慢慢降我們是從零啊 我們必須要美國保護我們要表現我們的友善 甚至是投降 我們從零開始談你看兩個是落差非常的大的所以我們至少要做三件事情 我今天具體的要求第一 行政院本來我去行政院這個草野協商的時候啊
transcript.whisperx[16].start 419.195
transcript.whisperx[16].end 441.811
transcript.whisperx[16].text 就說要提出一個細部的衝擊影響評估報告現在細部還沒出來在一個禮拜內給我這個第二個我們剛才講的我們現在全部都看到大部分都在講說什麼事我們賣到美國那邊關稅人家課多少可是我們國內現在人民影響會更大是什麼其實不是只有出去我們進來的時候剛講不是全部都用
transcript.whisperx[17].start 443.032
transcript.whisperx[17].end 465.588
transcript.whisperx[17].text 不只不能零關稅關稅也不能太低要不然第一個剛講到的關稅損失的第二個對我們農產品對我們的產業影響很大所以這塊到底影響是什麼所以我要求第二個從經濟部跟農業部針對我國被迫要降低關稅這一塊甚至是零關稅你到底對我們衝擊有多大一個禮拜給我一份報告好不好這本來應該是你們就應該有的嘛對不對
transcript.whisperx[18].start 468.814
transcript.whisperx[18].end 483.688
transcript.whisperx[18].text 當總統講說可能用從零關稅開始談,您本來就應該有這個東西囉好不好,一個禮拜時間給我這個,好不好第三個,現在他碰到的問題就是降低那個非關稅障礙冒害那個非關稅的那個障礙的影響那個衝擊報告也給我一份一個禮拜,可以嗎
transcript.whisperx[19].start 484.639
transcript.whisperx[19].end 498.079
transcript.whisperx[19].text 好 謝謝應該是總統對外講說從零關稅開始談應該是有的東西嘛市長你們手上應該都有對不對有吧你們不會打給總統吧應該有吧有齁那一個禮拜一個禮拜給我應該送過來我28號我們那個立法院的訪問團就要去美国一個禮拜給我
gazette.lineno 1038
gazette.blocks[0][0] 張委員啓楷:(12時32分)請莊部長、經濟部江次長、農業部杜次長。
gazette.blocks[1][0] 主席:請莊部長、江次長、杜次長。
gazette.blocks[2][0] 莊部長翠雲:委員好。
gazette.blocks[3][0] 張委員啓楷:大家這段時間辛苦了,我們要共體時艱、共赴國難。江次長還特別代表我們代表團去跟美國談判,稍後請教有關進度的問題。本席現在先問比較關鍵的,其實這段時間的談判,引起大家最大衝擊的就是我們賴總統說的,從零關稅開始談起,那至少會有三個層面的影響會非常大,第一,我們關稅直接會減損多少?第二,如果真的是零關稅或者關稅非常低,對產業衝擊會很大,還有非關稅的障礙。我先來請教財政部長,關稅如果從零關稅或很低的關稅去談,馬上影響到的就是我們的關稅收入減少,對不對?
gazette.blocks[4][0] 莊部長翠雲:我們統計過113年從美國進口的貨物,我們實際課徵的關稅大概是7.5億美元,大概247億新台幣……
gazette.blocks[5][0] 張委員啓楷:等一下,你說多少?
gazette.blocks[6][0] 莊部長翠雲:7.5億美元。
gazette.blocks[7][0] 張委員啓楷:去年整體的關稅收入多少?
gazette.blocks[8][0] 莊部長翠雲:差不多1,500億。
gazette.blocks[9][0] 張委員啓楷:去年關稅的收入是1,609億,那美國呢?
gazette.blocks[10][0] 莊部長翠雲:美國是247億,這是新臺幣,我剛剛講是7.5億的美元,新臺幣是247億。
gazette.blocks[11][0] 張委員啓楷:占我們關稅的占比高達15.38%,所以現在要跟全民講清楚,如果真的我們的關稅歸零,對美的關稅歸零,用從零關稅來算,我們的稅損就是224億新臺幣了,占我們關稅的15.38%。所以部長要極力也要試著去爭取,歸零對我們全民的關稅收入影響非常大。
gazette.blocks[12][0] 莊部長翠雲:在談判的時候,我們的談判團隊會有各種不同的相關策略跟情境來做討論,我想這個部分不是就像委員所講的全部都歸零。
gazette.blocks[13][0] 張委員啓楷:當然了,好的談判就是有給也有拿,所以我才說你在給跟拿的同時要抓好,你要跟全民講這邊牽扯到247億。而且更重要的不是只有美國,如果是美國零關稅,我們跟其他國家FTA會有很大衝擊,最近我們光是跟紐西蘭,你看鮮奶現在要零關稅進來,對不對?你看那個對台灣的產業就已經影響很大了,對我們關稅也有影響啊!所以部長我先問你這個問題,我們讓全民知道,關稅的損失若是零關稅是這麼大的,如果是1%、2%,當然損害會很大,所以財政部要儘量幫我們人民爭取權利。
gazette.blocks[13][1] 另外,裡面牽扯到一個比較大的,進口關稅如果是零,農業部次長在現場,我來請教一下,我看養雞協會理事長出來說如果零關稅的話,他們聽到這個嚇都嚇死了,對不對?你有看到嘛!
gazette.blocks[14][0] 杜次長文珍:有。
gazette.blocks[15][0] 張委員啓楷:養豬協會也是很緊張,所有跟農業、跟畜牧業有關的,看到這個零或者關稅很低都嚇到了。我問一下米的部分,現在每一年從國外配額進來的米有多少?
gazette.blocks[16][0] 杜次長文珍:大概有54萬公噸……14萬公噸。
gazette.blocks[17][0] 張委員啓楷:差太多了啦!14萬4,720公噸,美國就占了其中的45%。次長,你知道台灣平均1公斤米大概多少錢嗎?你們的專家有在嘛?
gazette.blocks[18][0] 杜次長文珍:請農糧署黃副署長向委員說明。
gazette.blocks[19][0] 張委員啓楷:現在米平均起來1公斤多少錢?
gazette.blocks[20][0] 黃副署長昭興:平均白米是40塊。
gazette.blocks[21][0] 張委員啓楷:四十多嘛,白米加其他米大概要50。美國米大概1公斤多少?
gazette.blocks[22][0] 黃副署長昭興:大概35塊左右。
gazette.blocks[23][0] 張委員啓楷:30到35塊嘛!所以你看,美國是大面積耕種,他們的米很多,價格又比我們少,那他們的米如果進來,我們現在是用一個配額在那邊,美國已經占了我們的45%了,對不對?配額現在是賣1公斤45塊,配額內是賣多少?
gazette.blocks[24][0] 黃副署長昭興:配額內是零關稅,但是……
gazette.blocks[25][0] 張委員啓楷:配額外是45塊,對不對?
gazette.blocks[26][0] 黃副署長昭興:還有權利金,權利金平均起來大概十幾塊。
gazette.blocks[27][0] 張委員啓楷:所以你看我們台灣米差不多40到45塊,美國米大概30到35塊,他們配額進來45塊,你現在把它全部都降到零關稅,那這完蛋了,等於是美國將近30塊的米進來,打垮了我們台灣50塊的米。所以我對米這一塊明確的要求,次長回去跟部長講清楚,米不能零關稅,而且價格不能太低。
gazette.blocks[28][0] 杜次長文珍:所有談判都會保障農業,且以農民最優先。
gazette.blocks[29][0] 張委員啓楷:一定要保障到農民,要不然的話我跟你講,不只是整個米價被衝擊了,我們30萬跟農有關係的稻農,生活就受影響了。
gazette.blocks[30][0] 杜次長文珍:所有都以保障台灣農業為最後優先。
gazette.blocks[31][0] 張委員啓楷:這就是滅農喔,我們整個農業會有很大影響。
gazette.blocks[32][0] 杜次長文珍:保障台灣農業最優先。
gazette.blocks[33][0] 張委員啓楷:我再請教,牛肉是10%嘛,對不對?豬肉12.5%,雞肉多少?雞肉現在影響最大。
gazette.blocks[34][0] 杜次長文珍:20%。
gazette.blocks[35][0] 張委員啓楷:雞肉如果從20%一下降到零的話,那就太慘了。
gazette.blocks[36][0] 杜次長文珍:也是要保障我們台灣的農業,做最優先的考量。
gazette.blocks[37][0] 張委員啓楷:主席已經站起來了,我做個結論。我提出三個要求,部長聽一下。我們都看到台灣現在的處境真的很艱困,川普是從最高的32%先丟出來,然後往下慢慢降,反觀我們是從零,我們需要美國保護我們,我們要表現友善,甚至是投降,我們從零開始談,你看兩個的落差是非常的大,所以我們至少要做三件事情,我今天具體的要求:第一,我去行政院推行協商的時候,就說要提出一個細部的衝擊影響評估報告,現在細部的還沒出來,在一個禮拜內給我這個。
gazette.blocks[38][0] 主席:謝謝張啓楷委員……
gazette.blocks[39][0] 張委員啓楷:第二,我們剛才講的,我們現在全部都看到,大部分都在講什麼是我們賣到美國那邊,關稅人家課多少,可是我們國內現在人民影響會更大的是什麼?其實不是只有出去,我們進來的時候,不只不能零關稅,關稅也不能太低,要不然會有我剛剛講到的關稅損失,對我們的農產品及對我們的產業影響很大,所以這塊到底影響是什麼?所以我要求從經濟部跟農業部,針對我國被迫要降低關稅這一塊,甚至是零關稅,到底對我們衝擊有多大,請一個禮拜內給我一個報告好不好?這本來是你們應該有的嘛,對不對?當總統講可能從零關稅開始談,你們本來就應該有這個東西了,請一個禮拜的時間給我這個,好不好?
gazette.blocks[39][1] 第三,現在還碰到一個問題就是降低非關稅障礙的影響,那個衝擊報告也給我一份,一個禮拜的時間可以嗎?這應該是總統對外講從零關稅開始談,你們應該就有的東西嘛,你們手上應該都有對不對?有吧?你們不會打臉總統吧?應該有吧?有喔?
gazette.blocks[40][0] 主席:次長,儘快把資料提供給張啓楷委員。
gazette.blocks[41][0] 張委員啓楷:一個禮拜給我喔!一定要送過來,28號我們立法院訪問團要去美國,一個禮拜內給我。
gazette.blocks[42][0] 主席:謝謝啓楷委員。
gazette.blocks[43][0] 張委員啓楷:一個禮拜給我。謝謝,一起加油。
gazette.blocks[44][0] 主席:謝謝啓楷委員。
gazette.blocks[44][1] 繼續請黃國昌委員質詢。
gazette.agenda.page_end 190
gazette.agenda.meet_id 委員會-11-3-20-8
gazette.agenda.speakers[0] 賴惠員
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 郭國文
gazette.agenda.speakers[5] 鍾佳濱
gazette.agenda.speakers[6] 李彥秀
gazette.agenda.speakers[7] 李坤城
gazette.agenda.speakers[8] 顏寬恒
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 林思銘
gazette.agenda.speakers[11] 陳玉珍
gazette.agenda.speakers[12] 羅明才
gazette.agenda.speakers[13] 王世堅
gazette.agenda.speakers[14] 張啓楷
gazette.agenda.speakers[15] 黃國昌
gazette.agenda.speakers[16] 林楚茵
gazette.agenda.speakers[17] 徐富癸
gazette.agenda.speakers[18] 陳冠廷
gazette.agenda.speakers[19] 牛煦庭
gazette.agenda.speakers[20] 黃捷
gazette.agenda.speakers[21] 邱志偉
gazette.agenda.page_start 117
gazette.agenda.meetingDate[0] 2025-04-16
gazette.agenda.gazette_id 1143801
gazette.agenda.agenda_lcidc_ids[0] 1143801_00004
gazette.agenda.meet_name 立法院第11屆第3會期財政委員會第8次全體委員會議紀錄
gazette.agenda.content 邀請財政部莊部長翠雲、經濟部、農業部及公平交易委員會就「防範中國大陸產品低價傾銷及透 過台灣洗產地問題之因應策略」進行專題報告,並備質詢
gazette.agenda.agenda_id 1143801_00003