iVOD / 160250

Field Value
IVOD_ID 160250
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160250
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-19-9
會議資料.會議代碼:str 第11屆第3會期經濟委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-04-16T12:11:43+08:00
結束時間 2025-04-16T12:20:20+08:00
影片長度 00:08:37
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279df8341310d6de0015fb2710058b23c04f81a52cf64e50924c019376995a466ca645ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 12:11:43 - 12:20:20
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第9次全體委員會議議程(事由:邀請國家發展委員會主任委員、經濟部部長及財政部首長就「因應國際貿易情勢變化,如何協助國內廠商擴大國際市場」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 8.08034375
transcript.pyannote[0].end 9.36284375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 9.93659375
transcript.pyannote[1].end 11.26971875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 11.59034375
transcript.pyannote[2].end 12.63659375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 13.02471875
transcript.pyannote[3].end 13.69971875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 14.15534375
transcript.pyannote[4].end 14.57721875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 14.96534375
transcript.pyannote[5].end 15.72471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 16.31534375
transcript.pyannote[6].end 17.93534375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 18.55971875
transcript.pyannote[7].end 18.99846875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 22.35659375
transcript.pyannote[8].end 22.82909375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 23.77409375
transcript.pyannote[9].end 24.65159375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 24.97221875
transcript.pyannote[10].end 25.20846875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 25.24221875
transcript.pyannote[11].end 26.38971875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 26.50784375
transcript.pyannote[12].end 30.20346875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 30.70971875
transcript.pyannote[13].end 37.37534375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 37.78034375
transcript.pyannote[14].end 43.41659375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 43.65284375
transcript.pyannote[15].end 44.53034375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 45.03659375
transcript.pyannote[16].end 51.21284375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 51.88784375
transcript.pyannote[17].end 54.77346875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 54.94221875
transcript.pyannote[18].end 58.78971875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 59.09346875
transcript.pyannote[19].end 61.03409375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 61.86096875
transcript.pyannote[20].end 64.05471875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 64.29096875
transcript.pyannote[21].end 68.15534375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 68.62784375
transcript.pyannote[22].end 70.56846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 71.37846875
transcript.pyannote[23].end 72.50909375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 72.91409375
transcript.pyannote[24].end 73.84221875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 74.88846875
transcript.pyannote[25].end 77.80784375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 77.95971875
transcript.pyannote[26].end 84.99659375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 85.68846875
transcript.pyannote[27].end 100.55534375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 100.94346875
transcript.pyannote[28].end 101.39909375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 101.41596875
transcript.pyannote[29].end 101.43284375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 101.48346875
transcript.pyannote[30].end 101.50034375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 101.50034375
transcript.pyannote[31].end 101.60159375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 101.60159375
transcript.pyannote[32].end 110.07284375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 110.47784375
transcript.pyannote[33].end 131.16659375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 127.92659375
transcript.pyannote[34].end 129.47909375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 130.72784375
transcript.pyannote[35].end 132.90471875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 132.90471875
transcript.pyannote[36].end 138.06846875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 136.51596875
transcript.pyannote[37].end 141.15659375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 141.51096875
transcript.pyannote[38].end 143.16471875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 143.80596875
transcript.pyannote[39].end 146.74221875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 147.29909375
transcript.pyannote[40].end 149.45909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 149.71221875
transcript.pyannote[41].end 154.77471875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 155.14596875
transcript.pyannote[42].end 157.66034375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 158.38596875
transcript.pyannote[43].end 159.38159375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 159.61784375
transcript.pyannote[44].end 161.40659375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 161.40659375
transcript.pyannote[45].end 161.42346875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 161.86221875
transcript.pyannote[46].end 161.96346875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 161.96346875
transcript.pyannote[47].end 162.72284375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 163.17846875
transcript.pyannote[48].end 163.87034375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 164.30909375
transcript.pyannote[49].end 169.64159375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 167.70096875
transcript.pyannote[50].end 167.88659375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 169.81034375
transcript.pyannote[51].end 174.34971875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 172.78034375
transcript.pyannote[52].end 173.92784375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 174.34971875
transcript.pyannote[53].end 178.51784375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 178.85534375
transcript.pyannote[54].end 180.54284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 181.06596875
transcript.pyannote[55].end 182.85471875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 183.15846875
transcript.pyannote[56].end 185.45346875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 186.02721875
transcript.pyannote[57].end 188.69346875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 189.16596875
transcript.pyannote[58].end 191.98409375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 192.13596875
transcript.pyannote[59].end 192.91221875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 194.83596875
transcript.pyannote[60].end 196.79346875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 197.11409375
transcript.pyannote[61].end 198.83534375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 199.62846875
transcript.pyannote[62].end 201.09659375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 202.37909375
transcript.pyannote[63].end 203.23971875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 203.42534375
transcript.pyannote[64].end 204.53909375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 205.07909375
transcript.pyannote[65].end 205.09596875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 205.09596875
transcript.pyannote[66].end 205.97346875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 205.97346875
transcript.pyannote[67].end 206.83409375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 207.40784375
transcript.pyannote[68].end 210.88409375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 211.35659375
transcript.pyannote[69].end 220.09784375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 220.36784375
transcript.pyannote[70].end 237.27659375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 227.06721875
transcript.pyannote[71].end 230.50971875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 236.65221875
transcript.pyannote[72].end 236.93909375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 236.93909375
transcript.pyannote[73].end 236.95596875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 237.56346875
transcript.pyannote[74].end 248.80221875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 238.44096875
transcript.pyannote[75].end 239.11596875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 239.85846875
transcript.pyannote[76].end 240.19596875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 249.54471875
transcript.pyannote[77].end 249.91596875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 250.18596875
transcript.pyannote[78].end 250.64159375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 250.70909375
transcript.pyannote[79].end 251.95784375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 252.22784375
transcript.pyannote[80].end 252.27846875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 252.27846875
transcript.pyannote[81].end 253.69596875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 254.91096875
transcript.pyannote[82].end 256.27784375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 256.59846875
transcript.pyannote[83].end 258.91034375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 259.33221875
transcript.pyannote[84].end 260.20971875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 261.54284375
transcript.pyannote[85].end 264.79971875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 265.49159375
transcript.pyannote[86].end 269.94659375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 270.16596875
transcript.pyannote[87].end 273.77721875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 274.28346875
transcript.pyannote[88].end 275.76846875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 275.76846875
transcript.pyannote[89].end 275.78534375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 276.51096875
transcript.pyannote[90].end 276.52784375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 276.52784375
transcript.pyannote[91].end 277.45596875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 278.29971875
transcript.pyannote[92].end 290.33159375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 283.56471875
transcript.pyannote[93].end 285.97784375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 290.92221875
transcript.pyannote[94].end 299.27534375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 296.25471875
transcript.pyannote[95].end 296.96346875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 299.89971875
transcript.pyannote[96].end 307.03784375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 304.38846875
transcript.pyannote[97].end 304.69221875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 307.03784375
transcript.pyannote[98].end 307.88159375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 308.84346875
transcript.pyannote[99].end 308.86034375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 308.86034375
transcript.pyannote[100].end 310.91909375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 311.71221875
transcript.pyannote[101].end 313.77096875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 314.96909375
transcript.pyannote[102].end 317.26409375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 318.02346875
transcript.pyannote[103].end 319.18784375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 319.96409375
transcript.pyannote[104].end 325.80284375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 326.57909375
transcript.pyannote[105].end 327.81096875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 328.13159375
transcript.pyannote[106].end 334.96596875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 334.96596875
transcript.pyannote[107].end 339.50534375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 339.84284375
transcript.pyannote[108].end 343.13346875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 343.20096875
transcript.pyannote[109].end 373.03596875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 373.03596875
transcript.pyannote[110].end 376.88346875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 377.82846875
transcript.pyannote[111].end 378.92534375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 379.26284375
transcript.pyannote[112].end 380.86596875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 381.38909375
transcript.pyannote[113].end 381.96284375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 381.96284375
transcript.pyannote[114].end 382.23284375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 383.24534375
transcript.pyannote[115].end 383.26221875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 383.26221875
transcript.pyannote[116].end 390.58596875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 387.41346875
transcript.pyannote[117].end 387.95346875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 391.86846875
transcript.pyannote[118].end 398.83784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 392.02034375
transcript.pyannote[119].end 392.07096875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 392.07096875
transcript.pyannote[120].end 392.29034375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 392.29034375
transcript.pyannote[121].end 392.50971875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 399.58034375
transcript.pyannote[122].end 400.15409375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 400.55909375
transcript.pyannote[123].end 403.02284375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 403.02284375
transcript.pyannote[124].end 404.30534375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 404.57534375
transcript.pyannote[125].end 407.71409375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 408.03471875
transcript.pyannote[126].end 412.92846875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 413.09721875
transcript.pyannote[127].end 413.41784375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 413.38409375
transcript.pyannote[128].end 415.96596875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 415.96596875
transcript.pyannote[129].end 440.77221875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 437.85284375
transcript.pyannote[130].end 439.40534375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 441.27846875
transcript.pyannote[131].end 450.71159375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 449.54721875
transcript.pyannote[132].end 450.84659375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 450.84659375
transcript.pyannote[133].end 450.86346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 450.89721875
transcript.pyannote[134].end 455.21721875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 455.55471875
transcript.pyannote[135].end 457.10721875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 455.57159375
transcript.pyannote[136].end 457.27596875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 457.37721875
transcript.pyannote[137].end 458.03534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 457.54596875
transcript.pyannote[138].end 462.76034375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 462.87846875
transcript.pyannote[139].end 463.26659375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 463.26659375
transcript.pyannote[140].end 464.36346875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 464.36346875
transcript.pyannote[141].end 464.41409375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 464.58284375
transcript.pyannote[142].end 475.02846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 474.26909375
transcript.pyannote[143].end 474.91034375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 475.02846875
transcript.pyannote[144].end 475.04534375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 475.04534375
transcript.pyannote[145].end 475.09596875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 475.09596875
transcript.pyannote[146].end 475.14659375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 475.14659375
transcript.pyannote[147].end 475.16346875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 475.16346875
transcript.pyannote[148].end 475.18034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 475.18034375
transcript.pyannote[149].end 477.99846875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 475.38284375
transcript.pyannote[150].end 475.41659375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 478.69034375
transcript.pyannote[151].end 482.23409375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 480.12471875
transcript.pyannote[152].end 480.81659375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 481.67721875
transcript.pyannote[153].end 482.06534375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 482.23409375
transcript.pyannote[154].end 489.13596875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 489.47346875
transcript.pyannote[155].end 489.96284375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 489.96284375
transcript.pyannote[156].end 490.73909375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 491.75159375
transcript.pyannote[157].end 491.78534375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 491.78534375
transcript.pyannote[158].end 492.44346875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 492.67971875
transcript.pyannote[159].end 495.86909375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 496.61159375
transcript.pyannote[160].end 498.56909375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 499.36221875
transcript.pyannote[161].end 500.72909375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 501.30284375
transcript.pyannote[162].end 503.78346875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 504.55971875
transcript.pyannote[163].end 505.47096875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 506.23034375
transcript.pyannote[164].end 509.90909375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 510.36471875
transcript.pyannote[165].end 510.51659375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 510.90471875
transcript.pyannote[166].end 511.15784375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 511.66409375
transcript.pyannote[167].end 513.06471875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 513.25034375
transcript.pyannote[168].end 513.80721875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 514.07721875
transcript.pyannote[169].end 515.10659375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 516.15284375
transcript.pyannote[170].end 516.64221875
transcript.whisperx[0].start 7.742
transcript.whisperx[0].end 18.895
transcript.whisperx[0].text 好 主席各位先進我們請經濟部的郭部長郭部長以及經濟部的柳主委一起好嗎好 柳主委
transcript.whisperx[1].start 22.366
transcript.whisperx[1].end 48.567
transcript.whisperx[1].text 委員好兩位長官好我請教因為我也是同一個問題今天很多人疑問了我們到底是第一輪還是第幾輪因為美國商務部公布的第一輪沒有台灣就日本 韓國 印度 英國 澳國英國 澳洲已經早就談過了我們沒有但是我們的總統府那裡又發布說有 第一輪談了所以我的解讀
transcript.whisperx[2].start 51.989
transcript.whisperx[2].end 73.535
transcript.whisperx[2].text 我的解讀當然各位兩位都沒有參加但是這個對我們也很重要你們是經貿的長官大長官這個我的解讀411我仔細看了好幾份的一個報導它就是說雙方面就關稅以及非關稅貿易的障礙做了一些溝通
transcript.whisperx[3].start 74.926
transcript.whisperx[3].end 96.914
transcript.whisperx[3].text 我感覺啊 我請教各位我這樣解讀對不對411那個會議是一種類似我們法院的裡面的準備庭他不是實質進入那個辯論庭啊真的在那去談他是一個準備庭就開始問你名字啊問你們現象啊 問你幾個項目要談啊什麼之類的我這樣解讀對不對 請教兩位長官
transcript.whisperx[4].start 101.537
transcript.whisperx[4].end 114.43
transcript.whisperx[4].text 比較類似準備廳我想委員是這方面的專家但是我分享一下因為我太太以前也在WTO談判做了十幾年就我的認知是通常我們會做技術型的談判針對要談的條件由技術官員先做USTR先做一個技術談判然後最後才會往上走
transcript.whisperx[5].start 121.978
transcript.whisperx[5].end 138.724
transcript.whisperx[5].text 那這個過程就要看雙方在技術談判上的爭議點多不多爭議點越少的一定會先越早上去對 這個要國務長同意吧是準備點的概念但是如果我們因為要維護台灣的權益因為大家關心的當然這個過程大家關心的是說我們不能談一個好的deal現在是10%到32%之間嘛
transcript.whisperx[6].start 147.392
transcript.whisperx[6].end 157.367
transcript.whisperx[6].text 是不是事實上原來現在是為止10%大家好高興喔股市漲啊什麼之類的其實不要忘了我們到美國原來是3%錯了請指正原來3%這個要顧不準對吧原來是3%看產業表
transcript.whisperx[7].start 164.383
transcript.whisperx[7].end 192.76
transcript.whisperx[7].text 要看哪一些產業AverageAverageAverage美國他本來是3.1%對就3%左右對Average是3%但是現在一概的都是10%他已經給很大的favor給很大的message所以是10%到12%我特別請教郭部長你心目中有沒有一個說我們如果談到多少我對國人就很有交代
transcript.whisperx[8].start 194.875
transcript.whisperx[8].end 196.436
transcript.whisperx[8].text 因為我不是談判委員因為我沒有授予這樣的一個談判的目標
transcript.whisperx[9].start 218.444
transcript.whisperx[9].end 236.987
transcript.whisperx[9].text 那如果就大家一樣的國內的想法當然是維持原來的稅率是最好那原來稅率是3%他現在他就10%但是他現在已經調到10%那這10%可能就是美國他們政府的一個目的基礎目
transcript.whisperx[10].start 237.708
transcript.whisperx[10].end 260.083
transcript.whisperx[10].text 基礎稅率不可能再降了我們要談到10%已經是100分了啦所以我們大概可以觀察現在它的第一波出來的那個五國的稅率是什麼那個大概是一個referenceOK好那現在跟那個主委請回座跟這個有關係的其實稅率最高的是最健康食品
transcript.whisperx[11].start 261.824
transcript.whisperx[11].end 285.64
transcript.whisperx[11].text 我剛才問了未還問了問了哪半個財政是你們管的健康食品是你們管的不是我們不管的是這個這一部分你有沒有對於我們國內的健康食品的相關產業有沒有衝擊30%如果變0可信性如何因為如果是對等關稅除非美國的關稅是0美國大概是0美國現在美國的關稅是8%8%好我們就降到8%我們有沒有印象
transcript.whisperx[12].start 291.021
transcript.whisperx[12].end 307.748
transcript.whisperx[12].text 但是他現在對我們當然是有衝擊啦對我們目前的這個這個就是看他們如何去調適啦這畢竟是國家的大事這是一個 另外有一個汽車產業17.5汽車產業17.5還有它的零組件在那邊影響著工作人員
transcript.whisperx[13].start 315.029
transcript.whisperx[13].end 341.85
transcript.whisperx[13].text 我們的勞工有十幾萬人衝擊是蠻大的當然有人在批評說保護下來不好啦什麼之類把他歸他現在如果歸成零這個衝擊相當大這個我們的物性價會增加失業率會增加對社會造成一個很大的社會問題這個你的觀點怎麼樣這一部分我的建議是這樣子就是說台灣因為電子零組件很強對
transcript.whisperx[14].start 343.371
transcript.whisperx[14].end 363.892
transcript.whisperx[14].text 那麼現在台灣的這個車廠都是做油車所以我們如果跟他們建議他回到因為大部分都是日本的品牌比較多所以我們建議是不是他們的電動車可以在台灣的這些電子零組件有優勢的國家裡面可以來生產電動車這是一個最快的轉換
transcript.whisperx[15].start 364.793
transcript.whisperx[15].end 376.701
transcript.whisperx[15].text 我覺得既有已有的員工那麼也有生產線那麼也有市場這個是我們的一個建議我回到比較笨的問題了那你期待17.5可以降到多少你覺得可以接受對產業衝擊沒那麼大大家一看你變成0我們有跑過模型了我們有跑過經濟模型大概我們大概可以7年
transcript.whisperx[16].start 391.909
transcript.whisperx[16].end 416.219
transcript.whisperx[16].text 七年就是說在七年內如果說我們可以安排他們轉型大概不會產生衝擊啦所以七年安排轉型但是稅率就零開始囉就是最worst case是零的話最worst case就是從只要台美1000元就從零開始然後七年以後他們可以適應所以七年你要有一個輔導方案出來
transcript.whisperx[17].start 419.921
transcript.whisperx[17].end 440.086
transcript.whisperx[17].text 我們當然會我們的輔導方案會出來嘛但我的意思就是說當我們這是基本假設啦不會這個樣子當17.5的稅萬一是零被要求是零的時候那麼對這個產業的衝擊會造成實質的影響我們跑過模型大概要七年才會產生其實你們可以去跟美國argue
transcript.whisperx[18].start 441.746
transcript.whisperx[18].end 463.985
transcript.whisperx[18].text 這個稍微跟他討論一下所以我們意思就是說我們做最快的這個打算我們也跟原廠跟台灣的這些廠商其實我們都了解啦台灣的市場美國車即便你變零美國車也不是賣得最好的台灣人喜歡歐洲車啊日本車啊大部分來進來都還是日本車啦日本車啊對啊在美國的日本車啦在美國的日本車
transcript.whisperx[19].start 465.35
transcript.whisperx[19].end 490.601
transcript.whisperx[19].text 所以這個基本上大家都買進口車啊因為沒有稅了以後大家沒有買進口車所以本土的車廠他們確實會造到一些這個其實從對等關稅的角度台灣的車去美國的很少都是沙灘車啦沙灘車台灣去的整車非常少但是我們的up market是很棒的是up market是很棒的是的那個半導體他說要課稅現在還沒出來你認為他可能課多少
transcript.whisperx[20].start 492.904
transcript.whisperx[20].end 514.876
transcript.whisperx[20].text 這個還要看啊因為美國現在在做這個國安調查那我再看他的國安調查之後他們才會做一個確定啊所以我們現在很密切注意這樣的一個命題目前多少目前的話啊這個半導體的這個稅是零啊先把他繼續領吧是是謝謝委員謝謝
gazette.lineno 883
gazette.blocks[0][0] 賴委員士葆:(12時11分)主席、各位先進。請經濟部郭部長。
gazette.blocks[1][0] 主席:郭部長。
gazette.blocks[2][0] 賴委員士葆:以及國發會劉主委,一起好嗎?
gazette.blocks[3][0] 主席:劉主委。
gazette.blocks[4][0] 郭部長智輝:委員好。
gazette.blocks[5][0] 賴委員士葆:兩位長官好。我請教啦!因為我也是同一個問題,今天很多人也問這個疑問,就是我們到底是第一輪還是第幾輪?因為美國商務部公布的第一輪沒有臺灣,只有日本、韓國、印度、英國、澳洲,英國、Australia已經早就談過了,我們沒有,但是總統府那裡又發布說有,第一輪談了,所以我的解讀啦!當然兩位都沒有參加,但是這個對我們又很重要,你們是經貿的大長官啊!我的解讀,411我仔細看了好幾份報導,它是說雙方面就關稅以及非關稅貿易障礙做了一些溝通,我感覺啊!我請教各位我這樣解讀對不對,411那個會議是類似我們法院裡面的準備庭,它不是實質進入辯論庭真的這樣去談,它是一個準備庭,就開始問你名字啊!問你們現象啊!問你幾個項目要談啊!什麼之類的,我這樣解讀對不對?請教兩位長官,它是比較類似準備庭。
gazette.blocks[6][0] 劉主任委員鏡清:我想委員是這方面的專家,但是我分享一下,因為我太太以前也在WTO談判做了十幾年,就我的認知是,通常我們會做技術型的談判,針對要談的條件,由技術官員先跟USTR做一個技術談判,最後才會往上走,這個過程就要看雙方在技術談判上的爭議點多不多,爭議點越少的,一定先越早……
gazette.blocks[7][0] 賴委員士葆:所以是準備庭的概念嘛!對不對?
gazette.blocks[8][0] 劉主任委員鏡清:先越早上去。
gazette.blocks[9][0] 賴委員士葆:郭部長同意吧?是準備庭的概念。
gazette.blocks[10][0] 郭部長智輝:同意。
gazette.blocks[11][0] 劉主任委員鏡清:但是我們因為要維護臺灣的權益,所以最後一定會好好地去決定。
gazette.blocks[12][0] 賴委員士葆:當然這個都過程啦!大家關心的是我們能不能談一個好的deal,現在是10%到32%之間,是不是?現在是維持10%,大家好高興啊!股市漲啊!什麼之類的,其實不要忘了,我們到美國原來是3%,錯了請指正,原來是3%,郭部長,對吧?原來是3%。
gazette.blocks[13][0] 郭部長智輝:要看哪一些產業啦!
gazette.blocks[14][0] 賴委員士葆:不,average。
gazette.blocks[15][0] 郭部長智輝:average,美國它本來是3.1%。
gazette.blocks[16][0] 賴委員士葆:對,就3%左右嘛!
gazette.blocks[17][0] 郭部長智輝:對。
gazette.blocks[18][0] 賴委員士葆:以前average是3%,但是現在一概都是10%,它已經給很大favor,給很大的mercy,所以是10%到12%。我特別請教郭部長,你心目中有沒有一個目標說我們如果談到多少,對國人就很有交代?當然越低越好啦!就10%最好,但是我看這個可能性也不高,我們能夠接受到哪裡?加起來除以2,10加32,42除以2等於21。
gazette.blocks[19][0] 郭部長智輝:因為我不是談判委員,所以我可能……
gazette.blocks[20][0] 賴委員士葆:那你就從產業發展,希望……
gazette.blocks[21][0] 郭部長智輝:因為我沒有被授予這樣一個談判目標,如果就國人的想法,當然是維持原來的稅率最好。
gazette.blocks[22][0] 賴委員士葆:原來稅率是3%,它現在就10%開始更新。
gazette.blocks[23][0] 郭部長智輝:但是它現在已經調到10%,這10%可能就是美國政府的一個目的。
gazette.blocks[24][0] 賴委員士葆:基礎稅率,不可能再降了。
gazette.blocks[25][0] 郭部長智輝:對,可能……
gazette.blocks[26][0] 賴委員士葆:能夠談到10%已經是100分了啦!
gazette.blocks[27][0] 郭部長智輝:所以我們可以觀察它現在第一波出來的5國的稅率是什麼,那個大概是一個reference。
gazette.blocks[28][0] 賴委員士葆:好,主委請回座。與這個有關係的,其實稅率最高的是健康食品,我剛才跑去衛環問了,問了老半天才知道是你們管的,健康食品是你們管的,不是衛福部管的。
gazette.blocks[29][0] 郭部長智輝:是。
gazette.blocks[30][0] 賴委員士葆:這一部分對於我們國內健康食品的相關產業有沒有衝擊?30%如果變零,可行性如何?
gazette.blocks[31][0] 郭部長智輝:如果是對等關稅,除非美國的關稅是零,所以大概要……
gazette.blocks[32][0] 賴委員士葆:美國大概是零哦!他們會自己做……
gazette.blocks[33][0] 郭部長智輝:美國的關稅是8%。
gazette.blocks[34][0] 賴委員士葆:8%,好,那就降到8%,對我們有沒有影響?
gazette.blocks[35][0] 郭部長智輝:對我們當然是有衝擊啦!對我們目前的……
gazette.blocks[36][0] 賴委員士葆:我們的產業承受得起嗎?他們如果8%,我們承受得起嗎?
gazette.blocks[37][0] 郭部長智輝:這個就是看他們如何去調適啦!這個畢竟是國家的大事。
gazette.blocks[38][0] 賴委員士葆:這是一個。另外有一個,汽車產業17.5%,還有它的零組件,這裡面影響的工作人員,我們的勞工有十幾萬人,衝擊是滿大的。當然有人在批評說保護也不好啦!什麼之類,它現在如果歸成零,這個衝擊相當大,我們的無薪假會增加、失業率會增加,對社會造成一個很大的社會問題,你的觀點怎麼樣?
gazette.blocks[39][0] 郭部長智輝:是,謝謝委員。這一部分我的建議是這樣子,臺灣因為電子零組件很強,那麼現在臺灣的車廠都是做油車,所以我們如果跟他們建議,因為大部分都是日本的品牌比較多,所以我們建議是不是他們的電動車,在臺灣這些電子零組件有優勢的國家裡面,可以來生產電動車,這是最快的轉換,我覺得已有的員工,那麼也有生產線、那麼也有市場,這個是我們的建議。
gazette.blocks[40][0] 賴委員士葆:好,我回到比較笨的問題,你期待17.5%可以降到多少,你覺得可以接受,對產業衝擊沒那麼大,大家承受得起?變成零可以承受得起嗎?
gazette.blocks[41][0] 郭部長智輝:我們有跑過模型啦!
gazette.blocks[42][0] 賴委員士葆:多少?
gazette.blocks[43][0] 郭部長智輝:我們有跑過經濟模型。
gazette.blocks[44][0] 賴委員士葆:大概多少?
gazette.blocks[45][0] 郭部長智輝:我們大概可以7年。
gazette.blocks[46][0] 賴委員士葆:7年怎麼樣?
gazette.blocks[47][0] 郭部長智輝:在7年內如果我們可以安排他們轉型,大概不會產生衝擊。
gazette.blocks[48][0] 賴委員士葆:所以7年安排轉型,但是稅率就是零開始囉?
gazette.blocks[49][0] 郭部長智輝:就是最worst-case是零的話。
gazette.blocks[50][0] 賴委員士葆:對,worst-case就是只要臺美一簽約……
gazette.blocks[51][0] 郭部長智輝:17.5……
gazette.blocks[52][0] 賴委員士葆:就從零開始。
gazette.blocks[53][0] 郭部長智輝:對。
gazette.blocks[54][0] 賴委員士葆:然後7年以後他們可以適應。
gazette.blocks[55][0] 郭部長智輝:就是7年以後才會造成……
gazette.blocks[56][0] 賴委員士葆:所以7年你要有一個輔導方案出來?
gazette.blocks[57][0] 郭部長智輝:我們的輔導方案會出來,但我的意思是說,這是基本假設啦!不會這個樣子,當17.5%的稅萬一是零,被要求是零的時候,那麼對這個產業的衝擊會造成實質的影響,我們跑過模型,大概要7年才會產生……
gazette.blocks[58][0] 賴委員士葆:其實你們可以去跟美國argue,稍微跟它討論一下。
gazette.blocks[59][0] 郭部長智輝:所以我們的意思是說,我們做最壞的打算,我們也跟原廠,跟臺灣的這些廠商講你做轉型。
gazette.blocks[60][0] 賴委員士葆:其實我們都瞭解啦!以臺灣的市場,美國車即便你變零,美國車也不是賣得最好的,臺灣人喜歡歐洲車、日本車。
gazette.blocks[61][0] 郭部長智輝:美國大部分進來都還是日本車。
gazette.blocks[62][0] 賴委員士葆:日本車,對啊!
gazette.blocks[63][0] 郭部長智輝:在美國的日本車。
gazette.blocks[64][0] 賴委員士葆:在美國的日本車。
gazette.blocks[65][0] 郭部長智輝:所以基本上大家都買進口車,因為沒有稅了以後大家都買進口車,本土的車廠確實會遭到一些影響。
gazette.blocks[66][0] 賴委員士葆:其實從對等關稅的角度,臺灣的車去美國的很少。
gazette.blocks[67][0] 郭部長智輝:臺灣都是沙灘車。
gazette.blocks[68][0] 賴委員士葆:只有沙灘車。
gazette.blocks[69][0] 郭部長智輝:臺灣去的整車非常少。
gazette.blocks[70][0] 賴委員士葆:但是我們的aftermarket是很棒的。
gazette.blocks[71][0] 郭部長智輝:是,aftermarket是很棒,是的。
gazette.blocks[72][0] 賴委員士葆:半導體它說要課稅,現在還沒出來,你認為它可能課多少?
gazette.blocks[73][0] 郭部長智輝:這個還要看,因為美國現在在做國安調查,在他們做完國安調查之後才會做一個確定,所以我們現在密切注意這樣的一個命題。
gazette.blocks[74][0] 賴委員士葆:目前課多少?
gazette.blocks[75][0] 郭部長智輝:目前的話,半導體的稅率是零。
gazette.blocks[76][0] 賴委員士葆:那就想辦法繼續零吧!
gazette.blocks[77][0] 郭部長智輝:是,謝謝委員。
gazette.blocks[78][0] 主席:謝謝。
gazette.blocks[78][1] 我們現在請黃國昌委員做詢答。
gazette.agenda.page_end 116
gazette.agenda.meet_id 委員會-11-3-19-9
gazette.agenda.speakers[0] 謝衣鳯
gazette.agenda.speakers[1] 邱議瑩
gazette.agenda.speakers[2] 楊瓊瓔
gazette.agenda.speakers[3] 林岱樺
gazette.agenda.speakers[4] 陳亭妃
gazette.agenda.speakers[5] 張啓楷
gazette.agenda.speakers[6] 鄭正鈐
gazette.agenda.speakers[7] 鄭天財Sra Kacaw
gazette.agenda.speakers[8] 呂玉玲
gazette.agenda.speakers[9] 賴瑞隆
gazette.agenda.speakers[10] 邱志偉
gazette.agenda.speakers[11] 李坤城
gazette.agenda.speakers[12] 鍾佳濱
gazette.agenda.speakers[13] 蔡易餘
gazette.agenda.speakers[14] 張嘉郡
gazette.agenda.speakers[15] 賴士葆
gazette.agenda.speakers[16] 黃國昌
gazette.agenda.speakers[17] 陳冠廷
gazette.agenda.speakers[18] 王鴻薇
gazette.agenda.speakers[19] 廖先翔
gazette.agenda.speakers[20] 黃健豪
gazette.agenda.speakers[21] 陳超明
gazette.agenda.speakers[22] 翁曉玲
gazette.agenda.page_start 51
gazette.agenda.meetingDate[0] 2025-04-16
gazette.agenda.gazette_id 1143801
gazette.agenda.agenda_lcidc_ids[0] 1143801_00003
gazette.agenda.meet_name 立法院第11屆第3會期經濟委員會第9次全體委員會議紀錄
gazette.agenda.content 邀請國家發展委員會主任委員、經濟部部長及財政部首長就「因應國際貿易情勢變化,如何協助 國內廠商擴大國際市場」進行報告,並備質詢
gazette.agenda.agenda_id 1143801_00002