iVOD / 160208

Field Value
IVOD_ID 160208
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160208
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-19-9
會議資料.會議代碼:str 第11屆第3會期經濟委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第9次全體委員會議
影片種類 Clip
開始時間 2025-04-16T10:51:19+08:00
結束時間 2025-04-16T11:01:26+08:00
影片長度 00:10:07
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279df33d43b174e557a5ab2710058b23c04f8ebda33721556222a3f1c478c5b52ad615ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 謝衣鳯
委員發言時間 10:51:19 - 11:01:26
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第9次全體委員會議議程(事由:邀請國家發展委員會主任委員、經濟部部長及財政部首長就「因應國際貿易情勢變化,如何協助國內廠商擴大國際市場」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 8.63721875
transcript.pyannote[0].end 15.85971875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 20.61846875
transcript.pyannote[1].end 28.38096875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 28.24596875
transcript.pyannote[2].end 31.06409375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 29.47784375
transcript.pyannote[3].end 29.91659375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 30.47346875
transcript.pyannote[4].end 33.22409375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 34.38846875
transcript.pyannote[5].end 51.76971875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 52.12409375
transcript.pyannote[6].end 53.33909375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 54.16596875
transcript.pyannote[7].end 62.36721875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 62.58659375
transcript.pyannote[8].end 63.07596875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 63.27846875
transcript.pyannote[9].end 73.58909375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 68.25659375
transcript.pyannote[10].end 68.49284375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 73.74096875
transcript.pyannote[11].end 95.29034375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 80.65971875
transcript.pyannote[12].end 80.77784375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 80.87909375
transcript.pyannote[13].end 81.08159375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 96.13409375
transcript.pyannote[14].end 122.57721875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 122.96534375
transcript.pyannote[15].end 129.07409375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 129.64784375
transcript.pyannote[16].end 139.77284375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 135.95909375
transcript.pyannote[17].end 136.34721875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 140.46471875
transcript.pyannote[18].end 155.95596875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 156.54659375
transcript.pyannote[19].end 161.10284375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 161.23784375
transcript.pyannote[20].end 173.74221875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 174.23159375
transcript.pyannote[21].end 183.12471875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 183.42846875
transcript.pyannote[22].end 188.13659375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 188.33909375
transcript.pyannote[23].end 195.96659375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 196.21971875
transcript.pyannote[24].end 199.86471875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 200.15159375
transcript.pyannote[25].end 203.22284375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 203.47596875
transcript.pyannote[26].end 206.64846875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 206.85096875
transcript.pyannote[27].end 215.33909375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 215.33909375
transcript.pyannote[28].end 215.69346875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 215.40659375
transcript.pyannote[29].end 215.42346875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 215.54159375
transcript.pyannote[30].end 221.00909375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 222.05534375
transcript.pyannote[31].end 225.64971875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 225.95346875
transcript.pyannote[32].end 227.89409375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 228.51846875
transcript.pyannote[33].end 229.02471875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 229.53096875
transcript.pyannote[34].end 229.91909375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 230.10471875
transcript.pyannote[35].end 231.25221875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 231.38721875
transcript.pyannote[36].end 236.02784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 236.41596875
transcript.pyannote[37].end 243.16596875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 243.23346875
transcript.pyannote[38].end 243.26721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 243.26721875
transcript.pyannote[39].end 243.53721875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 243.46971875
transcript.pyannote[40].end 249.35909375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 249.74721875
transcript.pyannote[41].end 251.09721875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 251.09721875
transcript.pyannote[42].end 268.86659375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 262.77471875
transcript.pyannote[43].end 263.06159375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 268.86659375
transcript.pyannote[44].end 292.82909375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 271.21221875
transcript.pyannote[45].end 272.00534375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 273.42284375
transcript.pyannote[46].end 276.39284375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 278.63721875
transcript.pyannote[47].end 280.34159375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 292.96409375
transcript.pyannote[48].end 305.08034375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 304.99596875
transcript.pyannote[49].end 334.76346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 335.11784375
transcript.pyannote[50].end 358.62471875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 335.74221875
transcript.pyannote[51].end 336.28221875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 338.77971875
transcript.pyannote[52].end 339.06659375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 342.82971875
transcript.pyannote[53].end 342.96471875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 342.96471875
transcript.pyannote[54].end 343.40346875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 343.40346875
transcript.pyannote[55].end 345.83346875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 347.53784375
transcript.pyannote[56].end 348.06096875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 352.58346875
transcript.pyannote[57].end 353.19096875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 354.27096875
transcript.pyannote[58].end 354.52409375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 359.89034375
transcript.pyannote[59].end 360.56534375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 365.61096875
transcript.pyannote[60].end 368.96909375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 369.35721875
transcript.pyannote[61].end 370.36971875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 371.29784375
transcript.pyannote[62].end 373.32284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 373.98096875
transcript.pyannote[63].end 377.23784375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 377.50784375
transcript.pyannote[64].end 379.51596875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 379.87034375
transcript.pyannote[65].end 388.25721875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 388.32471875
transcript.pyannote[66].end 398.61846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 398.61846875
transcript.pyannote[67].end 399.09096875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 399.09096875
transcript.pyannote[68].end 411.51096875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 411.81471875
transcript.pyannote[69].end 425.58471875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 425.61846875
transcript.pyannote[70].end 429.60096875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 430.15784375
transcript.pyannote[71].end 437.86971875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 438.44346875
transcript.pyannote[72].end 445.51409375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 447.50534375
transcript.pyannote[73].end 451.01534375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 449.66534375
transcript.pyannote[74].end 455.30159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 451.92659375
transcript.pyannote[75].end 452.50034375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 453.22596875
transcript.pyannote[76].end 453.86721875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 457.00596875
transcript.pyannote[77].end 458.23784375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 458.65971875
transcript.pyannote[78].end 459.68909375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 460.11096875
transcript.pyannote[79].end 463.23284375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 463.58721875
transcript.pyannote[80].end 464.00909375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 464.90346875
transcript.pyannote[81].end 465.91596875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 467.92409375
transcript.pyannote[82].end 467.95784375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 467.95784375
transcript.pyannote[83].end 467.97471875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 467.97471875
transcript.pyannote[84].end 468.53159375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 468.53159375
transcript.pyannote[85].end 470.03346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 468.58221875
transcript.pyannote[86].end 468.83534375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 468.83534375
transcript.pyannote[87].end 468.90284375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 468.90284375
transcript.pyannote[88].end 468.97034375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 468.97034375
transcript.pyannote[89].end 469.17284375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 469.24034375
transcript.pyannote[90].end 469.42596875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 470.16846875
transcript.pyannote[91].end 470.82659375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 472.54784375
transcript.pyannote[92].end 473.23971875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 473.23971875
transcript.pyannote[93].end 473.27346875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 474.30284375
transcript.pyannote[94].end 484.69784375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 481.39034375
transcript.pyannote[95].end 481.99784375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 485.71034375
transcript.pyannote[96].end 487.12784375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 488.41034375
transcript.pyannote[97].end 491.73471875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 492.15659375
transcript.pyannote[98].end 493.89471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 494.90721875
transcript.pyannote[99].end 501.21846875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 501.42096875
transcript.pyannote[100].end 502.31534375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 502.48409375
transcript.pyannote[101].end 503.09159375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 503.42909375
transcript.pyannote[102].end 510.26346875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 510.71909375
transcript.pyannote[103].end 511.64721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 512.59221875
transcript.pyannote[104].end 516.42284375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 517.38471875
transcript.pyannote[105].end 518.97096875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 518.05971875
transcript.pyannote[106].end 532.48784375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 526.42971875
transcript.pyannote[107].end 526.95284375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 532.65659375
transcript.pyannote[108].end 542.69721875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 542.56221875
transcript.pyannote[109].end 547.40534375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 547.69221875
transcript.pyannote[110].end 552.01221875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 547.72596875
transcript.pyannote[111].end 548.26596875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 551.89409375
transcript.pyannote[112].end 554.57721875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 554.39159375
transcript.pyannote[113].end 554.67846875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 554.67846875
transcript.pyannote[114].end 564.41534375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 564.66846875
transcript.pyannote[115].end 571.50284375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 571.75596875
transcript.pyannote[116].end 576.43034375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 576.46409375
transcript.pyannote[117].end 576.48096875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 576.48096875
transcript.pyannote[118].end 581.96534375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 579.78846875
transcript.pyannote[119].end 583.21409375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 583.36596875
transcript.pyannote[120].end 586.38659375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 587.16284375
transcript.pyannote[121].end 587.75346875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 588.41159375
transcript.pyannote[122].end 589.64346875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 589.86284375
transcript.pyannote[123].end 602.83971875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 596.41034375
transcript.pyannote[124].end 596.83221875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 603.36284375
transcript.pyannote[125].end 603.44721875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 603.44721875
transcript.pyannote[126].end 603.48096875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 603.48096875
transcript.pyannote[127].end 603.68346875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 603.68346875
transcript.pyannote[128].end 605.10096875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 604.37534375
transcript.pyannote[129].end 604.96596875
transcript.whisperx[0].start 9.006
transcript.whisperx[0].end 30.699
transcript.whisperx[0].text 謝謝主席 我想要請國發會的劉主委跟財政部的理事長請劉主委 理事長主委 你剛才在報告的時候 你有提到就是美國其實占全球市場只有大概是1.3成左右進口的市場 貨品進口 不含服務
transcript.whisperx[1].start 34.631
transcript.whisperx[1].end 52.999
transcript.whisperx[1].text 這是財政部的資料嘛 沒有錯嘛那我國對主要國家出口的金額我們看到了是中國大陸 美國還有東協佔前三名嘛那第一名就是中國大陸那在我們不要
transcript.whisperx[2].start 54.212
transcript.whisperx[2].end 73.272
transcript.whisperx[2].text 就是中國大陸與美國的其他市場請問劉主委我們應該從哪裡來擴大我國的出口市場跟委員報告其實全球的市場是在滾動的在不同的國家在不同的時間會有不同的建設跟不同的方案
transcript.whisperx[3].start 74.293
transcript.whisperx[3].end 94.454
transcript.whisperx[3].text 譬如說在五年前美國對於這個智慧醫療非常的重視那個市場就會起來那智慧醫療補助結束市場就會下去那歐洲其實在這幾年在通訊上面會起來那包括最近像以攻擊力最近比較大的市場會比較崛起的市場是印度跟土耳其那其實
transcript.whisperx[4].start 96.32
transcript.whisperx[4].end 112.283
transcript.whisperx[4].text 我們的產業必須依據不同產業所發展的地方來進行這個市場的攻略才會比較有效率因為它是一個起落的起起落落的狀態那我們沒辦法說現在哪一個市場就是主市場
transcript.whisperx[5].start 112.924
transcript.whisperx[5].end 139.46
transcript.whisperx[5].text 要依據產業的特性跟那個產業在明年跟今年的變化來選擇所以我們的主張是希望透過冒險去掌握到市場的趨勢變化去讓廠商知道現在市場在哪些地方崛起的比較快譬如說現在在北非跟東非其實在建築市場是起來的比較快那要掌握這樣的一個訊息才有辦法掌握真正的市場
transcript.whisperx[6].start 140.503
transcript.whisperx[6].end 153.168
transcript.whisperx[6].text 但是我們知道我們如果根據這個表來看我們看到東協其實在這一次對美的關稅裡面我們有非常多的廠商也在東協的國家裡面
transcript.whisperx[7].start 156.601
transcript.whisperx[7].end 173.564
transcript.whisperx[7].text 我們知道了在關稅的談判對於我國的產業有利的情況下就是第一個就是對於其他主要的競爭國家我們對美談判的時候必須要比他們的關稅更優惠是不是
transcript.whisperx[8].start 174.998
transcript.whisperx[8].end 199.203
transcript.whisperx[8].text 如果就市場的攻略倒不再是跟美國的談判而是我們跟東協之間的關稅的問題那第二個事情是我們要從做去做工廠變成做市場我們過去以東協來講多半是以東協作為工廠那我們希望將來他也可以把東協作為市場那他要在策略上必須進行一些轉變
transcript.whisperx[9].start 200.239
transcript.whisperx[9].end 220.453
transcript.whisperx[9].text 所以你會你認為我們應該要協助我們的廠商在東協裡面擴大市場嗎我們其實兩個步驟一個步驟是美國的主市場怎麼協助台商能夠在美國的市場取得比較好的地位第二個事情在美國以外的市場如何分散風險我們希望協助他們去分散風險
transcript.whisperx[10].start 223.017
transcript.whisperx[10].end 249.137
transcript.whisperx[10].text 你看到我們現在日本跟歐洲的市場全部都下降了是不是出口都下降了那未來我們怎麼樣是因為匯率的問題嗎還是什麼其他因素這個必須依據產業別來看它升降的因素有些是升有些是降那我們降要解決降的理由然後升的話要掌握升的機會再往上走
transcript.whisperx[11].start 250.05
transcript.whisperx[11].end 267.518
transcript.whisperx[11].text 那怎麼樣解決呢這個還是要去切割到產業別我們在產業有一個名字叫GMV叫Growth Market Value就在談其實全球都會分析出來在不同的產業在不同的國家每一年這塊的市場是成長還是下降我們只要掌握到這個數據就可以去去執行
transcript.whisperx[12].start 268.939
transcript.whisperx[12].end 272.742
transcript.whisperx[12].text 那我們具體的方向當然產業別會有差異但是我們具體的方向我們可以怎麼樣子擴大對歐洲或者是其他的東協國家我們怎麼樣子擴大我們廠商在那些國家的利基點
transcript.whisperx[13].start 290.934
transcript.whisperx[13].end 303.13
transcript.whisperx[13].text 怎麼樣子可以讓我們台灣的整個全球的市場整體擴大你總要有目標嘛不能夠永遠都在這裡說各個產業別上上下下上上下下那我們的目標在哪裡啊委員講的是對的所以我們現在才開始在
transcript.whisperx[14].start 311.259
transcript.whisperx[14].end 334.497
transcript.whisperx[14].text 才开始要去建立这样的一个资讯提供给厂商做参考这个我上周已经请我们同仁开始进行规划但是要进入一个的新市场除了建立通路之外还有受到法规的影响包括整个通路的影响的建立所以我们第二步会来协助建立通路的能力让厂商有能力去进行这个新市场的开发
transcript.whisperx[15].start 335.208
transcript.whisperx[15].end 358.241
transcript.whisperx[15].text 好 谢谢你都没有给次长讲到话人家次长对于关税的资料也掌握得非常清楚你们都没有借重一下我们都已经有激光相关的资料提供给经济部对 你都没有借重一下次长的相关你们都没有做横向的联系吗没有 我们一直都有横向的联系谢谢那次长请回我们再请郭部长请郭部长
transcript.whisperx[16].start 365.646
transcript.whisperx[16].end 391.736
transcript.whisperx[16].text 主委部長我想請問一下貝森特他點名這五個國家是先談關稅的國家這樣子對我們是好還是不好美國他說了如果先談判者就有先行的優勢那請問這樣子對我們來說是好還是不好報告委員我想在這個地方我再一次跟委員報告
transcript.whisperx[17].start 393.296
transcript.whisperx[17].end 410.751
transcript.whisperx[17].text 我們在4月11號已經跟美方來做了諮商了所以我們是在這個第一他們你剛才都講了這個第一批的前一批我們就已經進入了那我們在那個談判的內容裡面談的是對等的關稅
transcript.whisperx[18].start 411.932
transcript.whisperx[18].end 437.913
transcript.whisperx[18].text 跟非关税贸易障碍以及出国管制等等这些多项经贸的议题这最起码我们跟美国说我要跟你谈判的就这些议题美方大概到目前为止他们也同意跟我们谈这些问题所以谈判我跟你们报告谈判不管是怎么样子所有的谈判一定经过三个阶段第一个阶段确定我们要谈什么
transcript.whisperx[19].start 438.473
transcript.whisperx[19].end 463.786
transcript.whisperx[19].text 好 在那一次的會談當中 即便你沒有參與我要問的是 美方有沒有給我們清單這個我不是談判小組你不是談判小組啊 你要掌握啊 你們兩個總不能都沒有掌握劉主委你有沒有掌握我們沒有參與談判所以你也不知道 美方有沒有給我們待解決的清單 有沒有這個我不清楚
transcript.whisperx[20].start 469.691
transcript.whisperx[20].end 486.901
transcript.whisperx[20].text 國貿署也不清楚他也不知道這表示說我們之間大家在談的都是非常的聚焦了沒有衍生新的命題了所以我們也沒有收到新的指示那我要再問的是
transcript.whisperx[21].start 488.462
transcript.whisperx[21].end 507.736
transcript.whisperx[21].text 川普總統他在他的Twitter宣布揮打會擴大在美國的投資以及他是跟5家台積電以外的5家公司他們會就是在美國發展AI5000億的AI基礎設施會不會加劇這個半導體供應鏈向美移動
transcript.whisperx[22].start 518.256
transcript.whisperx[22].end 542.519
transcript.whisperx[22].text 跟委員報告這個正好說明了我們跟美國供應鏈是一體的那對台商而言會增加商業機會因為投資的只是一個過程是一個手段手段要達到的目的是商機所以呢這500個billion的商機對台灣台商而言是一個巨大商機可取得的所以呢我是我們是很正向的看這件事情
transcript.whisperx[23].start 542.619
transcript.whisperx[23].end 564.12
transcript.whisperx[23].text 那半導體供應鏈會不會向美國移動中下游整個帶過去這個對台灣整個供應鏈大家都很緊張產業跟著商業機會走不會造成產業的技術流失這個是台灣過去這30年40年來的全球化過程中都掌握得很清楚
transcript.whisperx[24].start 564.801
transcript.whisperx[24].end 581.465
transcript.whisperx[24].text 那這點委員是可以放心的因為每一個企業對自己的機密一定有一套獨到的方法去守住它因為這是它的生命競爭力只要總部在這裡就不會變化那輝達呢 輝達 對 總部嘛輝達總部在這裡 所以輝達的技術也在他手上所以輝達未來在台灣的投資會不會暫緩
transcript.whisperx[25].start 589.912
transcript.whisperx[25].end 602.592
transcript.whisperx[25].text 您從這個案子可以看得出來我們台商跟輝達是一個完整的供應鏈整合是相當完美的那只是讓我們彼此共同對外來的發展鎖得更緊更有未來好 謝謝