iVOD / 160258

Field Value
IVOD_ID 160258
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160258
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-20-8
會議資料.會議代碼:str 第11屆第3會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-04-16T12:17:50+08:00
結束時間 2025-04-16T12:32:02+08:00
影片長度 00:14:12
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279df75c15b20d885003aa3fd8a5ba555e8251a52cf64e50924c04f59cd66632241b05ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 12:17:50 - 12:32:02
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第8次全體委員會議(事由:邀請財政部莊部長翠雲、經濟部、農業部及公平交易委員會就「防範中國大陸產品低價傾銷及透過台灣洗產地問題之因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 3.92909375
transcript.pyannote[0].end 5.53221875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 5.58284375
transcript.pyannote[1].end 9.12659375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 10.57784375
transcript.pyannote[2].end 13.02471875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 15.37034375
transcript.pyannote[3].end 15.38721875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 15.38721875
transcript.pyannote[4].end 15.97784375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 16.38284375
transcript.pyannote[5].end 16.39971875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 16.39971875
transcript.pyannote[6].end 16.41659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 16.41659375
transcript.pyannote[7].end 18.72846875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 19.23471875
transcript.pyannote[8].end 20.48346875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 21.29346875
transcript.pyannote[9].end 29.12346875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 30.06846875
transcript.pyannote[10].end 30.94596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 31.48596875
transcript.pyannote[11].end 37.78034375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 38.10096875
transcript.pyannote[12].end 39.68721875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 40.21034375
transcript.pyannote[13].end 46.89284375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 47.11221875
transcript.pyannote[14].end 56.19096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 56.71409375
transcript.pyannote[15].end 68.18909375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 68.96534375
transcript.pyannote[16].end 71.12534375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 71.96909375
transcript.pyannote[17].end 77.23409375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 78.11159375
transcript.pyannote[18].end 79.74846875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 80.08596875
transcript.pyannote[19].end 82.34721875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 82.97159375
transcript.pyannote[20].end 88.35471875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 88.84409375
transcript.pyannote[21].end 89.65409375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 90.17721875
transcript.pyannote[22].end 90.75096875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 91.54409375
transcript.pyannote[23].end 93.16409375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 94.09221875
transcript.pyannote[24].end 94.85159375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 95.27346875
transcript.pyannote[25].end 108.52034375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 109.38096875
transcript.pyannote[26].end 109.65096875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 109.88721875
transcript.pyannote[27].end 110.76471875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 110.88284375
transcript.pyannote[28].end 113.07659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 113.38034375
transcript.pyannote[29].end 116.33346875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 116.85659375
transcript.pyannote[30].end 117.51471875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 119.15159375
transcript.pyannote[31].end 124.87221875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 126.67784375
transcript.pyannote[32].end 128.61846875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 129.04034375
transcript.pyannote[33].end 132.98909375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 134.11971875
transcript.pyannote[34].end 148.59846875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 149.99909375
transcript.pyannote[35].end 150.75846875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 151.51784375
transcript.pyannote[36].end 155.97284375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 156.85034375
transcript.pyannote[37].end 172.49346875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 173.84346875
transcript.pyannote[38].end 186.06096875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 186.12846875
transcript.pyannote[39].end 187.10721875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 187.54596875
transcript.pyannote[40].end 191.34284375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 192.06846875
transcript.pyannote[41].end 207.59346875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 208.35284375
transcript.pyannote[42].end 217.95471875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 219.01784375
transcript.pyannote[43].end 222.32534375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 222.54471875
transcript.pyannote[44].end 223.40534375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 223.99596875
transcript.pyannote[45].end 225.24471875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 226.08846875
transcript.pyannote[46].end 227.30346875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 228.11346875
transcript.pyannote[47].end 228.99096875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 231.55596875
transcript.pyannote[48].end 233.26034375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 233.53034375
transcript.pyannote[49].end 235.09971875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 235.79159375
transcript.pyannote[50].end 236.48346875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 237.47909375
transcript.pyannote[51].end 238.28909375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 239.21721875
transcript.pyannote[52].end 246.49034375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 246.87846875
transcript.pyannote[53].end 248.86971875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 249.67971875
transcript.pyannote[54].end 253.17284375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 253.99971875
transcript.pyannote[55].end 259.58534375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 260.02409375
transcript.pyannote[56].end 260.73284375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 262.13346875
transcript.pyannote[57].end 277.96221875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 273.89534375
transcript.pyannote[58].end 274.03034375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 276.03846875
transcript.pyannote[59].end 280.98284375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 280.98284375
transcript.pyannote[60].end 282.55221875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 280.99971875
transcript.pyannote[61].end 282.58596875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 282.58596875
transcript.pyannote[62].end 282.60284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 282.60284375
transcript.pyannote[63].end 282.80534375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 282.80534375
transcript.pyannote[64].end 292.50846875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 283.07534375
transcript.pyannote[65].end 283.83471875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 292.64346875
transcript.pyannote[66].end 296.59221875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 297.68909375
transcript.pyannote[67].end 307.99971875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 308.40471875
transcript.pyannote[68].end 314.44596875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 314.98596875
transcript.pyannote[69].end 316.38659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 316.99409375
transcript.pyannote[70].end 319.00221875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 319.64346875
transcript.pyannote[71].end 322.02284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 322.61346875
transcript.pyannote[72].end 326.20784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 326.81534375
transcript.pyannote[73].end 329.07659375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 329.27909375
transcript.pyannote[74].end 330.34221875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 330.78096875
transcript.pyannote[75].end 331.45596875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 332.38409375
transcript.pyannote[76].end 332.58659375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 333.17721875
transcript.pyannote[77].end 333.85221875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 334.35846875
transcript.pyannote[78].end 335.16846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 336.58596875
transcript.pyannote[79].end 339.01596875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 339.42096875
transcript.pyannote[80].end 342.50909375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 343.16721875
transcript.pyannote[81].end 359.08034375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 360.26159375
transcript.pyannote[82].end 367.38284375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 368.36159375
transcript.pyannote[83].end 370.84221875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 371.41596875
transcript.pyannote[84].end 375.36471875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 375.70221875
transcript.pyannote[85].end 382.82346875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 383.39721875
transcript.pyannote[86].end 385.43909375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 385.86096875
transcript.pyannote[87].end 387.04221875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 389.21909375
transcript.pyannote[88].end 404.55846875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 405.33471875
transcript.pyannote[89].end 408.87846875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 409.45221875
transcript.pyannote[90].end 411.29159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 411.32534375
transcript.pyannote[91].end 416.30346875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 416.38784375
transcript.pyannote[92].end 418.31159375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 418.46346875
transcript.pyannote[93].end 423.50909375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 424.03221875
transcript.pyannote[94].end 426.47909375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 427.12034375
transcript.pyannote[95].end 427.79534375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 428.36909375
transcript.pyannote[96].end 429.11159375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 429.41534375
transcript.pyannote[97].end 430.41096875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 431.54159375
transcript.pyannote[98].end 435.00096875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 435.38909375
transcript.pyannote[99].end 435.77721875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 436.65471875
transcript.pyannote[100].end 437.68409375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 439.21971875
transcript.pyannote[101].end 440.41784375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 440.94096875
transcript.pyannote[102].end 442.40909375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 442.94909375
transcript.pyannote[103].end 446.39159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 446.47596875
transcript.pyannote[104].end 447.57284375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 448.26471875
transcript.pyannote[105].end 448.88909375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 449.98596875
transcript.pyannote[106].end 451.67346875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 452.71971875
transcript.pyannote[107].end 456.71909375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 457.14096875
transcript.pyannote[108].end 458.77784375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 459.46971875
transcript.pyannote[109].end 462.49034375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 463.67159375
transcript.pyannote[110].end 464.38034375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 465.07221875
transcript.pyannote[111].end 472.31159375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 472.88534375
transcript.pyannote[112].end 475.58534375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 476.20971875
transcript.pyannote[113].end 477.07034375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 477.20534375
transcript.pyannote[114].end 477.81284375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 478.23471875
transcript.pyannote[115].end 480.52971875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 480.85034375
transcript.pyannote[116].end 482.25096875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 482.92596875
transcript.pyannote[117].end 488.02221875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 488.62971875
transcript.pyannote[118].end 493.65846875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 494.63721875
transcript.pyannote[119].end 495.81846875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 496.52721875
transcript.pyannote[120].end 498.58596875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 498.95721875
transcript.pyannote[121].end 505.80846875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 507.96846875
transcript.pyannote[122].end 508.74471875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 509.50409375
transcript.pyannote[123].end 510.98909375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 511.44471875
transcript.pyannote[124].end 513.50346875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 514.83659375
transcript.pyannote[125].end 516.94596875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 518.04284375
transcript.pyannote[126].end 521.01284375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 521.18159375
transcript.pyannote[127].end 524.10096875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 525.06284375
transcript.pyannote[128].end 535.05284375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 536.26784375
transcript.pyannote[129].end 538.14096875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 539.49096875
transcript.pyannote[130].end 542.47784375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 542.81534375
transcript.pyannote[131].end 546.00471875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 547.42221875
transcript.pyannote[132].end 548.26596875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 549.46409375
transcript.pyannote[133].end 551.48909375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 551.94471875
transcript.pyannote[134].end 554.15534375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 554.86409375
transcript.pyannote[135].end 556.34909375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 557.71596875
transcript.pyannote[136].end 558.45846875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 559.67346875
transcript.pyannote[137].end 560.58471875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 561.54659375
transcript.pyannote[138].end 563.18346875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 564.16221875
transcript.pyannote[139].end 565.30971875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 565.86659375
transcript.pyannote[140].end 570.60846875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 571.45221875
transcript.pyannote[141].end 572.44784375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 572.97096875
transcript.pyannote[142].end 574.54034375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 575.14784375
transcript.pyannote[143].end 584.29409375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 584.61471875
transcript.pyannote[144].end 588.44534375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 588.79971875
transcript.pyannote[145].end 589.30596875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 590.01471875
transcript.pyannote[146].end 591.29721875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 591.88784375
transcript.pyannote[147].end 592.79909375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 593.40659375
transcript.pyannote[148].end 594.55409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 595.07721875
transcript.pyannote[149].end 595.43159375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 596.25846875
transcript.pyannote[150].end 597.15284375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 598.01346875
transcript.pyannote[151].end 601.40534375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 602.36721875
transcript.pyannote[152].end 602.83971875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 603.97034375
transcript.pyannote[153].end 604.91534375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 605.26971875
transcript.pyannote[154].end 614.66909375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 615.20909375
transcript.pyannote[155].end 617.23409375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 618.21284375
transcript.pyannote[156].end 619.95096875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 621.21659375
transcript.pyannote[157].end 632.48909375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 632.82659375
transcript.pyannote[158].end 635.17221875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 635.91471875
transcript.pyannote[159].end 637.14659375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 638.14221875
transcript.pyannote[160].end 639.76221875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 640.36971875
transcript.pyannote[161].end 641.02784375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 642.14159375
transcript.pyannote[162].end 644.79096875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 645.95534375
transcript.pyannote[163].end 646.91721875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 648.25034375
transcript.pyannote[164].end 653.16096875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 654.00471875
transcript.pyannote[165].end 655.06784375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 656.26596875
transcript.pyannote[166].end 656.75534375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 657.14346875
transcript.pyannote[167].end 658.35846875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 658.59471875
transcript.pyannote[168].end 659.42159375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 660.29909375
transcript.pyannote[169].end 664.65284375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 665.73284375
transcript.pyannote[170].end 668.53409375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 668.88846875
transcript.pyannote[171].end 670.52534375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 671.11596875
transcript.pyannote[172].end 671.94284375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 672.92159375
transcript.pyannote[173].end 674.59221875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 675.41909375
transcript.pyannote[174].end 676.48221875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 677.74784375
transcript.pyannote[175].end 680.43096875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 681.15659375
transcript.pyannote[176].end 684.85221875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 684.95346875
transcript.pyannote[177].end 687.72096875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 688.00784375
transcript.pyannote[178].end 690.18471875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 690.74159375
transcript.pyannote[179].end 693.37409375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 693.77909375
transcript.pyannote[180].end 695.51721875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 696.07409375
transcript.pyannote[181].end 696.63096875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 698.09909375
transcript.pyannote[182].end 698.67284375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 698.92596875
transcript.pyannote[183].end 699.28034375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 701.18721875
transcript.pyannote[184].end 724.20471875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 725.08221875
transcript.pyannote[185].end 726.04409375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 726.70221875
transcript.pyannote[186].end 734.80221875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 735.39284375
transcript.pyannote[187].end 736.18596875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 736.35471875
transcript.pyannote[188].end 737.90721875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 738.88596875
transcript.pyannote[189].end 739.47659375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 739.67909375
transcript.pyannote[190].end 740.47221875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 742.78409375
transcript.pyannote[191].end 743.25659375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 745.41659375
transcript.pyannote[192].end 746.05784375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 746.32784375
transcript.pyannote[193].end 746.93534375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 748.48784375
transcript.pyannote[194].end 751.27221875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 752.16659375
transcript.pyannote[195].end 763.87784375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 764.94096875
transcript.pyannote[196].end 766.64534375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 767.33721875
transcript.pyannote[197].end 775.06596875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 775.99409375
transcript.pyannote[198].end 781.44471875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 782.08596875
transcript.pyannote[199].end 783.09846875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 783.84096875
transcript.pyannote[200].end 790.27034375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 791.02971875
transcript.pyannote[201].end 791.89034375
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 792.54846875
transcript.pyannote[202].end 793.03784375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 793.64534375
transcript.pyannote[203].end 795.40034375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 795.82221875
transcript.pyannote[204].end 801.05346875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 801.61034375
transcript.pyannote[205].end 803.80409375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 804.52971875
transcript.pyannote[206].end 813.52409375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 814.31721875
transcript.pyannote[207].end 817.47284375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 818.53596875
transcript.pyannote[208].end 824.77971875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 821.86034375
transcript.pyannote[209].end 824.50971875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 825.91034375
transcript.pyannote[210].end 835.69784375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 837.03096875
transcript.pyannote[211].end 838.31346875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 838.88721875
transcript.pyannote[212].end 842.56596875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 838.97159375
transcript.pyannote[213].end 839.59596875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 842.65034375
transcript.pyannote[214].end 843.67971875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 843.67971875
transcript.pyannote[215].end 845.92409375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 845.92409375
transcript.pyannote[216].end 846.48096875
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 846.90284375
transcript.pyannote[217].end 847.91534375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 847.59471875
transcript.pyannote[218].end 849.77159375
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 849.77159375
transcript.pyannote[219].end 851.67846875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 850.04159375
transcript.pyannote[220].end 850.10909375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 850.76721875
transcript.pyannote[221].end 852.58971875
transcript.whisperx[0].start 4.282
transcript.whisperx[0].end 6.503
transcript.whisperx[0].text 第一個就是針對中國電商在我們台灣的銷售加以限制就是取消
transcript.whisperx[1].start 30.12
transcript.whisperx[1].end 55.84
transcript.whisperx[1].text 中國低價免稅額這個部分我認為這是非常正確的事情但是我要請財政部考量的一點就是說請財政部刀下留人的就是說要取消這個低額2000元小額包裹免稅這個部分我認為針對中國的部分取消就好啦
transcript.whisperx[2].start 57.009
transcript.whisperx[2].end 82.098
transcript.whisperx[2].text 為什麼呢 因為我們其實有20%的金額是進其他國家 像是美國進日本的保健食品而那是我們國人所需要的我如果用一句話形容就是說 其實那是我們深斗小民啊我們小市民們的小確幸而已嘛
transcript.whisperx[3].start 83.035
transcript.whisperx[3].end 106.215
transcript.whisperx[3].text 第一個金額那麼小才兩千元我們這個免稅的敏感是全世界最低的你看看其他國家新加坡南韓日本那遠比我們高我相信部長這裡很清楚新加坡甚至高達美金298元一萬元台幣之多
transcript.whisperx[4].start 111.055
transcript.whisperx[4].end 132.766
transcript.whisperx[4].text 即便日本低一點 88美元也3000台幣而且美日韓其他他們國家對於這個小額的部分他們還不限次數而我們2000元的小額這個包裹
transcript.whisperx[5].start 134.512
transcript.whisperx[5].end 155.248
transcript.whisperx[5].text 還限半年六次等於一年十二次也不過兩萬四千元所以我認為這個部分這百分之二十總額百分之二十的這個小額包裹應該保留這是給我們深斗小民的小確幸
transcript.whisperx[6].start 156.909
transcript.whisperx[6].end 172.054
transcript.whisperx[6].text 那至於80%從中國來的這個部分我覺得這一次去取消去設限是應當的啦因為避免他們洗產地嘛這是事實喔 這是事實那
transcript.whisperx[7].start 173.885
transcript.whisperx[7].end 189.418
transcript.whisperx[7].text 他們中共的這個貨品席產地這個情況我相信部長你很清楚嘛他們整個貨櫃進到加拿大到墨西哥那邊然後再透過小額豁免這個條款
transcript.whisperx[8].start 192.13
transcript.whisperx[8].end 217.789
transcript.whisperx[8].text 那麼他們透過他們中國的電商小額貨美這個大量的再去進去美國所以這次美國把它取消就這樣那個金額多高欸460億美金欸一兆五千億台幣啦所以這種大金額那這個當然美國他們的考量我們來借鏡是對的所以部長我希望
transcript.whisperx[9].start 219.059
transcript.whisperx[9].end 228.703
transcript.whisperx[9].text 在這裡面我們台灣的金額多少我相信你們很清楚我們台灣的總金額總金額332億這個小額的這個小額包裹的部分332億裡面來自中國的那麼267億佔了80%
transcript.whisperx[10].start 249.721
transcript.whisperx[10].end 260.528
transcript.whisperx[10].text 那這20%我剛剛跟您提到的生斗小民小市民的小確幸我認為這個不要去碰可不可以
transcript.whisperx[11].start 262.125
transcript.whisperx[11].end 264.507
transcript.whisperx[11].text 那你現在初步看法呢我覺得我這個講法是非常好非常
transcript.whisperx[12].start 283.325
transcript.whisperx[12].end 286.048
transcript.whisperx[12].text 確實如同委員所說的80%來自中國大陸那這麼大的一個數量的話會對我們國內的產業其實也會造成衝擊的對而且對乖乖舉舉的
transcript.whisperx[13].start 297.762
transcript.whisperx[13].end 321.625
transcript.whisperx[13].text 比方說國外來的電商 我舉例好了 新加坡來的來的電商人家在我們台灣 在國家 在我們台灣登記人家也合法繳稅 也接受我們政府 他被我們政府納管嘛人家規規矩矩的做 那最糟糕的就是中共的那邊的淘寶不是嗎
transcript.whisperx[14].start 322.734
transcript.whisperx[14].end 342.333
transcript.whisperx[14].text 如果他真的有誠意來 他就來台灣登記嘛他也接受我們政府納管嘛 這才對嘛結果不 他們不這麼做 那很可能未來就是可能被利用為席產地嘛
transcript.whisperx[15].start 343.837
transcript.whisperx[15].end 367.088
transcript.whisperx[15].text 所以我認為說我們有全世界門檻最低的免稅額我們才2000元那承諾我剛剛講的一年我們設限次數12次也不過24000全世界最低國外尤其自由民主國家完全不設限次數而且每一次的金額都還比我們高
transcript.whisperx[16].start 368.847
transcript.whisperx[16].end 381.798
transcript.whisperx[16].text 那然後呢我們還有全世界最高關稅的保健食品我們的保健品的關稅部長我們討論那麼多次了百分之三十現在經濟部這個
transcript.whisperx[17].start 389.264
transcript.whisperx[17].end 404.329
transcript.whisperx[17].text 不曉得哪一天來的佛心啦聽久了經濟部你們願意說你們考慮那38要降到20%我希望你們說到做到啦說到做到這個保健品我們全世界最高啊
transcript.whisperx[18].start 405.787
transcript.whisperx[18].end 427.384
transcript.whisperx[18].text 連日本那麼高也才14.5韓國8% 美國6%那我們30%之多這也是這一次造成美國跟我們之間要求對等關稅的原因就在這裡所以我希望你們一起檢討第二點 江市長
transcript.whisperx[19].start 431.581
transcript.whisperx[19].end 451.059
transcript.whisperx[19].text 我是針對你啦 你帶話回去跟你們部長講好不好你們部長齁這幾天有講了啦就是說如果因為我們這次跟美國在談判當中很可能我們就是要降低汽車的進口關稅
transcript.whisperx[20].start 452.779
transcript.whisperx[20].end 481.316
transcript.whisperx[20].text 因為汽車進口關稅不但數十年來我們這麼高還加上我們額外增加的在美國列入的這個叫做不當的額外稅負百分之三十的貨物稅所以相乘之下等於加了六成的稅金那這個也是造成對等關稅的要求談判那麼這一點的時候我認為你代話給部長
transcript.whisperx[21].start 482.967
transcript.whisperx[21].end 501.505
transcript.whisperx[21].text 他身為部長要謹言慎行 我們國家賴總統已經講了啊我們先釋出善意 我們願意零關稅 這當然是包括汽車啊結果郭部長就說 說如果汽車關稅驟降會釀成十幾萬人失業
transcript.whisperx[22].start 509.785
transcript.whisperx[22].end 534.244
transcript.whisperx[22].text 這個我四個字形容這個叫危言聳聽而且對事實完全不了解我們講高關稅政府的錯誤不當的是說你高關稅這五六十年來你保護了特定的國產汽車業者就是育農保護了那個阿斗我們是指你保護了整車
transcript.whisperx[23].start 536.314
transcript.whisperx[23].end 563.064
transcript.whisperx[23].text 是針對整車的部分我們汽車從業人員有有十幾萬但是你要分整車跟零組件的整車裕隆他們六個廠加起來也不過一萬一千五百人哪來的十幾萬人另外零組件他們才是真的人多的
transcript.whisperx[24].start 564.226
transcript.whisperx[24].end 592.56
transcript.whisperx[24].text 零組件2500家廠總共8萬5000位民眾在那邊工作但是零組件這數十年來是靠自己的努力研發成長受到國際大廠的肯定主動來下單給我們的零組件業者你看他們做的他們做的
transcript.whisperx[25].start 593.464
transcript.whisperx[25].end 619.734
transcript.whisperx[25].text 不管是汽車燈 汽車大燈不管是保險桿 排氣管等等啦等等這些啊 都是美國大廠 歐洲大廠你像Mercedes-Benz啊 BMW啊 Porsche啊Massarotti 欸 他們主動來下單欸因為我們做得好 而且價廉物美
transcript.whisperx[26].start 621.26
transcript.whisperx[26].end 646.03
transcript.whisperx[26].text 那這一部分 經濟部 別人可以不曉得經濟部很清楚啊台灣汽車零組件業者是我們台灣的光榮 台灣的驕傲他每一年的產值640億美金耶2000億台幣他們不需要政府保護啊今天美國總統川普還釋出善意他還說
transcript.whisperx[27].start 648.94
transcript.whisperx[27].end 676.312
transcript.whisperx[27].text 這次對等關稅 汽車零組件的部分他說要豁免他說要豁免啊所以根本不需要嘛我們的汽車關稅降低那是針對整車業者我們汽車零組件業者不需要這些高關稅的保護更何況我們輸往美國的部分他們還要豁免
transcript.whisperx[28].start 677.83
transcript.whisperx[28].end 694.86
transcript.whisperx[28].text 所以這是兩回事我希望你帶話回去給郭部長他身為部長一言一行洞見觀瞻他講的話就是代表我們整個行政會我們國家的經濟政策產業政策天啊不能把
transcript.whisperx[29].start 701.783
transcript.whisperx[29].end 723.77
transcript.whisperx[29].text 這個數十年來表現這麼好的汽車零組件業者拿來當作整車業 當作那個阿朵裕隆的保護傘拿他們來見底說這個不能這樣 這樣會影響十幾萬人的工作沒有 只影響裕隆 裕隆自己想清楚
transcript.whisperx[30].start 725.154
transcript.whisperx[30].end 740.398
transcript.whisperx[30].text 其他的2500家的汽車零組件業者人家活得很好 活得很光榮不需要任何保護也不要被部長拿去當作浴容這個保護傘可不可以我回去會轉達跟向部長報告
transcript.whisperx[31].start 752.219
transcript.whisperx[31].end 773.701
transcript.whisperx[31].text 你跟他要求這個事情啦好不好我希望以後不要再講這個事情啦好不好真正習慘地的是什麼那個莊部長真正習慘地的就是向日榮引進中國的AMG車他把中國的AMG車化整為零到台灣在台灣組裝所以就是稱為國產車啦
transcript.whisperx[32].start 776.258
transcript.whisperx[32].end 787.163
transcript.whisperx[32].text 這才需要高關稅保護之下所以他用國產車的名義賣他總共前兩年他總共進了3到4萬輛銷售額超過300億
transcript.whisperx[33].start 792.826
transcript.whisperx[33].end 817.205
transcript.whisperx[33].text 結果這才是真正的習慘地啊我們要針對的是大金額二列的這個無能的阿斗帶給我們台灣社會的傷害而不是針對小市民的小確幸一個小額包裹才兩千元而且我們還限制一年只能十二次
transcript.whisperx[34].start 818.621
transcript.whisperx[34].end 835.555
transcript.whisperx[34].text 所以我說對中國的部分百分之八十的中國部分我們取消然後百分之二十對從美國日本進的小黑包括這個我們要繼續維持維護三頭小民的小確定可不可以
transcript.whisperx[35].start 837.059
transcript.whisperx[35].end 850.907
transcript.whisperx[35].text 好你多久給我答覆好謝謝多久我們一個月好嗎一個月太久了太久了差不多一個禮拜一個禮拜趕快做出決定好不好好謝謝委員是好謝謝