IVOD_ID |
160250 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160250 |
日期 |
2025-04-16 |
會議資料.會議代碼 |
委員會-11-3-19-9 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第9次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
9 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第9次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-16T12:11:43+08:00 |
結束時間 |
2025-04-16T12:20:20+08:00 |
影片長度 |
00:08:37 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279df8341310d6de0015fb2710058b23c04f81a52cf64e50924c019376995a466ca645ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
賴士葆 |
委員發言時間 |
12:11:43 - 12:20:20 |
會議時間 |
2025-04-16T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第9次全體委員會議議程(事由:邀請國家發展委員會主任委員、經濟部部長及財政部首長就「因應國際貿易情勢變化,如何協助國內廠商擴大國際市場」進行報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
8.08034375 |
transcript.pyannote[0].end |
9.36284375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
9.93659375 |
transcript.pyannote[1].end |
11.26971875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
11.59034375 |
transcript.pyannote[2].end |
12.63659375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
13.02471875 |
transcript.pyannote[3].end |
13.69971875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
14.15534375 |
transcript.pyannote[4].end |
14.57721875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
14.96534375 |
transcript.pyannote[5].end |
15.72471875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
16.31534375 |
transcript.pyannote[6].end |
17.93534375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
18.55971875 |
transcript.pyannote[7].end |
18.99846875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
22.35659375 |
transcript.pyannote[8].end |
22.82909375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
23.77409375 |
transcript.pyannote[9].end |
24.65159375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
24.97221875 |
transcript.pyannote[10].end |
25.20846875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
25.24221875 |
transcript.pyannote[11].end |
26.38971875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
26.50784375 |
transcript.pyannote[12].end |
30.20346875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
30.70971875 |
transcript.pyannote[13].end |
37.37534375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
37.78034375 |
transcript.pyannote[14].end |
43.41659375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
43.65284375 |
transcript.pyannote[15].end |
44.53034375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
45.03659375 |
transcript.pyannote[16].end |
51.21284375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
51.88784375 |
transcript.pyannote[17].end |
54.77346875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
54.94221875 |
transcript.pyannote[18].end |
58.78971875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
59.09346875 |
transcript.pyannote[19].end |
61.03409375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
61.86096875 |
transcript.pyannote[20].end |
64.05471875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
64.29096875 |
transcript.pyannote[21].end |
68.15534375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
68.62784375 |
transcript.pyannote[22].end |
70.56846875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
71.37846875 |
transcript.pyannote[23].end |
72.50909375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
72.91409375 |
transcript.pyannote[24].end |
73.84221875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
74.88846875 |
transcript.pyannote[25].end |
77.80784375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
77.95971875 |
transcript.pyannote[26].end |
84.99659375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
85.68846875 |
transcript.pyannote[27].end |
100.55534375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
100.94346875 |
transcript.pyannote[28].end |
101.39909375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
101.41596875 |
transcript.pyannote[29].end |
101.43284375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
101.48346875 |
transcript.pyannote[30].end |
101.50034375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
101.50034375 |
transcript.pyannote[31].end |
101.60159375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
101.60159375 |
transcript.pyannote[32].end |
110.07284375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
110.47784375 |
transcript.pyannote[33].end |
131.16659375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
127.92659375 |
transcript.pyannote[34].end |
129.47909375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
130.72784375 |
transcript.pyannote[35].end |
132.90471875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
132.90471875 |
transcript.pyannote[36].end |
138.06846875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
136.51596875 |
transcript.pyannote[37].end |
141.15659375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
141.51096875 |
transcript.pyannote[38].end |
143.16471875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
143.80596875 |
transcript.pyannote[39].end |
146.74221875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
147.29909375 |
transcript.pyannote[40].end |
149.45909375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
149.71221875 |
transcript.pyannote[41].end |
154.77471875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
155.14596875 |
transcript.pyannote[42].end |
157.66034375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
158.38596875 |
transcript.pyannote[43].end |
159.38159375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
159.61784375 |
transcript.pyannote[44].end |
161.40659375 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
161.40659375 |
transcript.pyannote[45].end |
161.42346875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
161.86221875 |
transcript.pyannote[46].end |
161.96346875 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
161.96346875 |
transcript.pyannote[47].end |
162.72284375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
163.17846875 |
transcript.pyannote[48].end |
163.87034375 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
164.30909375 |
transcript.pyannote[49].end |
169.64159375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
167.70096875 |
transcript.pyannote[50].end |
167.88659375 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
169.81034375 |
transcript.pyannote[51].end |
174.34971875 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
172.78034375 |
transcript.pyannote[52].end |
173.92784375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
174.34971875 |
transcript.pyannote[53].end |
178.51784375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
178.85534375 |
transcript.pyannote[54].end |
180.54284375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
181.06596875 |
transcript.pyannote[55].end |
182.85471875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
183.15846875 |
transcript.pyannote[56].end |
185.45346875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
186.02721875 |
transcript.pyannote[57].end |
188.69346875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
189.16596875 |
transcript.pyannote[58].end |
191.98409375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
192.13596875 |
transcript.pyannote[59].end |
192.91221875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
194.83596875 |
transcript.pyannote[60].end |
196.79346875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
197.11409375 |
transcript.pyannote[61].end |
198.83534375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
199.62846875 |
transcript.pyannote[62].end |
201.09659375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
202.37909375 |
transcript.pyannote[63].end |
203.23971875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
203.42534375 |
transcript.pyannote[64].end |
204.53909375 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
205.07909375 |
transcript.pyannote[65].end |
205.09596875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
205.09596875 |
transcript.pyannote[66].end |
205.97346875 |
transcript.pyannote[67].speaker |
SPEAKER_02 |
transcript.pyannote[67].start |
205.97346875 |
transcript.pyannote[67].end |
206.83409375 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
207.40784375 |
transcript.pyannote[68].end |
210.88409375 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
211.35659375 |
transcript.pyannote[69].end |
220.09784375 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
220.36784375 |
transcript.pyannote[70].end |
237.27659375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
227.06721875 |
transcript.pyannote[71].end |
230.50971875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
236.65221875 |
transcript.pyannote[72].end |
236.93909375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
236.93909375 |
transcript.pyannote[73].end |
236.95596875 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
237.56346875 |
transcript.pyannote[74].end |
248.80221875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
238.44096875 |
transcript.pyannote[75].end |
239.11596875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
239.85846875 |
transcript.pyannote[76].end |
240.19596875 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
249.54471875 |
transcript.pyannote[77].end |
249.91596875 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
250.18596875 |
transcript.pyannote[78].end |
250.64159375 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
250.70909375 |
transcript.pyannote[79].end |
251.95784375 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
252.22784375 |
transcript.pyannote[80].end |
252.27846875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
252.27846875 |
transcript.pyannote[81].end |
253.69596875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
254.91096875 |
transcript.pyannote[82].end |
256.27784375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
256.59846875 |
transcript.pyannote[83].end |
258.91034375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
259.33221875 |
transcript.pyannote[84].end |
260.20971875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
261.54284375 |
transcript.pyannote[85].end |
264.79971875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
265.49159375 |
transcript.pyannote[86].end |
269.94659375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
270.16596875 |
transcript.pyannote[87].end |
273.77721875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
274.28346875 |
transcript.pyannote[88].end |
275.76846875 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
275.76846875 |
transcript.pyannote[89].end |
275.78534375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
276.51096875 |
transcript.pyannote[90].end |
276.52784375 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
276.52784375 |
transcript.pyannote[91].end |
277.45596875 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
278.29971875 |
transcript.pyannote[92].end |
290.33159375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
283.56471875 |
transcript.pyannote[93].end |
285.97784375 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
290.92221875 |
transcript.pyannote[94].end |
299.27534375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
296.25471875 |
transcript.pyannote[95].end |
296.96346875 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
299.89971875 |
transcript.pyannote[96].end |
307.03784375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
304.38846875 |
transcript.pyannote[97].end |
304.69221875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
307.03784375 |
transcript.pyannote[98].end |
307.88159375 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
308.84346875 |
transcript.pyannote[99].end |
308.86034375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
308.86034375 |
transcript.pyannote[100].end |
310.91909375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
311.71221875 |
transcript.pyannote[101].end |
313.77096875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
314.96909375 |
transcript.pyannote[102].end |
317.26409375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
318.02346875 |
transcript.pyannote[103].end |
319.18784375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
319.96409375 |
transcript.pyannote[104].end |
325.80284375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
326.57909375 |
transcript.pyannote[105].end |
327.81096875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
328.13159375 |
transcript.pyannote[106].end |
334.96596875 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
334.96596875 |
transcript.pyannote[107].end |
339.50534375 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
339.84284375 |
transcript.pyannote[108].end |
343.13346875 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
343.20096875 |
transcript.pyannote[109].end |
373.03596875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
373.03596875 |
transcript.pyannote[110].end |
376.88346875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
377.82846875 |
transcript.pyannote[111].end |
378.92534375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
379.26284375 |
transcript.pyannote[112].end |
380.86596875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
381.38909375 |
transcript.pyannote[113].end |
381.96284375 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
381.96284375 |
transcript.pyannote[114].end |
382.23284375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
383.24534375 |
transcript.pyannote[115].end |
383.26221875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
383.26221875 |
transcript.pyannote[116].end |
390.58596875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
387.41346875 |
transcript.pyannote[117].end |
387.95346875 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
391.86846875 |
transcript.pyannote[118].end |
398.83784375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
392.02034375 |
transcript.pyannote[119].end |
392.07096875 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
392.07096875 |
transcript.pyannote[120].end |
392.29034375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
392.29034375 |
transcript.pyannote[121].end |
392.50971875 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
399.58034375 |
transcript.pyannote[122].end |
400.15409375 |
transcript.pyannote[123].speaker |
SPEAKER_02 |
transcript.pyannote[123].start |
400.55909375 |
transcript.pyannote[123].end |
403.02284375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
403.02284375 |
transcript.pyannote[124].end |
404.30534375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
404.57534375 |
transcript.pyannote[125].end |
407.71409375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
408.03471875 |
transcript.pyannote[126].end |
412.92846875 |
transcript.pyannote[127].speaker |
SPEAKER_02 |
transcript.pyannote[127].start |
413.09721875 |
transcript.pyannote[127].end |
413.41784375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
413.38409375 |
transcript.pyannote[128].end |
415.96596875 |
transcript.pyannote[129].speaker |
SPEAKER_02 |
transcript.pyannote[129].start |
415.96596875 |
transcript.pyannote[129].end |
440.77221875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
437.85284375 |
transcript.pyannote[130].end |
439.40534375 |
transcript.pyannote[131].speaker |
SPEAKER_02 |
transcript.pyannote[131].start |
441.27846875 |
transcript.pyannote[131].end |
450.71159375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
449.54721875 |
transcript.pyannote[132].end |
450.84659375 |
transcript.pyannote[133].speaker |
SPEAKER_02 |
transcript.pyannote[133].start |
450.84659375 |
transcript.pyannote[133].end |
450.86346875 |
transcript.pyannote[134].speaker |
SPEAKER_02 |
transcript.pyannote[134].start |
450.89721875 |
transcript.pyannote[134].end |
455.21721875 |
transcript.pyannote[135].speaker |
SPEAKER_02 |
transcript.pyannote[135].start |
455.55471875 |
transcript.pyannote[135].end |
457.10721875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
455.57159375 |
transcript.pyannote[136].end |
457.27596875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
457.37721875 |
transcript.pyannote[137].end |
458.03534375 |
transcript.pyannote[138].speaker |
SPEAKER_02 |
transcript.pyannote[138].start |
457.54596875 |
transcript.pyannote[138].end |
462.76034375 |
transcript.pyannote[139].speaker |
SPEAKER_02 |
transcript.pyannote[139].start |
462.87846875 |
transcript.pyannote[139].end |
463.26659375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
463.26659375 |
transcript.pyannote[140].end |
464.36346875 |
transcript.pyannote[141].speaker |
SPEAKER_02 |
transcript.pyannote[141].start |
464.36346875 |
transcript.pyannote[141].end |
464.41409375 |
transcript.pyannote[142].speaker |
SPEAKER_02 |
transcript.pyannote[142].start |
464.58284375 |
transcript.pyannote[142].end |
475.02846875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
474.26909375 |
transcript.pyannote[143].end |
474.91034375 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
475.02846875 |
transcript.pyannote[144].end |
475.04534375 |
transcript.pyannote[145].speaker |
SPEAKER_02 |
transcript.pyannote[145].start |
475.04534375 |
transcript.pyannote[145].end |
475.09596875 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
475.09596875 |
transcript.pyannote[146].end |
475.14659375 |
transcript.pyannote[147].speaker |
SPEAKER_02 |
transcript.pyannote[147].start |
475.14659375 |
transcript.pyannote[147].end |
475.16346875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
475.16346875 |
transcript.pyannote[148].end |
475.18034375 |
transcript.pyannote[149].speaker |
SPEAKER_02 |
transcript.pyannote[149].start |
475.18034375 |
transcript.pyannote[149].end |
477.99846875 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
475.38284375 |
transcript.pyannote[150].end |
475.41659375 |
transcript.pyannote[151].speaker |
SPEAKER_02 |
transcript.pyannote[151].start |
478.69034375 |
transcript.pyannote[151].end |
482.23409375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
480.12471875 |
transcript.pyannote[152].end |
480.81659375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
481.67721875 |
transcript.pyannote[153].end |
482.06534375 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
482.23409375 |
transcript.pyannote[154].end |
489.13596875 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
489.47346875 |
transcript.pyannote[155].end |
489.96284375 |
transcript.pyannote[156].speaker |
SPEAKER_02 |
transcript.pyannote[156].start |
489.96284375 |
transcript.pyannote[156].end |
490.73909375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
491.75159375 |
transcript.pyannote[157].end |
491.78534375 |
transcript.pyannote[158].speaker |
SPEAKER_02 |
transcript.pyannote[158].start |
491.78534375 |
transcript.pyannote[158].end |
492.44346875 |
transcript.pyannote[159].speaker |
SPEAKER_02 |
transcript.pyannote[159].start |
492.67971875 |
transcript.pyannote[159].end |
495.86909375 |
transcript.pyannote[160].speaker |
SPEAKER_02 |
transcript.pyannote[160].start |
496.61159375 |
transcript.pyannote[160].end |
498.56909375 |
transcript.pyannote[161].speaker |
SPEAKER_02 |
transcript.pyannote[161].start |
499.36221875 |
transcript.pyannote[161].end |
500.72909375 |
transcript.pyannote[162].speaker |
SPEAKER_02 |
transcript.pyannote[162].start |
501.30284375 |
transcript.pyannote[162].end |
503.78346875 |
transcript.pyannote[163].speaker |
SPEAKER_02 |
transcript.pyannote[163].start |
504.55971875 |
transcript.pyannote[163].end |
505.47096875 |
transcript.pyannote[164].speaker |
SPEAKER_02 |
transcript.pyannote[164].start |
506.23034375 |
transcript.pyannote[164].end |
509.90909375 |
transcript.pyannote[165].speaker |
SPEAKER_02 |
transcript.pyannote[165].start |
510.36471875 |
transcript.pyannote[165].end |
510.51659375 |
transcript.pyannote[166].speaker |
SPEAKER_02 |
transcript.pyannote[166].start |
510.90471875 |
transcript.pyannote[166].end |
511.15784375 |
transcript.pyannote[167].speaker |
SPEAKER_02 |
transcript.pyannote[167].start |
511.66409375 |
transcript.pyannote[167].end |
513.06471875 |
transcript.pyannote[168].speaker |
SPEAKER_02 |
transcript.pyannote[168].start |
513.25034375 |
transcript.pyannote[168].end |
513.80721875 |
transcript.pyannote[169].speaker |
SPEAKER_02 |
transcript.pyannote[169].start |
514.07721875 |
transcript.pyannote[169].end |
515.10659375 |
transcript.pyannote[170].speaker |
SPEAKER_02 |
transcript.pyannote[170].start |
516.15284375 |
transcript.pyannote[170].end |
516.64221875 |
transcript.whisperx[0].start |
7.742 |
transcript.whisperx[0].end |
18.895 |
transcript.whisperx[0].text |
好 主席各位先進我們請經濟部的郭部長郭部長以及經濟部的柳主委一起好嗎好 柳主委 |
transcript.whisperx[1].start |
22.366 |
transcript.whisperx[1].end |
48.567 |
transcript.whisperx[1].text |
委員好兩位長官好我請教因為我也是同一個問題今天很多人疑問了我們到底是第一輪還是第幾輪因為美國商務部公布的第一輪沒有台灣就日本 韓國 印度 英國 澳國英國 澳洲已經早就談過了我們沒有但是我們的總統府那裡又發布說有 第一輪談了所以我的解讀 |
transcript.whisperx[2].start |
51.989 |
transcript.whisperx[2].end |
73.535 |
transcript.whisperx[2].text |
我的解讀當然各位兩位都沒有參加但是這個對我們也很重要你們是經貿的長官大長官這個我的解讀411我仔細看了好幾份的一個報導它就是說雙方面就關稅以及非關稅貿易的障礙做了一些溝通 |
transcript.whisperx[3].start |
74.926 |
transcript.whisperx[3].end |
96.914 |
transcript.whisperx[3].text |
我感覺啊 我請教各位我這樣解讀對不對411那個會議是一種類似我們法院的裡面的準備庭他不是實質進入那個辯論庭啊真的在那去談他是一個準備庭就開始問你名字啊問你們現象啊 問你幾個項目要談啊什麼之類的我這樣解讀對不對 請教兩位長官 |
transcript.whisperx[4].start |
101.537 |
transcript.whisperx[4].end |
114.43 |
transcript.whisperx[4].text |
比較類似準備廳我想委員是這方面的專家但是我分享一下因為我太太以前也在WTO談判做了十幾年就我的認知是通常我們會做技術型的談判針對要談的條件由技術官員先做USTR先做一個技術談判然後最後才會往上走 |
transcript.whisperx[5].start |
121.978 |
transcript.whisperx[5].end |
138.724 |
transcript.whisperx[5].text |
那這個過程就要看雙方在技術談判上的爭議點多不多爭議點越少的一定會先越早上去對 這個要國務長同意吧是準備點的概念但是如果我們因為要維護台灣的權益因為大家關心的當然這個過程大家關心的是說我們不能談一個好的deal現在是10%到32%之間嘛 |
transcript.whisperx[6].start |
147.392 |
transcript.whisperx[6].end |
157.367 |
transcript.whisperx[6].text |
是不是事實上原來現在是為止10%大家好高興喔股市漲啊什麼之類的其實不要忘了我們到美國原來是3%錯了請指正原來3%這個要顧不準對吧原來是3%看產業表 |
transcript.whisperx[7].start |
164.383 |
transcript.whisperx[7].end |
192.76 |
transcript.whisperx[7].text |
要看哪一些產業AverageAverageAverage美國他本來是3.1%對就3%左右對Average是3%但是現在一概的都是10%他已經給很大的favor給很大的message所以是10%到12%我特別請教郭部長你心目中有沒有一個說我們如果談到多少我對國人就很有交代 |
transcript.whisperx[8].start |
194.875 |
transcript.whisperx[8].end |
196.436 |
transcript.whisperx[8].text |
因為我不是談判委員因為我沒有授予這樣的一個談判的目標 |
transcript.whisperx[9].start |
218.444 |
transcript.whisperx[9].end |
236.987 |
transcript.whisperx[9].text |
那如果就大家一樣的國內的想法當然是維持原來的稅率是最好那原來稅率是3%他現在他就10%但是他現在已經調到10%那這10%可能就是美國他們政府的一個目的基礎目 |
transcript.whisperx[10].start |
237.708 |
transcript.whisperx[10].end |
260.083 |
transcript.whisperx[10].text |
基礎稅率不可能再降了我們要談到10%已經是100分了啦所以我們大概可以觀察現在它的第一波出來的那個五國的稅率是什麼那個大概是一個referenceOK好那現在跟那個主委請回座跟這個有關係的其實稅率最高的是最健康食品 |
transcript.whisperx[11].start |
261.824 |
transcript.whisperx[11].end |
285.64 |
transcript.whisperx[11].text |
我剛才問了未還問了問了哪半個財政是你們管的健康食品是你們管的不是我們不管的是這個這一部分你有沒有對於我們國內的健康食品的相關產業有沒有衝擊30%如果變0可信性如何因為如果是對等關稅除非美國的關稅是0美國大概是0美國現在美國的關稅是8%8%好我們就降到8%我們有沒有印象 |
transcript.whisperx[12].start |
291.021 |
transcript.whisperx[12].end |
307.748 |
transcript.whisperx[12].text |
但是他現在對我們當然是有衝擊啦對我們目前的這個這個就是看他們如何去調適啦這畢竟是國家的大事這是一個 另外有一個汽車產業17.5汽車產業17.5還有它的零組件在那邊影響著工作人員 |
transcript.whisperx[13].start |
315.029 |
transcript.whisperx[13].end |
341.85 |
transcript.whisperx[13].text |
我們的勞工有十幾萬人衝擊是蠻大的當然有人在批評說保護下來不好啦什麼之類把他歸他現在如果歸成零這個衝擊相當大這個我們的物性價會增加失業率會增加對社會造成一個很大的社會問題這個你的觀點怎麼樣這一部分我的建議是這樣子就是說台灣因為電子零組件很強對 |
transcript.whisperx[14].start |
343.371 |
transcript.whisperx[14].end |
363.892 |
transcript.whisperx[14].text |
那麼現在台灣的這個車廠都是做油車所以我們如果跟他們建議他回到因為大部分都是日本的品牌比較多所以我們建議是不是他們的電動車可以在台灣的這些電子零組件有優勢的國家裡面可以來生產電動車這是一個最快的轉換 |
transcript.whisperx[15].start |
364.793 |
transcript.whisperx[15].end |
376.701 |
transcript.whisperx[15].text |
我覺得既有已有的員工那麼也有生產線那麼也有市場這個是我們的一個建議我回到比較笨的問題了那你期待17.5可以降到多少你覺得可以接受對產業衝擊沒那麼大大家一看你變成0我們有跑過模型了我們有跑過經濟模型大概我們大概可以7年 |
transcript.whisperx[16].start |
391.909 |
transcript.whisperx[16].end |
416.219 |
transcript.whisperx[16].text |
七年就是說在七年內如果說我們可以安排他們轉型大概不會產生衝擊啦所以七年安排轉型但是稅率就零開始囉就是最worst case是零的話最worst case就是從只要台美1000元就從零開始然後七年以後他們可以適應所以七年你要有一個輔導方案出來 |
transcript.whisperx[17].start |
419.921 |
transcript.whisperx[17].end |
440.086 |
transcript.whisperx[17].text |
我們當然會我們的輔導方案會出來嘛但我的意思就是說當我們這是基本假設啦不會這個樣子當17.5的稅萬一是零被要求是零的時候那麼對這個產業的衝擊會造成實質的影響我們跑過模型大概要七年才會產生其實你們可以去跟美國argue |
transcript.whisperx[18].start |
441.746 |
transcript.whisperx[18].end |
463.985 |
transcript.whisperx[18].text |
這個稍微跟他討論一下所以我們意思就是說我們做最快的這個打算我們也跟原廠跟台灣的這些廠商其實我們都了解啦台灣的市場美國車即便你變零美國車也不是賣得最好的台灣人喜歡歐洲車啊日本車啊大部分來進來都還是日本車啦日本車啊對啊在美國的日本車啦在美國的日本車 |
transcript.whisperx[19].start |
465.35 |
transcript.whisperx[19].end |
490.601 |
transcript.whisperx[19].text |
所以這個基本上大家都買進口車啊因為沒有稅了以後大家沒有買進口車所以本土的車廠他們確實會造到一些這個其實從對等關稅的角度台灣的車去美國的很少都是沙灘車啦沙灘車台灣去的整車非常少但是我們的up market是很棒的是up market是很棒的是的那個半導體他說要課稅現在還沒出來你認為他可能課多少 |
transcript.whisperx[20].start |
492.904 |
transcript.whisperx[20].end |
514.876 |
transcript.whisperx[20].text |
這個還要看啊因為美國現在在做這個國安調查那我再看他的國安調查之後他們才會做一個確定啊所以我們現在很密切注意這樣的一個命題目前多少目前的話啊這個半導體的這個稅是零啊先把他繼續領吧是是謝謝委員謝謝 |