iVOD / 160214

Field Value
IVOD_ID 160214
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160214
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-23-7
會議資料.會議代碼:str 第11屆第3會期交通委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 23
會議資料.委員會代碼:str[0] 交通委員會
會議資料.標題 第11屆第3會期交通委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-04-16T10:38:17+08:00
結束時間 2025-04-16T10:48:03+08:00
影片長度 00:09:46
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279dfcf2a5af51d271bbff316f6363e53358eebda33721556222a077d9df624e048115ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林俊憲
委員發言時間 10:38:17 - 10:48:03
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期交通委員會第7次全體委員會議(事由:一、邀請交通部部長陳世凱列席報告業務概況,並備質詢。 二、邀請交通部部長、經濟部次長、外交部次長、財政部次長、行政院經貿談判辦公室就「美國課徵對等關稅對我國交通公私部門之衝擊與因應」進行專題報告,並備質詢。 【4月16日及17日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 2.17409375
transcript.pyannote[0].end 3.77721875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 4.21596875
transcript.pyannote[1].end 5.88659375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 6.46034375
transcript.pyannote[2].end 7.28721875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 13.24409375
transcript.pyannote[3].end 13.71659375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 14.13846875
transcript.pyannote[4].end 14.64471875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 15.23534375
transcript.pyannote[5].end 17.91846875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 18.44159375
transcript.pyannote[6].end 20.98971875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 22.05284375
transcript.pyannote[7].end 24.73596875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 25.93409375
transcript.pyannote[8].end 26.20409375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 26.67659375
transcript.pyannote[9].end 29.96721875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 30.45659375
transcript.pyannote[10].end 33.56159375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 34.23659375
transcript.pyannote[11].end 35.41784375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 36.02534375
transcript.pyannote[12].end 37.22346875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 37.51034375
transcript.pyannote[13].end 42.84284375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 44.32784375
transcript.pyannote[14].end 46.53846875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 46.65659375
transcript.pyannote[15].end 48.42846875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 49.52534375
transcript.pyannote[16].end 51.70221875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 52.19159375
transcript.pyannote[17].end 53.35596875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 54.13221875
transcript.pyannote[18].end 57.74346875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 58.70534375
transcript.pyannote[19].end 60.25784375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 60.61221875
transcript.pyannote[20].end 62.40096875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 62.90721875
transcript.pyannote[21].end 64.18971875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 65.10096875
transcript.pyannote[22].end 66.40034375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 67.63221875
transcript.pyannote[23].end 68.93159375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 70.19721875
transcript.pyannote[24].end 75.63096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 76.18784375
transcript.pyannote[25].end 76.52534375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 76.96409375
transcript.pyannote[26].end 78.31409375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 78.63471875
transcript.pyannote[27].end 85.50284375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 86.07659375
transcript.pyannote[28].end 89.18159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 90.36284375
transcript.pyannote[29].end 91.67909375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 92.28659375
transcript.pyannote[30].end 92.64096875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 92.82659375
transcript.pyannote[31].end 93.65346875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 94.10909375
transcript.pyannote[32].end 95.35784375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 95.49284375
transcript.pyannote[33].end 95.94846875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 95.94846875
transcript.pyannote[34].end 96.25221875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 96.74159375
transcript.pyannote[35].end 99.39096875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 99.89721875
transcript.pyannote[36].end 100.85909375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 101.61846875
transcript.pyannote[37].end 103.18784375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 103.54221875
transcript.pyannote[38].end 105.56721875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 106.73159375
transcript.pyannote[39].end 108.87471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 109.38096875
transcript.pyannote[40].end 111.03471875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 111.42284375
transcript.pyannote[41].end 112.45221875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 113.31284375
transcript.pyannote[42].end 116.73846875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 117.49784375
transcript.pyannote[43].end 120.21471875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 120.73784375
transcript.pyannote[44].end 137.83221875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 137.47784375
transcript.pyannote[45].end 141.02159375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 141.19034375
transcript.pyannote[46].end 145.22346875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 144.31221875
transcript.pyannote[47].end 148.46346875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 147.19784375
transcript.pyannote[48].end 149.45909375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 149.45909375
transcript.pyannote[49].end 149.74596875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 149.74596875
transcript.pyannote[50].end 149.96534375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 149.96534375
transcript.pyannote[51].end 151.97346875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 151.68659375
transcript.pyannote[52].end 153.66096875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 154.53846875
transcript.pyannote[53].end 156.14159375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 155.60159375
transcript.pyannote[54].end 157.32284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 158.08221875
transcript.pyannote[55].end 164.42721875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 160.36034375
transcript.pyannote[56].end 160.44471875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 162.11534375
transcript.pyannote[57].end 162.73971875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 163.26284375
transcript.pyannote[58].end 164.64659375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 164.69721875
transcript.pyannote[59].end 166.31721875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 166.62096875
transcript.pyannote[60].end 167.02596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 167.46471875
transcript.pyannote[61].end 168.42659375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 168.69659375
transcript.pyannote[62].end 168.91596875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 168.91596875
transcript.pyannote[63].end 172.37534375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 172.74659375
transcript.pyannote[64].end 175.44659375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 175.44659375
transcript.pyannote[65].end 180.64409375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 176.32409375
transcript.pyannote[66].end 178.21409375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 179.22659375
transcript.pyannote[67].end 179.66534375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 180.64409375
transcript.pyannote[68].end 182.38221875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 182.65221875
transcript.pyannote[69].end 183.64784375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 185.08221875
transcript.pyannote[70].end 187.90034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 188.79471875
transcript.pyannote[71].end 190.95471875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 192.25409375
transcript.pyannote[72].end 199.07159375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 199.76346875
transcript.pyannote[73].end 203.39159375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 204.03284375
transcript.pyannote[74].end 207.54284375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 208.42034375
transcript.pyannote[75].end 209.04471875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 209.04471875
transcript.pyannote[76].end 209.56784375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 210.15846875
transcript.pyannote[77].end 211.00221875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 211.74471875
transcript.pyannote[78].end 212.90909375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 213.41534375
transcript.pyannote[79].end 221.68409375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 220.58721875
transcript.pyannote[80].end 220.77284375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 221.49846875
transcript.pyannote[81].end 221.78534375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 221.75159375
transcript.pyannote[82].end 221.76846875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 221.78534375
transcript.pyannote[83].end 221.81909375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 221.97096875
transcript.pyannote[84].end 222.03846875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 222.10596875
transcript.pyannote[85].end 223.03409375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 223.10159375
transcript.pyannote[86].end 224.24909375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 224.97471875
transcript.pyannote[87].end 226.10534375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 226.20659375
transcript.pyannote[88].end 227.05034375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 227.06721875
transcript.pyannote[89].end 227.08409375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 227.11784375
transcript.pyannote[90].end 227.40471875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 227.86034375
transcript.pyannote[91].end 231.01596875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 231.85971875
transcript.pyannote[92].end 233.54721875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 233.63159375
transcript.pyannote[93].end 235.94346875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 236.63534375
transcript.pyannote[94].end 239.74034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 240.28034375
transcript.pyannote[95].end 247.16534375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 247.89096875
transcript.pyannote[96].end 250.87784375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 251.14784375
transcript.pyannote[97].end 254.91096875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 255.21471875
transcript.pyannote[98].end 259.16346875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 259.82159375
transcript.pyannote[99].end 261.44159375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 261.57659375
transcript.pyannote[100].end 262.53846875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 263.17971875
transcript.pyannote[101].end 264.05721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 264.66471875
transcript.pyannote[102].end 267.46596875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 268.42784375
transcript.pyannote[103].end 269.87909375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 270.92534375
transcript.pyannote[104].end 271.00971875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 271.51596875
transcript.pyannote[105].end 273.03471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 273.28784375
transcript.pyannote[106].end 273.96284375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 274.99221875
transcript.pyannote[107].end 276.27471875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 276.27471875
transcript.pyannote[108].end 276.73034375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 276.27471875
transcript.pyannote[109].end 277.43909375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 278.01284375
transcript.pyannote[110].end 302.36346875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 287.91846875
transcript.pyannote[111].end 288.17159375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 301.36784375
transcript.pyannote[112].end 309.63659375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 306.17721875
transcript.pyannote[113].end 306.48096875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 310.14284375
transcript.pyannote[114].end 331.47284375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 330.83159375
transcript.pyannote[115].end 336.19784375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 336.55221875
transcript.pyannote[116].end 345.42846875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 346.79534375
transcript.pyannote[117].end 349.66409375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 349.19159375
transcript.pyannote[118].end 358.48971875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 357.49409375
transcript.pyannote[119].end 358.20284375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 358.48971875
transcript.pyannote[120].end 359.35034375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 359.53596875
transcript.pyannote[121].end 362.05034375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 362.91096875
transcript.pyannote[122].end 364.48034375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 364.86846875
transcript.pyannote[123].end 365.47596875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 366.06659375
transcript.pyannote[124].end 368.66534375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 369.01971875
transcript.pyannote[125].end 371.87159375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 372.46221875
transcript.pyannote[126].end 373.69409375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 374.09909375
transcript.pyannote[127].end 374.75721875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 375.17909375
transcript.pyannote[128].end 375.46596875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 375.75284375
transcript.pyannote[129].end 378.75659375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 379.49909375
transcript.pyannote[130].end 382.80659375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 383.43096875
transcript.pyannote[131].end 386.55284375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 387.12659375
transcript.pyannote[132].end 392.34096875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 387.44721875
transcript.pyannote[133].end 390.82221875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 393.60659375
transcript.pyannote[134].end 395.09159375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 395.26034375
transcript.pyannote[135].end 400.49159375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 396.27284375
transcript.pyannote[136].end 396.66096875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 400.28909375
transcript.pyannote[137].end 403.64721875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 404.17034375
transcript.pyannote[138].end 405.45284375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 406.33034375
transcript.pyannote[139].end 407.42721875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 408.25409375
transcript.pyannote[140].end 409.08096875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 409.30034375
transcript.pyannote[141].end 410.32971875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 410.71784375
transcript.pyannote[142].end 412.79346875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 413.85659375
transcript.pyannote[143].end 421.61909375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 419.22284375
transcript.pyannote[144].end 421.82159375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 421.63596875
transcript.pyannote[145].end 422.74971875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 422.74971875
transcript.pyannote[146].end 422.76659375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 423.96471875
transcript.pyannote[147].end 423.98159375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 423.98159375
transcript.pyannote[148].end 431.74409375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 430.27596875
transcript.pyannote[149].end 436.95846875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 431.79471875
transcript.pyannote[150].end 432.18284375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 438.12284375
transcript.pyannote[151].end 439.45596875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 439.65846875
transcript.pyannote[152].end 441.00846875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 441.71721875
transcript.pyannote[153].end 443.11784375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 443.84346875
transcript.pyannote[154].end 444.55221875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 445.53096875
transcript.pyannote[155].end 446.74596875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 447.26909375
transcript.pyannote[156].end 447.67409375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 448.04534375
transcript.pyannote[157].end 450.08721875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 449.59784375
transcript.pyannote[158].end 452.09534375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 453.36096875
transcript.pyannote[159].end 463.06409375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 463.16534375
transcript.pyannote[160].end 464.86971875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 465.20721875
transcript.pyannote[161].end 466.37159375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 466.92846875
transcript.pyannote[162].end 468.14346875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 468.73409375
transcript.pyannote[163].end 470.47221875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 470.72534375
transcript.pyannote[164].end 475.04534375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 475.50096875
transcript.pyannote[165].end 477.35721875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 478.15034375
transcript.pyannote[166].end 484.02284375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 484.73159375
transcript.pyannote[167].end 491.00909375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 491.93721875
transcript.pyannote[168].end 494.92409375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 495.04221875
transcript.pyannote[169].end 498.88971875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 499.53096875
transcript.pyannote[170].end 501.01596875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 501.15096875
transcript.pyannote[171].end 503.12534375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 503.15909375
transcript.pyannote[172].end 504.96471875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 505.52159375
transcript.pyannote[173].end 505.89284375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 505.92659375
transcript.pyannote[174].end 507.46221875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 507.09096875
transcript.pyannote[175].end 508.55909375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 508.57596875
transcript.pyannote[176].end 509.85846875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 510.56721875
transcript.pyannote[177].end 511.78221875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 513.84096875
transcript.pyannote[178].end 513.94221875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 514.12784375
transcript.pyannote[179].end 518.51534375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 519.03846875
transcript.pyannote[180].end 520.52346875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 521.14784375
transcript.pyannote[181].end 524.55659375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 522.66659375
transcript.pyannote[182].end 523.96596875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 526.00784375
transcript.pyannote[183].end 528.30284375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 528.70784375
transcript.pyannote[184].end 529.92284375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 530.46284375
transcript.pyannote[185].end 533.11221875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 534.09096875
transcript.pyannote[186].end 536.13284375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 536.77409375
transcript.pyannote[187].end 537.63471875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 537.92159375
transcript.pyannote[188].end 538.74846875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 538.98471875
transcript.pyannote[189].end 540.18284375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 540.72284375
transcript.pyannote[190].end 542.47784375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 543.64221875
transcript.pyannote[191].end 544.53659375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 545.92034375
transcript.pyannote[192].end 552.95721875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 553.90221875
transcript.pyannote[193].end 554.91471875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 555.77534375
transcript.pyannote[194].end 558.59346875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 559.09971875
transcript.pyannote[195].end 560.26409375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 560.51721875
transcript.pyannote[196].end 562.37346875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 562.94721875
transcript.pyannote[197].end 564.22971875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 564.51659375
transcript.pyannote[198].end 565.64721875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 565.76534375
transcript.pyannote[199].end 567.60471875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 568.26284375
transcript.pyannote[200].end 572.56596875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 572.90346875
transcript.pyannote[201].end 574.72596875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 574.72596875
transcript.pyannote[202].end 577.83096875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 577.25721875
transcript.pyannote[203].end 578.84346875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 578.84346875
transcript.pyannote[204].end 578.87721875
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 578.87721875
transcript.pyannote[205].end 581.64471875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 578.89409375
transcript.pyannote[206].end 583.06221875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 583.18034375
transcript.pyannote[207].end 586.20096875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 584.49659375
transcript.pyannote[208].end 584.86784375
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 584.96909375
transcript.pyannote[209].end 585.42471875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 585.44159375
transcript.pyannote[210].end 585.55971875
transcript.whisperx[0].start 2.196
transcript.whisperx[0].end 28.163
transcript.whisperx[0].text 好 感謝主席本期邀請我們交通部陳部長好 陳部長委員好部長好部長我們今天在這裡討論美國關稅這次的對台灣的一個影響是其中大家前幾天討論很多的是汽車業但汽車業大家討論的就是台灣的關稅
transcript.whisperx[1].start 31.727
transcript.whisperx[1].end 57.486
transcript.whisperx[1].text 17.5%還有30%的貨物稅但是我要請教部長美國這一次他針對他的四十幾個主要貿易國家他每一個國家他都寫一份報告我查了這四十幾個國家他點名汽車就是對美國汽車不公平的主要國家只有台灣其他都是一些奇奇怪怪像非洲一些國家
transcript.whisperx[2].start 58.752
transcript.whisperx[2].end 66.057
transcript.whisperx[2].text 可是美國點名台灣對美國的汽車有貿易障礙他沒有講關稅也沒有講什麼貨物稅當然關稅我們太高 貨物稅我們太高這個我們現在可以跟美國來談
transcript.whisperx[3].start 77.045
transcript.whisperx[3].end 105.336
transcript.whisperx[3].text 那現在看起來大概主管部會大家也就美國這個部分在談但美國對於台灣美國車子到台灣來它最大的不滿它是技術性的障礙不是關稅非關稅貿易障礙對可是我看這幾天在討論汽車業汽車的影響都是講財政部 經濟部我從來沒看交通部交通部都躲起來
transcript.whisperx[4].start 106.789
transcript.whisperx[4].end 119.855
transcript.whisperx[4].text 今天造成汽車業被美國點名最主要的就是交通部政策造成的美方點名的是technical barriers to trade技術性的貿易障礙你知道我們的障礙是什麼嗎
transcript.whisperx[5].start 121.079
transcript.whisperx[5].end 140.294
transcript.whisperx[5].text 報告委員其實汽車的部分有三項一項當然是交通部的一些法規上面是有一些限制沒有錯安全檢驗的部分標準檢驗的部分那第二項其實是跟能源是有相關的也就是我們能源署對汽車油耗也是有限制我講的是美國點名我們的障礙是什麼東西
transcript.whisperx[6].start 141.295
transcript.whisperx[6].end 162.941
transcript.whisperx[6].text 我看起來你好像不懂這個部分耶你說的技術障礙我再跟你講技術障礙沒有說完美國這次點名技術障礙可能很多種也不止三種那美國點名我們是什麼地方安全法規標準的部分不是美國點名的是說我們對美國車子啊到台灣來我們一個車型一年配額限制75輛
transcript.whisperx[7].start 167.506
transcript.whisperx[7].end 187.516
transcript.whisperx[7].text 那你知不知道 之前我們對美國車子到台灣來我們一個車型 原本一年限制多少輛很像最早期是從兩千輛到七十五輛慢慢慢慢降 降到現在七十五一種車型所以你要針對美國不滿的地方來 你今天的報告裡面寫的 你不寫也不寫這裡面寫的 航運 貨運 觀光
transcript.whisperx[8].start 192.301
transcript.whisperx[8].end 198.034
transcript.whisperx[8].text 你針對這幾天討論最多的就是汽車包委員這個部分我們其實跟那你的報告應該告訴我們
transcript.whisperx[9].start 200.093
transcript.whisperx[9].end 226.773
transcript.whisperx[9].text 那針對這個部分你要怎麼處理因為這個確實有一點不公平啦那美國進口的二手車有沒有配合沒有配合沒有配合喔這變得很奇怪的喔所以美國的二手車到台灣來啊就所謂的掛過 在美國掛過牌的啦就是我們台灣你說的外匯車啦李秋車啦一年哇 這個好幾萬台啊這個蠻多的很多台喔對
transcript.whisperx[10].start 227.935
transcript.whisperx[10].end 246.953
transcript.whisperx[10].text 所以台灣上路的美規中古車啊各位看啦 這個其實看得出來啦我們外行 我為了這個才去研究因為世界上有兩大系統一個是歐盟的規則一個是美國聯邦經濟安全標準那台灣加入WTO的時候我們採用的是歐盟標準
transcript.whisperx[11].start 247.93
transcript.whisperx[11].end 273.038
transcript.whisperx[11].text 因為世界主要汽車大國都在歐洲啦所以如果從歐洲進口車沒有這個問題沒有配合啦而且就是只要歐盟審核通過的車子就可以到台灣來但美國車子我們就特別定下一個障礙一個車型一年只能75台原本是一年2000台啊那現在變成到75台我不知道車安中心為什麼這麼定啊這誰定的啊
transcript.whisperx[12].start 276.518
transcript.whisperx[12].end 301.639
transcript.whisperx[12].text 這個部分我跟委員報告一下剛剛委員所提到確實就是說這個現行這個車輛安全法規的部分的話大家都是調和聯合國一位一席法規進來那原則上就是說國際上各個車廠要銷售到各地的這個車輛的話基本上就是要符合當地國的這個法規那當時這個純美規車輛的部分基本上就是說純美規你為什麼先回答我的問題
transcript.whisperx[13].start 304.681
transcript.whisperx[13].end 330.508
transcript.whisperx[13].text 從2000台到75台那為什麼美國二手車你就沒有限配當時對於純美規的這個車輛基本上其實我們是相較於日本或是這個韓國是特別開了一條路就是說純美規的車輛還可以到這一個國內來那剛剛委員所提到那個外匯車中古車的部分的話因為他是屬於這個使用過的車輛他的法規檢測項目比較少所以
transcript.whisperx[14].start 330.868
transcript.whisperx[14].end 342.968
transcript.whisperx[14].text 如果玫瑰車你講的是我們特別開個縫那為什麼二手車都可以就沒有限制然後你新車就給他限制我現在不是你在這邊跟我講現在是美方把這樣子認為是一個貿易障礙
transcript.whisperx[15].start 346.868
transcript.whisperx[15].end 374.529
transcript.whisperx[15].text 他特別點名台灣你怎麼給我做這樣的限制報告委員這個部分我們已經跟行政院那邊也都有做溝通那未來該怎麼樣去跟美國談判其實我們也都已經有版本我跟你說啦部長我跟你講他們這個一個你們車安中心還有陸中獅這邊你們這個非常衙門化你這官僚你也回答不出來啊你兩兄弟現在槓七十五台所以各位有沒有注意到啊其實啊
transcript.whisperx[16].start 376.348
transcript.whisperx[16].end 403.386
transcript.whisperx[16].text 台灣現在看不到純美國車的車子啦像卡迪拉克啦雪佛朗這些你大概看不到啦那福特為什麼看得到那福特車子為什麼看不到福特車子都是歐規的啦他們是做歐規的沒錯他們都用歐規的車包含特斯拉雖然在美國製造但是他是用歐規的車他們都用歐規的車因為我們台灣人汗水只用車營70幾台嘛
transcript.whisperx[17].start 406.397
transcript.whisperx[17].end 419.325
transcript.whisperx[17].text 那現在造成啊我記得好像Poeta有一個車型有一個車啦他就用一個車型他其實同一台車啦他用不同的規格車子就申請為四五種車型用這樣來鑽漏洞那你也是準啊
transcript.whisperx[18].start 424.085
transcript.whisperx[18].end 451.017
transcript.whisperx[18].text 你賣準跟委員報告他那個沒有專注因為我們是同意車同意這個規格車輛行駛我跟你講這個如果不是美國把它點出來說你台灣設一個貿易障礙我也不知道我也不知道我們有這麼多人我現在發現啦美方指責我們這個貿易障礙這有得力啊你憑什麼人就市長來決定啦對不對但其實日韓各國也都是那我跟你講喔你這樣的話對於
transcript.whisperx[19].start 454.27
transcript.whisperx[19].end 470.014
transcript.whisperx[19].text 你不要被旁邊人給影響美國沒有跟日本車 韓國車美國車是銷到日本 韓國美國沒有點出貿易障礙他只有特別點台灣你不要被旁邊的幕僚給你唬爛去還有 你要跟我們寫關稅對台灣的交通部對關稅的因應還有影響台灣有個產業會影響很大
transcript.whisperx[20].start 478.208
transcript.whisperx[20].end 497.464
transcript.whisperx[20].text 台灣沒有車子銷美國啦 幾乎沒有但台灣的汽車零組件 銷美國量很大啦台灣一年有1000多億的汽車零組件這是台灣非常重要的衛銷產業啦台灣非常強啦包括燈啦 輪框啦 輪壺 一大堆啦你現在如果美國用這樣的關稅齁那這個汽車零組件我們賺的
transcript.whisperx[21].start 499.728
transcript.whisperx[21].end 522.453
transcript.whisperx[21].text 你裡面連寫也沒寫到報告員這是在經濟部的報告裡面那跟你交通部沒關係嗎對不對零組件的產業不是我的產業這些也是我們交通部車輛的零組件嘛照你寫各位可以看一下交通部寫的這個報告跟美國關稅跟交通部一樣應用也沒有你寫起來是毫無影響啊那我再告訴你你躲了好幾天啊
transcript.whisperx[22].start 526.052
transcript.whisperx[22].end 554.774
transcript.whisperx[22].text 去美方點名我們的汽車貿易障礙要出來回答這個問題的是交通部啦財政部講的是關稅 那沒有錯我去談經濟部有去談你的關稅或是稅那你交通部要出來回答這個問題嘛你告訴我台灣是很少見的來 你去查一下美國對這幾十個主要貿易國家有提到汽車台灣大概是唯一啦
transcript.whisperx[23].start 555.816
transcript.whisperx[23].end 572.174
transcript.whisperx[23].text 其他國家我沒有看到你說日本 韓國沒有啦美方沒有認為他美國撤資到日本 韓國有什麼障礙只有點名我們台灣點名就是這個問題這個其實不合理啦那如果沒有美國來點名的話其實沒人知道他們也是照幹啦
transcript.whisperx[24].start 572.955
transcript.whisperx[24].end 580.669
transcript.whisperx[24].text 你旁邊那些他們什麼相關單位報告委員第一時間我們已經跟行政院那邊都有溝通我知道因為美國都跟你講了他還沒講我們就再處理了好謝謝主席啦謝謝部長謝謝委員