iVOD / 160182

Field Value
IVOD_ID 160182
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160182
日期 2025-04-16
會議資料.會議代碼 委員會-11-3-20-8
會議資料.會議代碼:str 第11屆第3會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-04-16T09:38:27+08:00
結束時間 2025-04-16T09:51:53+08:00
影片長度 00:13:26
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279dfcdf55da0b19c4cc4a3fd8a5ba555e8259b98284df90a891ab209238ca8d807e35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:38:27 - 09:51:53
會議時間 2025-04-16T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第8次全體委員會議(事由:邀請財政部莊部長翠雲、經濟部、農業部及公平交易委員會就「防範中國大陸產品低價傾銷及透過台灣洗產地問題之因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 8.89034375
transcript.pyannote[0].end 11.94471875
transcript.pyannote[1].speaker SPEAKER_04
transcript.pyannote[1].start 12.45096875
transcript.pyannote[1].end 14.99909375
transcript.pyannote[2].speaker SPEAKER_04
transcript.pyannote[2].start 15.64034375
transcript.pyannote[2].end 16.39971875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 21.29346875
transcript.pyannote[3].end 23.63909375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 24.36471875
transcript.pyannote[4].end 27.46971875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 27.95909375
transcript.pyannote[5].end 40.71659375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 41.22284375
transcript.pyannote[6].end 42.08346875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 42.77534375
transcript.pyannote[7].end 46.57221875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 47.29784375
transcript.pyannote[8].end 48.37784375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 48.98534375
transcript.pyannote[9].end 49.60971875
transcript.pyannote[10].speaker SPEAKER_06
transcript.pyannote[10].start 51.90471875
transcript.pyannote[10].end 60.56159375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 59.24534375
transcript.pyannote[11].end 66.68721875
transcript.pyannote[12].speaker SPEAKER_06
transcript.pyannote[12].start 60.83159375
transcript.pyannote[12].end 61.62471875
transcript.pyannote[13].speaker SPEAKER_06
transcript.pyannote[13].start 63.90284375
transcript.pyannote[13].end 65.50596875
transcript.pyannote[14].speaker SPEAKER_06
transcript.pyannote[14].start 66.90659375
transcript.pyannote[14].end 67.39596875
transcript.pyannote[15].speaker SPEAKER_06
transcript.pyannote[15].start 67.95284375
transcript.pyannote[15].end 68.88096875
transcript.pyannote[16].speaker SPEAKER_06
transcript.pyannote[16].start 69.13409375
transcript.pyannote[16].end 75.49596875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 74.78721875
transcript.pyannote[17].end 81.99284375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 82.61721875
transcript.pyannote[18].end 83.49471875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 83.62971875
transcript.pyannote[19].end 87.69659375
transcript.pyannote[20].speaker SPEAKER_06
transcript.pyannote[20].start 88.42221875
transcript.pyannote[20].end 96.96096875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 95.86409375
transcript.pyannote[21].end 109.27971875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 111.32159375
transcript.pyannote[22].end 112.89096875
transcript.pyannote[23].speaker SPEAKER_06
transcript.pyannote[23].start 112.89096875
transcript.pyannote[23].end 113.36346875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 113.34659375
transcript.pyannote[24].end 115.89471875
transcript.pyannote[25].speaker SPEAKER_06
transcript.pyannote[25].start 113.38034375
transcript.pyannote[25].end 113.63346875
transcript.pyannote[26].speaker SPEAKER_06
transcript.pyannote[26].start 116.09721875
transcript.pyannote[26].end 117.24471875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 116.75534375
transcript.pyannote[27].end 124.01159375
transcript.pyannote[28].speaker SPEAKER_06
transcript.pyannote[28].start 124.18034375
transcript.pyannote[28].end 135.11534375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 131.84159375
transcript.pyannote[29].end 132.14534375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 135.52034375
transcript.pyannote[30].end 147.51846875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 147.92346875
transcript.pyannote[31].end 178.18034375
transcript.pyannote[32].speaker SPEAKER_06
transcript.pyannote[32].start 180.40784375
transcript.pyannote[32].end 189.18284375
transcript.pyannote[33].speaker SPEAKER_06
transcript.pyannote[33].start 189.28409375
transcript.pyannote[33].end 200.25284375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 194.81909375
transcript.pyannote[34].end 195.17346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 200.53971875
transcript.pyannote[35].end 202.58159375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 202.96971875
transcript.pyannote[36].end 210.42846875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 210.91784375
transcript.pyannote[37].end 212.35221875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 213.12846875
transcript.pyannote[38].end 216.14909375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 216.72284375
transcript.pyannote[39].end 217.58346875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 217.85346875
transcript.pyannote[40].end 220.78971875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 221.21159375
transcript.pyannote[41].end 222.84846875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 223.18596875
transcript.pyannote[42].end 232.36596875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 233.02409375
transcript.pyannote[43].end 234.28971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 234.96471875
transcript.pyannote[44].end 239.57159375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 240.17909375
transcript.pyannote[45].end 242.82846875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 243.52034375
transcript.pyannote[46].end 244.68471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 245.17409375
transcript.pyannote[47].end 246.72659375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 247.46909375
transcript.pyannote[48].end 249.42659375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 250.40534375
transcript.pyannote[49].end 252.56534375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 253.13909375
transcript.pyannote[50].end 253.40909375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 253.52721875
transcript.pyannote[51].end 258.79221875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 259.02846875
transcript.pyannote[52].end 265.81221875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 266.08221875
transcript.pyannote[53].end 271.66784375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 271.73534375
transcript.pyannote[54].end 274.40159375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 274.48596875
transcript.pyannote[55].end 283.86846875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 284.02034375
transcript.pyannote[56].end 285.65721875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 285.84284375
transcript.pyannote[57].end 295.64721875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 296.44034375
transcript.pyannote[58].end 300.23721875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 300.38909375
transcript.pyannote[59].end 303.02159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 303.44346875
transcript.pyannote[60].end 305.14784375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 305.65409375
transcript.pyannote[61].end 307.69596875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 308.21909375
transcript.pyannote[62].end 310.19346875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 310.34534375
transcript.pyannote[63].end 311.56034375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 312.40409375
transcript.pyannote[64].end 313.58534375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 314.20971875
transcript.pyannote[65].end 314.88471875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 315.27284375
transcript.pyannote[66].end 320.87534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 321.22971875
transcript.pyannote[67].end 322.88346875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 323.27159375
transcript.pyannote[68].end 324.33471875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 325.00971875
transcript.pyannote[69].end 335.18534375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 336.82221875
transcript.pyannote[70].end 342.25596875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 342.59346875
transcript.pyannote[71].end 344.51721875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 346.81221875
transcript.pyannote[72].end 350.77784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 350.25471875
transcript.pyannote[73].end 356.21159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 356.29596875
transcript.pyannote[74].end 360.95346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 359.92409375
transcript.pyannote[75].end 362.26971875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 362.67471875
transcript.pyannote[76].end 365.83034375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 366.89346875
transcript.pyannote[77].end 367.06221875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 367.06221875
transcript.pyannote[78].end 369.10409375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 367.07909375
transcript.pyannote[79].end 367.66971875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 369.10409375
transcript.pyannote[80].end 372.47909375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 372.54659375
transcript.pyannote[81].end 380.10659375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 377.52471875
transcript.pyannote[82].end 402.44909375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 403.57971875
transcript.pyannote[83].end 411.10596875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 410.61659375
transcript.pyannote[84].end 448.33221875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 412.75971875
transcript.pyannote[85].end 412.87784375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 449.39534375
transcript.pyannote[86].end 449.83409375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 449.91846875
transcript.pyannote[87].end 450.32346875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 450.84659375
transcript.pyannote[88].end 460.70159375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 461.00534375
transcript.pyannote[89].end 462.62534375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 463.85721875
transcript.pyannote[90].end 465.51096875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 465.61221875
transcript.pyannote[91].end 466.92846875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 467.99159375
transcript.pyannote[92].end 469.29096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 469.61159375
transcript.pyannote[93].end 470.96159375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 471.63659375
transcript.pyannote[94].end 472.54784375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 473.61096875
transcript.pyannote[95].end 477.28971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 477.67784375
transcript.pyannote[96].end 479.95596875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 481.01909375
transcript.pyannote[97].end 481.76159375
transcript.pyannote[98].speaker SPEAKER_04
transcript.pyannote[98].start 481.30596875
transcript.pyannote[98].end 482.36909375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 483.85409375
transcript.pyannote[99].end 485.30534375
transcript.pyannote[100].speaker SPEAKER_04
transcript.pyannote[100].start 486.33471875
transcript.pyannote[100].end 486.67221875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 486.67221875
transcript.pyannote[101].end 490.62096875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 490.97534375
transcript.pyannote[102].end 497.94471875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 498.97409375
transcript.pyannote[103].end 499.49721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 500.10471875
transcript.pyannote[104].end 501.18471875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 501.82596875
transcript.pyannote[105].end 503.19284375
transcript.pyannote[106].speaker SPEAKER_05
transcript.pyannote[106].start 503.66534375
transcript.pyannote[106].end 508.35659375
transcript.pyannote[107].speaker SPEAKER_05
transcript.pyannote[107].start 508.62659375
transcript.pyannote[107].end 509.68971875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 508.89659375
transcript.pyannote[108].end 515.12346875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 515.42721875
transcript.pyannote[109].end 517.53659375
transcript.pyannote[110].speaker SPEAKER_05
transcript.pyannote[110].start 517.60409375
transcript.pyannote[110].end 522.58221875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 520.96221875
transcript.pyannote[111].end 521.92409375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 522.71721875
transcript.pyannote[112].end 526.27784375
transcript.pyannote[113].speaker SPEAKER_05
transcript.pyannote[113].start 525.61971875
transcript.pyannote[113].end 527.96534375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 526.48034375
transcript.pyannote[114].end 530.74971875
transcript.pyannote[115].speaker SPEAKER_05
transcript.pyannote[115].start 530.09159375
transcript.pyannote[115].end 535.33971875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 535.33971875
transcript.pyannote[116].end 539.06909375
transcript.pyannote[117].speaker SPEAKER_05
transcript.pyannote[117].start 535.35659375
transcript.pyannote[117].end 535.50846875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 540.19971875
transcript.pyannote[118].end 540.68909375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 540.99284375
transcript.pyannote[119].end 541.39784375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 541.41471875
transcript.pyannote[120].end 546.46034375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 547.01721875
transcript.pyannote[121].end 548.72159375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 548.97471875
transcript.pyannote[122].end 550.22346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 550.47659375
transcript.pyannote[123].end 550.93221875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 551.33721875
transcript.pyannote[124].end 552.65346875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 552.92346875
transcript.pyannote[125].end 554.93159375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 555.82596875
transcript.pyannote[126].end 559.69034375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 560.12909375
transcript.pyannote[127].end 561.19221875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 562.01909375
transcript.pyannote[128].end 564.09471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 565.41096875
transcript.pyannote[129].end 567.28409375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 568.02659375
transcript.pyannote[130].end 575.83971875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 576.71721875
transcript.pyannote[131].end 577.91534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 579.72096875
transcript.pyannote[132].end 586.99409375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 587.63534375
transcript.pyannote[133].end 593.89596875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 594.14909375
transcript.pyannote[134].end 595.04346875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 595.49909375
transcript.pyannote[135].end 598.67159375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 599.26221875
transcript.pyannote[136].end 601.84409375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 602.45159375
transcript.pyannote[137].end 604.84784375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 605.70846875
transcript.pyannote[138].end 610.48409375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 610.70346875
transcript.pyannote[139].end 614.38221875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 615.41159375
transcript.pyannote[140].end 617.97659375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 620.15346875
transcript.pyannote[141].end 631.39221875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 632.11784375
transcript.pyannote[142].end 636.42096875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 637.60221875
transcript.pyannote[143].end 639.15471875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 639.98159375
transcript.pyannote[144].end 640.92659375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 641.33159375
transcript.pyannote[145].end 643.18784375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 644.14971875
transcript.pyannote[146].end 644.45346875
transcript.pyannote[147].speaker SPEAKER_06
transcript.pyannote[147].start 645.90471875
transcript.pyannote[147].end 655.35471875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 653.51534375
transcript.pyannote[148].end 655.84409375
transcript.pyannote[149].speaker SPEAKER_06
transcript.pyannote[149].start 655.67534375
transcript.pyannote[149].end 655.96221875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 655.96221875
transcript.pyannote[150].end 660.13034375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 660.92346875
transcript.pyannote[151].end 663.06659375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 664.11284375
transcript.pyannote[152].end 665.26034375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 669.76596875
transcript.pyannote[153].end 670.76159375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 676.02659375
transcript.pyannote[154].end 680.65034375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 682.74284375
transcript.pyannote[155].end 684.68346875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 684.68346875
transcript.pyannote[156].end 687.95721875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 687.95721875
transcript.pyannote[157].end 689.08784375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 689.42534375
transcript.pyannote[158].end 696.58034375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 693.34034375
transcript.pyannote[159].end 695.21346875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 696.98534375
transcript.pyannote[160].end 698.85846875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 698.87534375
transcript.pyannote[161].end 700.54596875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 699.98909375
transcript.pyannote[162].end 701.38971875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 702.03096875
transcript.pyannote[163].end 704.46096875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 705.60846875
transcript.pyannote[164].end 707.97096875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 708.34221875
transcript.pyannote[165].end 723.32721875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 724.13721875
transcript.pyannote[166].end 726.70221875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 727.36034375
transcript.pyannote[167].end 728.20409375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 729.28409375
transcript.pyannote[168].end 730.97159375
transcript.pyannote[169].speaker SPEAKER_06
transcript.pyannote[169].start 730.97159375
transcript.pyannote[169].end 750.24284375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 738.83534375
transcript.pyannote[170].end 740.25284375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 740.43846875
transcript.pyannote[171].end 740.57346875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 749.73659375
transcript.pyannote[172].end 757.06034375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 756.45284375
transcript.pyannote[173].end 764.87346875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 764.80596875
transcript.pyannote[174].end 769.78409375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 770.23971875
transcript.pyannote[175].end 774.57659375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 775.21784375
transcript.pyannote[176].end 776.33159375
transcript.pyannote[177].speaker SPEAKER_06
transcript.pyannote[177].start 777.19221875
transcript.pyannote[177].end 778.71096875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 777.93471875
transcript.pyannote[178].end 780.33096875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 780.76971875
transcript.pyannote[179].end 780.78659375
transcript.pyannote[180].speaker SPEAKER_06
transcript.pyannote[180].start 780.78659375
transcript.pyannote[180].end 781.02284375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 781.02284375
transcript.pyannote[181].end 786.74346875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 786.96284375
transcript.pyannote[182].end 789.22409375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 789.22409375
transcript.pyannote[183].end 789.96659375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 789.96659375
transcript.pyannote[184].end 790.57409375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 790.57409375
transcript.pyannote[185].end 790.60784375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 790.87784375
transcript.pyannote[186].end 791.89034375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 791.62034375
transcript.pyannote[187].end 791.63721875
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 791.63721875
transcript.pyannote[188].end 799.02846875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 791.89034375
transcript.pyannote[189].end 791.90721875
transcript.pyannote[190].speaker SPEAKER_03
transcript.pyannote[190].start 799.09596875
transcript.pyannote[190].end 806.25096875
transcript.whisperx[0].start 8.942
transcript.whisperx[0].end 11.671
transcript.whisperx[0].text 主席麻煩請財政部莊部長經濟部江次長好財政部莊部長經濟部江次長
transcript.whisperx[1].start 22.209
transcript.whisperx[1].end 45.767
transcript.whisperx[1].text 首先請教 關入署出口的統計是以出口地為標準的比如說貨物實際裝船到美國這樣子但是美國的海關的計算方法是不一樣他是以進口來原國或是最多目的地為準這兩個定義不同 那如何在統計數據上如何去協調
transcript.whisperx[2].start 52.263
transcript.whisperx[2].end 66.222
transcript.whisperx[2].text 這個部分確實在統計數上會有不同比如說我們是以出口當時的離岸的價格那他們是用什麼樣的價格不是只有價格喔我剛剛講的是一個是出口地一個是進口來源國跟最終目的地
transcript.whisperx[3].start 68.184
transcript.whisperx[3].end 86.191
transcript.whisperx[3].text 會有不同都會相互的釐清另外就是說還有一個時間差的問題還有時間差這裡面是不是會造成民國113年台灣對美國的出口暴增到1000多億增加了46.1%跟上一年增加46.1%跟這個有沒有關係啊
transcript.whisperx[4].start 88.939
transcript.whisperx[4].end 100.85
transcript.whisperx[4].text 我想這個部分當然因為計算的方式不同但他是用分子分母兩個都加的話他的分子都是增加其實美國認為台灣去年對他順超是379億美金可是台灣本身的統計我們的這個粗糙是649億就中間就差了90億美金啊
transcript.whisperx[5].start 111.563
transcript.whisperx[5].end 134.942
transcript.whisperx[5].text 這個金額就不一樣啊那是不是因為定義不一樣所以造成的會有差距那我們是不是應該要跟美國來好好的協商說這個到底要怎麼統計才能夠大家用一致的標準呢當然我想委員所提的這個部分我們可以把資料準備給我們經貿小組在談判的時候可以做一個說明也就是說金額上的一些我們統計上的不同的地方
transcript.whisperx[6].start 136.02
transcript.whisperx[6].end 157.786
transcript.whisperx[6].text 提醒你美國針對產品的原料還有製造如果有35%是來自中國他就會認定是Made in China就是中國製造而他中國製造的關稅是比較高的到145%被宣布是這樣但是台灣針對附加價值我們如果製造附加價值超過35%我們就是認為是台灣製造
transcript.whisperx[7].start 161.247
transcript.whisperx[7].end 177.556
transcript.whisperx[7].text 這中間就有落差我們想想看如果一個美國我們要出口去美國的產品從中國進口原料50%然後我們台灣加工50%它的價值然後出口去美國那這樣到底算是台灣製造還是算是中國製造
transcript.whisperx[8].start 180.658
transcript.whisperx[8].end 198.856
transcript.whisperx[8].text 這個部分我們對於原產地的核發經濟部這邊有一定相關的規定什麼樣的情況下可以發MIT這樣的一個原產地證明那至於美國它這樣的一個標準以及所謂的含中成分的問題就是說你的比例是多少是不是用什麼樣的課稅我想這部分是不是可以請經濟部來做說
transcript.whisperx[9].start 200.595
transcript.whisperx[9].end 215.926
transcript.whisperx[9].text 那麼次長你也聽得懂我在問什麼嗎我們台灣現在自己的標準說我們無論原料從哪裡來只要在台灣製造負加價值超過35%以上就認為是台灣製造但是美國是這樣子美國進口到美國的產品
transcript.whisperx[10].start 216.807
transcript.whisperx[10].end 240.438
transcript.whisperx[10].text 如果裡面的原料有35%以上它的價值是來自中國的他就認為是中國製造那我假設現在有一個狀況就是有某一項產品我們從中國進口原料或是半成品來到台灣加工結果裡面中國的原料跟它的半成品價值是50%台灣這邊的附加價值增加50%
transcript.whisperx[11].start 243.581
transcript.whisperx[11].end 265.072
transcript.whisperx[11].text 以這個case而言台灣認為這是台灣製造但是美國認為這是中國製造那這中間這個矛盾要如何處理啊報告委員一個原產地的認定呢其實是進口國海關在認定您所提出的問題當然根據我們的規定是要有實質轉型也都是35%的轉變或者要稅率的這個稅號的轉換
transcript.whisperx[12].start 270.194
transcript.whisperx[12].end 294.948
transcript.whisperx[12].text 所以我們現在有建議我們的所有的出口廠商一定要跟他的客戶他的美國的進口商要保持密切連續去詢問美國海關的相關規定第二個呢美國海關有個預審的制度我們的這個客戶可以請我們的出口商可以請客戶呢把這個要進口的產品的相關的成分的內容請美國海關先做一個預審
transcript.whisperx[13].start 296.482
transcript.whisperx[13].end 311.381
transcript.whisperx[13].text 那這個是預審制度啊問題是我們台灣的規範就輸入美國的這一部分的產品要不要照美國的標準這樣的方式來修正啊不然的話我剛剛講那個case你還是沒有回答我
transcript.whisperx[14].start 312.455
transcript.whisperx[14].end 335.281
transcript.whisperx[14].text 在美國的定義原料跟半成品只要價值在超過35%以上是來自中國他就認為中國製造但是台灣的定義卻是無論原料還有這個半成品從哪裡來只要在台灣加工產生的附加價值超過35%就認為是台灣製造那我剛剛那個case剛好half and half
transcript.whisperx[15].start 336.852
transcript.whisperx[15].end 365.158
transcript.whisperx[15].text 台灣認為是台灣製造美國認為是中國製造這就剛好是美國認為你在替他洗產地啊在替中國洗產地不是嗎?相關的規定我們會再跟美國政府來做溝通我就說以剛剛我講的那個例子是不是就剛好美國政府就可以認為你台灣在幫中國洗產地這個部分的話要由美國來美國的海關來當你被美國海關認定你就慘啦你幫中國洗產地的時候台灣所有產品的關稅
transcript.whisperx[16].start 368.163
transcript.whisperx[16].end 382.447
transcript.whisperx[16].text 所以我們現在是積極的鼓勵要降低這個所有的產品的含中成分我們經濟部也會輔導相關的業者做所以我在今天再跟兩位溝通就是說我們台灣那個附加價值超過35%
transcript.whisperx[17].start 384.508
transcript.whisperx[17].end 401.341
transcript.whisperx[17].text 如果你是銷到別的國家去或許這我們可以定義問題是你銷美國的產品你的定義要跟美國海關採取接近或一致的標準這樣我們台灣才不會有這個危險啊我今天就是在跟你溝通這件事情啊那你贊不贊成這樣的講法呢
transcript.whisperx[18].start 403.649
transcript.whisperx[18].end 419.261
transcript.whisperx[18].text 所以我們一直有在鼓勵一定要降低他的產品有含中的成分這是經濟部一直在努力的方向我知道你剛剛已經有談過了你講的這個方式我也認同問題是你沒有回答到我的問題我們兩個的問題沒有在同一個平面上
transcript.whisperx[19].start 420.222
transcript.whisperx[19].end 448.404
transcript.whisperx[19].text 你要鼓勵大家盡量原料或是半成品盡量不要有含重的成分這我也贊成問題是你至少要跟美國要協同商量有相同的計算方法我們才有辦法有一致的標準我現在看你談的是相同的規範一致的標準而不是你在我也鼓勵我們應該要盡量往好的地方去啊但是這跟我剛剛跟你談的題目是兩件事情啦
transcript.whisperx[20].start 450.966
transcript.whisperx[20].end 470.5
transcript.whisperx[20].text 所以這個提供給你們參考啦另外這個稀產地的太陽喔剛剛也還包括農業部這很難定義的啦我舉個例子我們在海上台灣海峽抓到的漁獲假設是中國的漁船抓到了台灣的漁船抓到的啊在海上做交易然後拿到台灣來在這邊銷售
transcript.whisperx[21].start 473.629
transcript.whisperx[21].end 499.29
transcript.whisperx[21].text 那假設在這邊加工又出口去美國有沒有息產地的問題這也很難定義啊 農業部是不是來回答一下杜市長我剛剛的問題你有聽到水產的部分海上抓貨其實它本來沒有國籍但是中國旅船抓貨 台灣旅船抓貨不一樣如果在海上做交易然後把它運回來台灣然後再
transcript.whisperx[22].start 500.171
transcript.whisperx[22].end 510.399
transcript.whisperx[22].text 出口去美國會不會有棲產地的問題應該這樣說啦 那個棲產地不是我們自己的棲產地那不是我們的貨嘛 對不對對啊 問題是你也知道我們的棲產地在海淀館寫中國棲產地在海淀館寫寫寫有時候就在海淀館購入海巡視會去寫這個部分 不行就不行
transcript.whisperx[23].start 522.788
transcript.whisperx[23].end 527.794
transcript.whisperx[23].text 我當然知道不行啦 我的意思是說你這個有辦法很嚴格的來去處理這個事情不一定啦 境外要處理 國內要出口也是要來顧這個部分只有MIT才能叫MIT好 那你先請回 江次長也先請回
transcript.whisperx[24].start 540.233
transcript.whisperx[24].end 566.394
transcript.whisperx[24].text 部長我上次跟你諮詢的時候在跟你談到那個小額包裹的事情現在中國出現一種態樣大量的產品運到墨西哥去然後再用小額包裹分拆整個過去然後分拆用小額包裹進到美國去這樣給逃避關稅那我還是再次跟你強調小額包裹的免稅
transcript.whisperx[25].start 568.069
transcript.whisperx[25].end 575.417
transcript.whisperx[25].text 我知道有一些消費者因為他想要得到免稅的福利其實要向這裡澄清 稅金是賣的人要交的不是買方交的你賣方得到錢 買方得到貨物所以要交稅 當然是賣方的人要交
transcript.whisperx[26].start 587.694
transcript.whisperx[26].end 613.914
transcript.whisperx[26].text 但是他們都是貪圖說我一年有幾次可以稅額他是像這樣子去降低那個價格可是這對台灣的製造業者非常的不公平台灣的製造業者有貨物稅出廠之後還有交易稅然後他的公司獲利將來還有盈利事業所得稅分配股利到個人股東的時候還有綜合所得稅
transcript.whisperx[27].start 615.615
transcript.whisperx[27].end 636.409
transcript.whisperx[27].text 結果這些小荷包滾免稅進來通通不用了那再來就是加害給付的問題這上次我也跟你提過所以這部分拜託你一定要好好把關我們美國全部都希望製造業能夠重回美國了那台灣我們如果讓我們台灣的製造業者在一個不公平的競爭環境下那對台灣的業者是不公平的話是傷害台灣自身的產業
transcript.whisperx[28].start 645.979
transcript.whisperx[28].end 664.944
transcript.whisperx[28].text 是我知道委員一直對這個問題非常關注然後上次提案也要我們要提出一個報告這個部分我們會審慎的來最後問一個問題一個小問題請問西產地從第一次美中貿易戰爭之後開始強調就重視到現在請問抓到多少件罰了多少金額罰了多少金額
transcript.whisperx[29].start 676.275
transcript.whisperx[29].end 703.092
transcript.whisperx[29].text 這個是一年的價格一年還是從2018到現在應該是從2018到現在2018到現在抓到四十幾件罰了一百多萬報告委員這是自貿港區的部分因為它是依照自貿港區設置管理條例那還有其他還有貿易法的那多少貿易法的這個部分要貿易署這邊有所以我可以說部長今天來這邊報告寫的都很好看
transcript.whisperx[30].start 705.646
transcript.whisperx[30].end 725.685
transcript.whisperx[30].text 不要供給本地做不到一場戲啊這個事情會嚴重影響到台灣未來美國如果對台灣界定他關稅該繳多少這會影響到台灣重大的產業所以今天這件事情絕對不是在這邊說一說文章講一講寫一寫很漂亮自貿港區2018到現在7年啊
transcript.whisperx[31].start 729.352
transcript.whisperx[31].end 731.575
transcript.whisperx[31].text 40幾件100多萬你認為這有可能嗎我想這個部分也跟委員報告我們會擴大查查的範圍剛剛就是說原來我們是針對他301這個高關稅可不可以每兩個月或是三個月給財政委員一個報告說你們有查獲多少
transcript.whisperx[32].start 745.671
transcript.whisperx[32].end 752.775
transcript.whisperx[32].text 每兩個月提一個報告我們把我們各項的做法也可以提報對 要把你們已經查獲多少做的怎麼樣處罰做一個統計表統計數量給我們可以嗎可以 私貿港區的部分採訪是海關來採訪
transcript.whisperx[33].start 761.159
transcript.whisperx[33].end 771.502
transcript.whisperx[33].text 那貿易法的部分要請貿易署這邊協助來統計數據對啊 我經濟部那邊有聽到啊這個也要一起做啊最後再一個問題說你們報告裡面講說鼓勵民眾檢舉有沒有考慮給獎金
transcript.whisperx[34].start 778.225
transcript.whisperx[34].end 804.985
transcript.whisperx[34].text 市產地抓獲有罰款嘛那對於檢舉的這個民眾有沒有給獎金 增加誘因啊不然干我什麼事 我為什麼要去檢舉報告委員 這部分我們來研議看看好 研議喔 好 謝謝好 謝謝委員好 那個市產地就是檢舉人那個給獎金這個要研擬兩個月那個就是會籍就是提供給那個財政委員會必要的一個就是市產地的一個報告謝謝
gazette.lineno 218
gazette.blocks[0][0] 吳委員秉叡:(9時38分)主席,麻煩請財政部莊部長、經濟部江次長。
gazette.blocks[1][0] 主席:好,財政部莊部長、經濟部江次長。
gazette.blocks[2][0] 莊部長翠雲:委員好。
gazette.blocks[3][0] 吳委員秉叡:首先,請教關務署出口的統計是以出口地為標準,譬如貨物實際裝船到美國這樣,但是美國海關的計算方法是不一樣的,它是以進口來源國或是最終目的地為準,這兩個定義不同,在統計數據上如何去協調?
gazette.blocks[4][0] 莊部長翠雲:這個部分確實在統計數上會有不同,譬如我們是以出口當時的離岸價格,他們會用什麼樣的價格……
gazette.blocks[5][0] 吳委員秉叡:不是只有價格,我剛剛講了,一個是出口地,一個是進口來源國跟最終目的地。
gazette.blocks[6][0] 莊部長翠雲:是,會有不同,都會相互釐清。另外,還有一個時間差的問題。
gazette.blocks[7][0] 吳委員秉叡:這裡面是不是造成民國113年台灣對美國的出口暴增到一千多億,跟上一年比增加了46.1%,兩者之間有沒有關係?
gazette.blocks[8][0] 莊部長翠雲:我想這個部分,當然因為計算的方式不同,它是用分子、分母,兩個都加的話,它的……
gazette.blocks[9][0] 吳委員秉叡:不是,其實美國認為台灣去年對它的順差是739億美金,可是台灣本身的統計,我們的出超是649億,中間就差了90億美金啊,這個金額就不一樣啊!
gazette.blocks[10][0] 莊部長翠雲:對啊。
gazette.blocks[11][0] 吳委員秉叡:那是不是因為定義不一樣而造成的?
gazette.blocks[12][0] 莊部長翠雲:會有差距。
gazette.blocks[13][0] 吳委員秉叡:所以我們是不是應該要跟美國好好地協商這個到底要怎麼統計,大家才能夠用一致的標準呢?
gazette.blocks[14][0] 莊部長翠雲:當然我想委員所提的這個部分,我們可以把資料準備給我們經貿小組,在談判的時候可以做一個說明,也就是在金額上、我們統計上不同的地方。
gazette.blocks[15][0] 吳委員秉叡:提醒你,美國針對產品的原料還有製造如果有35%是來自中國,它就會認定是Made in China,就是中國製造,中國製造的關稅是比較高的,是145%,現在宣布是這樣;但是台灣針對附加價值,如果製造的附加價值超過35%,我們就認為是台灣製造,這中間就有落差,我們想想看,我們要出口去美國的產品,從中國進口原料50%,在台灣加工50%的附加價值,然後出口去美國,這樣到底算是台灣製造還是中國製造?
gazette.blocks[16][0] 莊部長翠雲:對於原產地核發的部分,經濟部這邊有相關的規定,什麼樣的情況下可以發MIT這樣的原產地證明;至於美國這樣的標準,以及所謂含中成分的問題,就是依比例多少而採用什麼樣的課稅標準,我想這部分是不是可以請經濟部來做說明?
gazette.blocks[17][0] 吳委員秉叡:那麼次長,你聽得懂我在問什麼嗎?我們台灣現在自己的標準是,無論原料從哪裡來,只要在台灣製造附加價值超過35%以上就認為是台灣製造;但是美國是這樣子,進口到美國的產品,如果裡面的原料有35%以上的價值是來自中國,它就認為是中國製造。我假設現在有一個狀況,就是有某一項產品,我們從中國進口原料或是半成品來到台灣加工,結果裡面中國的原料跟半成品價值是50%,台灣這邊的附加價值增加50%,以這個case而言,台灣認為這是台灣製造,但是美國認為這是中國製造,這中間的矛盾要如何處理?
gazette.blocks[18][0] 江次長文若:報告委員,原產地的認定其實是進口國海關在認定,您所提出的問題,當然根據我們的規定是要有實質轉型,也就是35%的轉變或者要稅號的轉換,所以我們現在有建議我們所有出口廠商一定要跟他的客戶、他的美國進口商保持密切聯繫,去詢問美國海關的相關規定。第二個,美國海關有個預審制度,我們的出口商可以請客戶把要進口的產品的相關成分內容請美國海關先做預審。
gazette.blocks[19][0] 吳委員秉叡:這個是預審制度,問題是我們台灣的規範,就輸往美國的產品,要不要照美國的標準這樣的方式來修正?不然的話,我剛剛講的那個case,你還是沒有回答我,美國的定義,原料跟半成品只要價值超過35%以上是來自中國,它就認為是中國製造,但是台灣的定義卻是無論原料還有半成品從哪裡來,只要在台灣加工產生的附加價值超過35%,就認為是台灣製造,我剛剛那個case剛好是half and half,台灣認為是台灣製造,美國認為是中國製造,這就剛好是美國所認為的你在替它洗產地、在替中國洗產地,不是嗎?
gazette.blocks[20][0] 江次長文若:相關的規定我們會再跟美國政府來做溝通……
gazette.blocks[21][0] 吳委員秉叡:我就說以剛剛我講的那個例子,是不是美國政府就可以認為台灣在幫中國洗產地?
gazette.blocks[22][0] 江次長文若:這個部分的話要由美國的海關來……
gazette.blocks[23][0] 吳委員秉叡:當你被美國海關認定,你就慘了啦!你幫中國洗產地的時候,台灣所有產品的關稅,它就會用不同的標準看待你啦!
gazette.blocks[24][0] 江次長文若:是,所以我們現在是積極鼓勵要降低所有產品的含中成分,我們經濟部也會輔導相關的業者做相關轉型及研發。
gazette.blocks[25][0] 吳委員秉叡:對,所以我今天在跟兩位溝通的就是,我們台灣定義的附加價值超過35%,如果你是銷到別的國家去,或許這部分我們可以自己定義,問題是銷往美國的產品,我們的定義要跟美國海關採取接近或一致的標準,這樣我們台灣才不會有這個危險,我今天就是在跟你溝通這件事情,你贊不贊成這樣的講法呢?
gazette.blocks[26][0] 江次長文若:所以我們一直有在鼓勵一定要降低產品的含中成分,這是經濟部一直在努力的方向,所以在……
gazette.blocks[27][0] 吳委員秉叡:我知道,你剛剛已經有談過了,你講的這個方式我也認同,問題是你沒有回答到我的問題,我們兩個的問題沒有在同一個平面上,你要鼓勵大家原料或是半成品儘量不要有含中的成分,這我也贊成,問題是你至少要跟美國協同商量有相同的計算方法,我們才有辦法有一致的標準,我現在跟你談的是相同的規範、一致的標準,而不是你在講的,我也鼓勵我們應該要儘量往好的地方去,但這跟我剛剛跟你談的題目是兩件事情。
gazette.blocks[28][0] 江次長文若:是。
gazette.blocks[29][0] 吳委員秉叡:所以這個提供給你們參考。
gazette.blocks[30][0] 江次長文若:是。
gazette.blocks[31][0] 吳委員秉叡:另外,有關洗產地的態樣,包括農業部的部分,這是很難定義的,我舉個例子,我們在海上、在台灣海峽抓到的漁獲,假設是中國的漁船抓到的、台灣的漁船抓到的,在海上做交易,然後拿到台灣來,在這邊銷售,假設在這邊加工又出口去美國,有沒有洗產地的問題,這也很難定義,農業部是不是來回答一下?請杜次長。
gazette.blocks[32][0] 主席:請農業部。
gazette.blocks[33][0] 吳委員秉叡:我剛剛的問題你有聽到嘛,水產的部分,海上抓獲的其實本來沒有國籍,但是中國的漁船抓獲、台灣的漁船抓獲是不一樣的,如果在海上做交易,然後運回來台灣,再出口去美國,會不會有洗產地的問題?
gazette.blocks[34][0] 杜次長文珍:應該這樣說,那個魚不是我們自己的漁船抓到的,那就不是我們的貨,對不對?那就不能再出口。
gazette.blocks[35][0] 吳委員秉叡:對啊,問題是你也知道我們的漁船在海上抓獲,中國的漁船也在海上抓獲,有時候抓完就直接在海上交易了。
gazette.blocks[36][0] 杜次長文珍:海巡署會去抓這個部分,不行就不行。
gazette.blocks[37][0] 吳委員秉叡:我當然知道不行,我的意思是說……
gazette.blocks[38][0] 杜次長文珍:要注意,謝謝委員提醒,這個部分要注意。
gazette.blocks[39][0] 吳委員秉叡:你有辦法很嚴格來處理這個事情嗎?
gazette.blocks[40][0] 杜次長文珍:一定要,境外要處理,我們國內要出口也是要來顧這個部分,只有MIT才能叫做MIT。
gazette.blocks[41][0] 吳委員秉叡:好,那你先請回,江次長也先請回。
gazette.blocks[41][1] 部長,我上次質詢你的時候有談到小額包裹的事情,現在中國出現一種態樣,大量的產品運到墨西哥去,然後再用小額包裹分拆,整個過去然後分拆,用小額包裹進到美國,這樣也逃避關稅。我還是再次跟你強調,小額包裹的免稅,我知道有一些消費者,因為他想要得到免稅的福利,要先在這裡澄清,稅金是賣的人要交的,不是買方交的,賣方得到錢,買方得到貨物,所以要交稅當然是賣方要交,對不對?但是他們都是貪圖一年有幾次可以免稅額,他是用這樣的方式去降低價格,可是這對台灣的製造業者非常不公平,台灣的製造業者有貨物稅,出廠之後還有交易稅,公司獲利,將來還有營利事業所得稅,分配股利到個人股東的時候還有綜合所得稅,結果這些小額包裹免稅進來通通不用了;再來就是加害給付的問題,上次我也跟你提過,所以這部分拜託你一定要好好把關。川普都希望製造業能夠重回美國了,我們如果讓台灣的製造業者在一個不公平的競爭環境下,對台灣的業者不公平的話,是傷害台灣自身的產業。
gazette.blocks[42][0] 莊部長翠雲:是,我知道委員一直對這個問題非常關注,上次提案也要我們提出一個報告,這個部分我們會審慎地來做研議、彙整。
gazette.blocks[43][0] 吳委員秉叡:最後問一個小問題,請問洗產地這件事從第一次美中貿易戰爭之後開始強調,就重視到現在,請問抓到多少件、罰了多少金額?
gazette.blocks[44][0] 莊部長翠雲:自貿港區有43件。
gazette.blocks[45][0] 吳委員秉叡:罰了多少金額?
gazette.blocks[46][0] 彭署長英偉:一百多萬。
gazette.blocks[47][0] 吳委員秉叡:這是一年的金額還是從2018年到現在?
gazette.blocks[48][0] 彭署長英偉:應該是從2018年到現在。
gazette.blocks[49][0] 吳委員秉叡:從2018年到現在抓到四十幾件、罰了一百多萬?
gazette.blocks[50][0] 彭署長英偉:報告委員,這是自貿港區的部分,因為他是依照自貿港區設置管理條例處罰……
gazette.blocks[51][0] 吳委員秉叡:自貿港區,那其他的呢?
gazette.blocks[52][0] 彭署長英偉:另外還有貿易法的部分。
gazette.blocks[53][0] 吳委員秉叡:那是多少?
gazette.blocks[54][0] 彭署長英偉:貿易法的部分要由貿易署這邊來回答,他們有統計。
gazette.blocks[55][0] 吳委員秉叡:所以部長我跟你說,今天來這邊報告,寫得都很好看啦,但千萬不要「講甲一畚箕,做無一湯匙」啊,這個事情會嚴重影響到台灣,未來美國如何對台灣界定關稅該繳多少,這會影響到台灣重大的產業,所以今天這件事情絕對不是在這邊說一說,文章講一講、寫一寫很漂亮,自貿港區從2018年到現在七年了,四十幾件、一百多萬,你認為這有可能嗎?
gazette.blocks[56][0] 莊部長翠雲:我想這個部分也跟委員報告,我們會擴大查察的範圍,也就是剛剛說的,原來我們是針對它的301條款課高關稅……
gazette.blocks[57][0] 吳委員秉叡:你可不可以每兩個月或是每三個月給財政委員會一個報告,說你們又查獲多少?
gazette.blocks[58][0] 莊部長翠雲:每兩個月提一個報告可以,我們把我們的各項的作法也一併提供。
gazette.blocks[59][0] 吳委員秉叡:對,把你們已經查獲多少,做得怎麼樣、處罰多少,做一個統計表,統計數量給我們,可以嗎?
gazette.blocks[60][0] 莊部長翠雲:可以。
gazette.blocks[61][0] 彭署長英偉:自貿港區的部分,裁罰是由海關來裁罰,至於貿易法的部分要請貿易署這邊協助來統計數字。
gazette.blocks[62][0] 吳委員秉叡:對啊,我說的經濟部那邊也有聽到啊,這個也要一起做嘛!最後一個問題,你們的報告裡面提到要鼓勵民眾檢舉,有沒有考慮給獎金?
gazette.blocks[63][0] 莊部長翠雲:獎金?
gazette.blocks[64][0] 吳委員秉叡:洗產地抓獲有罰款嘛!
gazette.blocks[65][0] 彭署長英偉:是。
gazette.blocks[66][0] 吳委員秉叡:對於檢舉的這些民眾有沒有發給獎金?增加誘因啊,不然干我什麼事,我為什麼要去檢舉!
gazette.blocks[67][0] 彭署長英偉:報告委員,這一部分我們來研議看看。
gazette.blocks[68][0] 吳委員秉叡:好,研議喔,謝謝。
gazette.blocks[69][0] 莊部長翠雲:謝謝委員。
gazette.blocks[70][0] 主席:查獲洗產地時,針對檢舉人應該要發給獎金,這個請財政部去做研擬,請於兩個月內,也就是本會期提供財政委員會必要的作法,也就是洗產地的一個報告,謝謝。
gazette.blocks[70][1] 接著請賴士葆召委質詢。
gazette.agenda.page_end 190
gazette.agenda.meet_id 委員會-11-3-20-8
gazette.agenda.speakers[0] 賴惠員
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 郭國文
gazette.agenda.speakers[5] 鍾佳濱
gazette.agenda.speakers[6] 李彥秀
gazette.agenda.speakers[7] 李坤城
gazette.agenda.speakers[8] 顏寬恒
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 林思銘
gazette.agenda.speakers[11] 陳玉珍
gazette.agenda.speakers[12] 羅明才
gazette.agenda.speakers[13] 王世堅
gazette.agenda.speakers[14] 張啓楷
gazette.agenda.speakers[15] 黃國昌
gazette.agenda.speakers[16] 林楚茵
gazette.agenda.speakers[17] 徐富癸
gazette.agenda.speakers[18] 陳冠廷
gazette.agenda.speakers[19] 牛煦庭
gazette.agenda.speakers[20] 黃捷
gazette.agenda.speakers[21] 邱志偉
gazette.agenda.page_start 117
gazette.agenda.meetingDate[0] 2025-04-16
gazette.agenda.gazette_id 1143801
gazette.agenda.agenda_lcidc_ids[0] 1143801_00004
gazette.agenda.meet_name 立法院第11屆第3會期財政委員會第8次全體委員會議紀錄
gazette.agenda.content 邀請財政部莊部長翠雲、經濟部、農業部及公平交易委員會就「防範中國大陸產品低價傾銷及透 過台灣洗產地問題之因應策略」進行專題報告,並備質詢
gazette.agenda.agenda_id 1143801_00003