IVOD_ID |
160182 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160182 |
日期 |
2025-04-16 |
會議資料.會議代碼 |
委員會-11-3-20-8 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第8次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
8 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第8次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-16T09:38:27+08:00 |
結束時間 |
2025-04-16T09:51:53+08:00 |
影片長度 |
00:13:26 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f9d2e74df98279dfcdf55da0b19c4cc4a3fd8a5ba555e8259b98284df90a891ab209238ca8d807e35ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
吳秉叡 |
委員發言時間 |
09:38:27 - 09:51:53 |
會議時間 |
2025-04-16T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第8次全體委員會議(事由:邀請財政部莊部長翠雲、經濟部、農業部及公平交易委員會就「防範中國大陸產品低價傾銷及透過台灣洗產地問題之因應策略」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
8.89034375 |
transcript.pyannote[0].end |
11.94471875 |
transcript.pyannote[1].speaker |
SPEAKER_04 |
transcript.pyannote[1].start |
12.45096875 |
transcript.pyannote[1].end |
14.99909375 |
transcript.pyannote[2].speaker |
SPEAKER_04 |
transcript.pyannote[2].start |
15.64034375 |
transcript.pyannote[2].end |
16.39971875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
21.29346875 |
transcript.pyannote[3].end |
23.63909375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
24.36471875 |
transcript.pyannote[4].end |
27.46971875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
27.95909375 |
transcript.pyannote[5].end |
40.71659375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
41.22284375 |
transcript.pyannote[6].end |
42.08346875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
42.77534375 |
transcript.pyannote[7].end |
46.57221875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
47.29784375 |
transcript.pyannote[8].end |
48.37784375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
48.98534375 |
transcript.pyannote[9].end |
49.60971875 |
transcript.pyannote[10].speaker |
SPEAKER_06 |
transcript.pyannote[10].start |
51.90471875 |
transcript.pyannote[10].end |
60.56159375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
59.24534375 |
transcript.pyannote[11].end |
66.68721875 |
transcript.pyannote[12].speaker |
SPEAKER_06 |
transcript.pyannote[12].start |
60.83159375 |
transcript.pyannote[12].end |
61.62471875 |
transcript.pyannote[13].speaker |
SPEAKER_06 |
transcript.pyannote[13].start |
63.90284375 |
transcript.pyannote[13].end |
65.50596875 |
transcript.pyannote[14].speaker |
SPEAKER_06 |
transcript.pyannote[14].start |
66.90659375 |
transcript.pyannote[14].end |
67.39596875 |
transcript.pyannote[15].speaker |
SPEAKER_06 |
transcript.pyannote[15].start |
67.95284375 |
transcript.pyannote[15].end |
68.88096875 |
transcript.pyannote[16].speaker |
SPEAKER_06 |
transcript.pyannote[16].start |
69.13409375 |
transcript.pyannote[16].end |
75.49596875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
74.78721875 |
transcript.pyannote[17].end |
81.99284375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
82.61721875 |
transcript.pyannote[18].end |
83.49471875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
83.62971875 |
transcript.pyannote[19].end |
87.69659375 |
transcript.pyannote[20].speaker |
SPEAKER_06 |
transcript.pyannote[20].start |
88.42221875 |
transcript.pyannote[20].end |
96.96096875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
95.86409375 |
transcript.pyannote[21].end |
109.27971875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
111.32159375 |
transcript.pyannote[22].end |
112.89096875 |
transcript.pyannote[23].speaker |
SPEAKER_06 |
transcript.pyannote[23].start |
112.89096875 |
transcript.pyannote[23].end |
113.36346875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
113.34659375 |
transcript.pyannote[24].end |
115.89471875 |
transcript.pyannote[25].speaker |
SPEAKER_06 |
transcript.pyannote[25].start |
113.38034375 |
transcript.pyannote[25].end |
113.63346875 |
transcript.pyannote[26].speaker |
SPEAKER_06 |
transcript.pyannote[26].start |
116.09721875 |
transcript.pyannote[26].end |
117.24471875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
116.75534375 |
transcript.pyannote[27].end |
124.01159375 |
transcript.pyannote[28].speaker |
SPEAKER_06 |
transcript.pyannote[28].start |
124.18034375 |
transcript.pyannote[28].end |
135.11534375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
131.84159375 |
transcript.pyannote[29].end |
132.14534375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
135.52034375 |
transcript.pyannote[30].end |
147.51846875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
147.92346875 |
transcript.pyannote[31].end |
178.18034375 |
transcript.pyannote[32].speaker |
SPEAKER_06 |
transcript.pyannote[32].start |
180.40784375 |
transcript.pyannote[32].end |
189.18284375 |
transcript.pyannote[33].speaker |
SPEAKER_06 |
transcript.pyannote[33].start |
189.28409375 |
transcript.pyannote[33].end |
200.25284375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
194.81909375 |
transcript.pyannote[34].end |
195.17346875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
200.53971875 |
transcript.pyannote[35].end |
202.58159375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
202.96971875 |
transcript.pyannote[36].end |
210.42846875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
210.91784375 |
transcript.pyannote[37].end |
212.35221875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
213.12846875 |
transcript.pyannote[38].end |
216.14909375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
216.72284375 |
transcript.pyannote[39].end |
217.58346875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
217.85346875 |
transcript.pyannote[40].end |
220.78971875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
221.21159375 |
transcript.pyannote[41].end |
222.84846875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
223.18596875 |
transcript.pyannote[42].end |
232.36596875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
233.02409375 |
transcript.pyannote[43].end |
234.28971875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
234.96471875 |
transcript.pyannote[44].end |
239.57159375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
240.17909375 |
transcript.pyannote[45].end |
242.82846875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
243.52034375 |
transcript.pyannote[46].end |
244.68471875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
245.17409375 |
transcript.pyannote[47].end |
246.72659375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
247.46909375 |
transcript.pyannote[48].end |
249.42659375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
250.40534375 |
transcript.pyannote[49].end |
252.56534375 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
253.13909375 |
transcript.pyannote[50].end |
253.40909375 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
253.52721875 |
transcript.pyannote[51].end |
258.79221875 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
259.02846875 |
transcript.pyannote[52].end |
265.81221875 |
transcript.pyannote[53].speaker |
SPEAKER_02 |
transcript.pyannote[53].start |
266.08221875 |
transcript.pyannote[53].end |
271.66784375 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
271.73534375 |
transcript.pyannote[54].end |
274.40159375 |
transcript.pyannote[55].speaker |
SPEAKER_02 |
transcript.pyannote[55].start |
274.48596875 |
transcript.pyannote[55].end |
283.86846875 |
transcript.pyannote[56].speaker |
SPEAKER_02 |
transcript.pyannote[56].start |
284.02034375 |
transcript.pyannote[56].end |
285.65721875 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
285.84284375 |
transcript.pyannote[57].end |
295.64721875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
296.44034375 |
transcript.pyannote[58].end |
300.23721875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
300.38909375 |
transcript.pyannote[59].end |
303.02159375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
303.44346875 |
transcript.pyannote[60].end |
305.14784375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
305.65409375 |
transcript.pyannote[61].end |
307.69596875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
308.21909375 |
transcript.pyannote[62].end |
310.19346875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
310.34534375 |
transcript.pyannote[63].end |
311.56034375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
312.40409375 |
transcript.pyannote[64].end |
313.58534375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
314.20971875 |
transcript.pyannote[65].end |
314.88471875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
315.27284375 |
transcript.pyannote[66].end |
320.87534375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
321.22971875 |
transcript.pyannote[67].end |
322.88346875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
323.27159375 |
transcript.pyannote[68].end |
324.33471875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
325.00971875 |
transcript.pyannote[69].end |
335.18534375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
336.82221875 |
transcript.pyannote[70].end |
342.25596875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
342.59346875 |
transcript.pyannote[71].end |
344.51721875 |
transcript.pyannote[72].speaker |
SPEAKER_02 |
transcript.pyannote[72].start |
346.81221875 |
transcript.pyannote[72].end |
350.77784375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
350.25471875 |
transcript.pyannote[73].end |
356.21159375 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
356.29596875 |
transcript.pyannote[74].end |
360.95346875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
359.92409375 |
transcript.pyannote[75].end |
362.26971875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
362.67471875 |
transcript.pyannote[76].end |
365.83034375 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
366.89346875 |
transcript.pyannote[77].end |
367.06221875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
367.06221875 |
transcript.pyannote[78].end |
369.10409375 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
367.07909375 |
transcript.pyannote[79].end |
367.66971875 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
369.10409375 |
transcript.pyannote[80].end |
372.47909375 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
372.54659375 |
transcript.pyannote[81].end |
380.10659375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
377.52471875 |
transcript.pyannote[82].end |
402.44909375 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
403.57971875 |
transcript.pyannote[83].end |
411.10596875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
410.61659375 |
transcript.pyannote[84].end |
448.33221875 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
412.75971875 |
transcript.pyannote[85].end |
412.87784375 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
449.39534375 |
transcript.pyannote[86].end |
449.83409375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
449.91846875 |
transcript.pyannote[87].end |
450.32346875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
450.84659375 |
transcript.pyannote[88].end |
460.70159375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
461.00534375 |
transcript.pyannote[89].end |
462.62534375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
463.85721875 |
transcript.pyannote[90].end |
465.51096875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
465.61221875 |
transcript.pyannote[91].end |
466.92846875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
467.99159375 |
transcript.pyannote[92].end |
469.29096875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
469.61159375 |
transcript.pyannote[93].end |
470.96159375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
471.63659375 |
transcript.pyannote[94].end |
472.54784375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
473.61096875 |
transcript.pyannote[95].end |
477.28971875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
477.67784375 |
transcript.pyannote[96].end |
479.95596875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
481.01909375 |
transcript.pyannote[97].end |
481.76159375 |
transcript.pyannote[98].speaker |
SPEAKER_04 |
transcript.pyannote[98].start |
481.30596875 |
transcript.pyannote[98].end |
482.36909375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
483.85409375 |
transcript.pyannote[99].end |
485.30534375 |
transcript.pyannote[100].speaker |
SPEAKER_04 |
transcript.pyannote[100].start |
486.33471875 |
transcript.pyannote[100].end |
486.67221875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
486.67221875 |
transcript.pyannote[101].end |
490.62096875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
490.97534375 |
transcript.pyannote[102].end |
497.94471875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
498.97409375 |
transcript.pyannote[103].end |
499.49721875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
500.10471875 |
transcript.pyannote[104].end |
501.18471875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
501.82596875 |
transcript.pyannote[105].end |
503.19284375 |
transcript.pyannote[106].speaker |
SPEAKER_05 |
transcript.pyannote[106].start |
503.66534375 |
transcript.pyannote[106].end |
508.35659375 |
transcript.pyannote[107].speaker |
SPEAKER_05 |
transcript.pyannote[107].start |
508.62659375 |
transcript.pyannote[107].end |
509.68971875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
508.89659375 |
transcript.pyannote[108].end |
515.12346875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
515.42721875 |
transcript.pyannote[109].end |
517.53659375 |
transcript.pyannote[110].speaker |
SPEAKER_05 |
transcript.pyannote[110].start |
517.60409375 |
transcript.pyannote[110].end |
522.58221875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
520.96221875 |
transcript.pyannote[111].end |
521.92409375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
522.71721875 |
transcript.pyannote[112].end |
526.27784375 |
transcript.pyannote[113].speaker |
SPEAKER_05 |
transcript.pyannote[113].start |
525.61971875 |
transcript.pyannote[113].end |
527.96534375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
526.48034375 |
transcript.pyannote[114].end |
530.74971875 |
transcript.pyannote[115].speaker |
SPEAKER_05 |
transcript.pyannote[115].start |
530.09159375 |
transcript.pyannote[115].end |
535.33971875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
535.33971875 |
transcript.pyannote[116].end |
539.06909375 |
transcript.pyannote[117].speaker |
SPEAKER_05 |
transcript.pyannote[117].start |
535.35659375 |
transcript.pyannote[117].end |
535.50846875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
540.19971875 |
transcript.pyannote[118].end |
540.68909375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
540.99284375 |
transcript.pyannote[119].end |
541.39784375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
541.41471875 |
transcript.pyannote[120].end |
546.46034375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
547.01721875 |
transcript.pyannote[121].end |
548.72159375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
548.97471875 |
transcript.pyannote[122].end |
550.22346875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
550.47659375 |
transcript.pyannote[123].end |
550.93221875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
551.33721875 |
transcript.pyannote[124].end |
552.65346875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
552.92346875 |
transcript.pyannote[125].end |
554.93159375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
555.82596875 |
transcript.pyannote[126].end |
559.69034375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
560.12909375 |
transcript.pyannote[127].end |
561.19221875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
562.01909375 |
transcript.pyannote[128].end |
564.09471875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
565.41096875 |
transcript.pyannote[129].end |
567.28409375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
568.02659375 |
transcript.pyannote[130].end |
575.83971875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
576.71721875 |
transcript.pyannote[131].end |
577.91534375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
579.72096875 |
transcript.pyannote[132].end |
586.99409375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
587.63534375 |
transcript.pyannote[133].end |
593.89596875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
594.14909375 |
transcript.pyannote[134].end |
595.04346875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
595.49909375 |
transcript.pyannote[135].end |
598.67159375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
599.26221875 |
transcript.pyannote[136].end |
601.84409375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
602.45159375 |
transcript.pyannote[137].end |
604.84784375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
605.70846875 |
transcript.pyannote[138].end |
610.48409375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
610.70346875 |
transcript.pyannote[139].end |
614.38221875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
615.41159375 |
transcript.pyannote[140].end |
617.97659375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
620.15346875 |
transcript.pyannote[141].end |
631.39221875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
632.11784375 |
transcript.pyannote[142].end |
636.42096875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
637.60221875 |
transcript.pyannote[143].end |
639.15471875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
639.98159375 |
transcript.pyannote[144].end |
640.92659375 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
641.33159375 |
transcript.pyannote[145].end |
643.18784375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
644.14971875 |
transcript.pyannote[146].end |
644.45346875 |
transcript.pyannote[147].speaker |
SPEAKER_06 |
transcript.pyannote[147].start |
645.90471875 |
transcript.pyannote[147].end |
655.35471875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
653.51534375 |
transcript.pyannote[148].end |
655.84409375 |
transcript.pyannote[149].speaker |
SPEAKER_06 |
transcript.pyannote[149].start |
655.67534375 |
transcript.pyannote[149].end |
655.96221875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
655.96221875 |
transcript.pyannote[150].end |
660.13034375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
660.92346875 |
transcript.pyannote[151].end |
663.06659375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
664.11284375 |
transcript.pyannote[152].end |
665.26034375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
669.76596875 |
transcript.pyannote[153].end |
670.76159375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
676.02659375 |
transcript.pyannote[154].end |
680.65034375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
682.74284375 |
transcript.pyannote[155].end |
684.68346875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
684.68346875 |
transcript.pyannote[156].end |
687.95721875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
687.95721875 |
transcript.pyannote[157].end |
689.08784375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
689.42534375 |
transcript.pyannote[158].end |
696.58034375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
693.34034375 |
transcript.pyannote[159].end |
695.21346875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
696.98534375 |
transcript.pyannote[160].end |
698.85846875 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
698.87534375 |
transcript.pyannote[161].end |
700.54596875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
699.98909375 |
transcript.pyannote[162].end |
701.38971875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
702.03096875 |
transcript.pyannote[163].end |
704.46096875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
705.60846875 |
transcript.pyannote[164].end |
707.97096875 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
708.34221875 |
transcript.pyannote[165].end |
723.32721875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
724.13721875 |
transcript.pyannote[166].end |
726.70221875 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
727.36034375 |
transcript.pyannote[167].end |
728.20409375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
729.28409375 |
transcript.pyannote[168].end |
730.97159375 |
transcript.pyannote[169].speaker |
SPEAKER_06 |
transcript.pyannote[169].start |
730.97159375 |
transcript.pyannote[169].end |
750.24284375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
738.83534375 |
transcript.pyannote[170].end |
740.25284375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
740.43846875 |
transcript.pyannote[171].end |
740.57346875 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
749.73659375 |
transcript.pyannote[172].end |
757.06034375 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
756.45284375 |
transcript.pyannote[173].end |
764.87346875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
764.80596875 |
transcript.pyannote[174].end |
769.78409375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
770.23971875 |
transcript.pyannote[175].end |
774.57659375 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
775.21784375 |
transcript.pyannote[176].end |
776.33159375 |
transcript.pyannote[177].speaker |
SPEAKER_06 |
transcript.pyannote[177].start |
777.19221875 |
transcript.pyannote[177].end |
778.71096875 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
777.93471875 |
transcript.pyannote[178].end |
780.33096875 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
780.76971875 |
transcript.pyannote[179].end |
780.78659375 |
transcript.pyannote[180].speaker |
SPEAKER_06 |
transcript.pyannote[180].start |
780.78659375 |
transcript.pyannote[180].end |
781.02284375 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
781.02284375 |
transcript.pyannote[181].end |
786.74346875 |
transcript.pyannote[182].speaker |
SPEAKER_01 |
transcript.pyannote[182].start |
786.96284375 |
transcript.pyannote[182].end |
789.22409375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
789.22409375 |
transcript.pyannote[183].end |
789.96659375 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
789.96659375 |
transcript.pyannote[184].end |
790.57409375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
790.57409375 |
transcript.pyannote[185].end |
790.60784375 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
790.87784375 |
transcript.pyannote[186].end |
791.89034375 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
791.62034375 |
transcript.pyannote[187].end |
791.63721875 |
transcript.pyannote[188].speaker |
SPEAKER_03 |
transcript.pyannote[188].start |
791.63721875 |
transcript.pyannote[188].end |
799.02846875 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
791.89034375 |
transcript.pyannote[189].end |
791.90721875 |
transcript.pyannote[190].speaker |
SPEAKER_03 |
transcript.pyannote[190].start |
799.09596875 |
transcript.pyannote[190].end |
806.25096875 |
transcript.whisperx[0].start |
8.942 |
transcript.whisperx[0].end |
11.671 |
transcript.whisperx[0].text |
主席麻煩請財政部莊部長經濟部江次長好財政部莊部長經濟部江次長 |
transcript.whisperx[1].start |
22.209 |
transcript.whisperx[1].end |
45.767 |
transcript.whisperx[1].text |
首先請教 關入署出口的統計是以出口地為標準的比如說貨物實際裝船到美國這樣子但是美國的海關的計算方法是不一樣他是以進口來原國或是最多目的地為準這兩個定義不同 那如何在統計數據上如何去協調 |
transcript.whisperx[2].start |
52.263 |
transcript.whisperx[2].end |
66.222 |
transcript.whisperx[2].text |
這個部分確實在統計數上會有不同比如說我們是以出口當時的離岸的價格那他們是用什麼樣的價格不是只有價格喔我剛剛講的是一個是出口地一個是進口來源國跟最終目的地 |
transcript.whisperx[3].start |
68.184 |
transcript.whisperx[3].end |
86.191 |
transcript.whisperx[3].text |
會有不同都會相互的釐清另外就是說還有一個時間差的問題還有時間差這裡面是不是會造成民國113年台灣對美國的出口暴增到1000多億增加了46.1%跟上一年增加46.1%跟這個有沒有關係啊 |
transcript.whisperx[4].start |
88.939 |
transcript.whisperx[4].end |
100.85 |
transcript.whisperx[4].text |
我想這個部分當然因為計算的方式不同但他是用分子分母兩個都加的話他的分子都是增加其實美國認為台灣去年對他順超是379億美金可是台灣本身的統計我們的這個粗糙是649億就中間就差了90億美金啊 |
transcript.whisperx[5].start |
111.563 |
transcript.whisperx[5].end |
134.942 |
transcript.whisperx[5].text |
這個金額就不一樣啊那是不是因為定義不一樣所以造成的會有差距那我們是不是應該要跟美國來好好的協商說這個到底要怎麼統計才能夠大家用一致的標準呢當然我想委員所提的這個部分我們可以把資料準備給我們經貿小組在談判的時候可以做一個說明也就是說金額上的一些我們統計上的不同的地方 |
transcript.whisperx[6].start |
136.02 |
transcript.whisperx[6].end |
157.786 |
transcript.whisperx[6].text |
提醒你美國針對產品的原料還有製造如果有35%是來自中國他就會認定是Made in China就是中國製造而他中國製造的關稅是比較高的到145%被宣布是這樣但是台灣針對附加價值我們如果製造附加價值超過35%我們就是認為是台灣製造 |
transcript.whisperx[7].start |
161.247 |
transcript.whisperx[7].end |
177.556 |
transcript.whisperx[7].text |
這中間就有落差我們想想看如果一個美國我們要出口去美國的產品從中國進口原料50%然後我們台灣加工50%它的價值然後出口去美國那這樣到底算是台灣製造還是算是中國製造 |
transcript.whisperx[8].start |
180.658 |
transcript.whisperx[8].end |
198.856 |
transcript.whisperx[8].text |
這個部分我們對於原產地的核發經濟部這邊有一定相關的規定什麼樣的情況下可以發MIT這樣的一個原產地證明那至於美國它這樣的一個標準以及所謂的含中成分的問題就是說你的比例是多少是不是用什麼樣的課稅我想這部分是不是可以請經濟部來做說 |
transcript.whisperx[9].start |
200.595 |
transcript.whisperx[9].end |
215.926 |
transcript.whisperx[9].text |
那麼次長你也聽得懂我在問什麼嗎我們台灣現在自己的標準說我們無論原料從哪裡來只要在台灣製造負加價值超過35%以上就認為是台灣製造但是美國是這樣子美國進口到美國的產品 |
transcript.whisperx[10].start |
216.807 |
transcript.whisperx[10].end |
240.438 |
transcript.whisperx[10].text |
如果裡面的原料有35%以上它的價值是來自中國的他就認為是中國製造那我假設現在有一個狀況就是有某一項產品我們從中國進口原料或是半成品來到台灣加工結果裡面中國的原料跟它的半成品價值是50%台灣這邊的附加價值增加50% |
transcript.whisperx[11].start |
243.581 |
transcript.whisperx[11].end |
265.072 |
transcript.whisperx[11].text |
以這個case而言台灣認為這是台灣製造但是美國認為這是中國製造那這中間這個矛盾要如何處理啊報告委員一個原產地的認定呢其實是進口國海關在認定您所提出的問題當然根據我們的規定是要有實質轉型也都是35%的轉變或者要稅率的這個稅號的轉換 |
transcript.whisperx[12].start |
270.194 |
transcript.whisperx[12].end |
294.948 |
transcript.whisperx[12].text |
所以我們現在有建議我們的所有的出口廠商一定要跟他的客戶他的美國的進口商要保持密切連續去詢問美國海關的相關規定第二個呢美國海關有個預審的制度我們的這個客戶可以請我們的出口商可以請客戶呢把這個要進口的產品的相關的成分的內容請美國海關先做一個預審 |
transcript.whisperx[13].start |
296.482 |
transcript.whisperx[13].end |
311.381 |
transcript.whisperx[13].text |
那這個是預審制度啊問題是我們台灣的規範就輸入美國的這一部分的產品要不要照美國的標準這樣的方式來修正啊不然的話我剛剛講那個case你還是沒有回答我 |
transcript.whisperx[14].start |
312.455 |
transcript.whisperx[14].end |
335.281 |
transcript.whisperx[14].text |
在美國的定義原料跟半成品只要價值在超過35%以上是來自中國他就認為中國製造但是台灣的定義卻是無論原料還有這個半成品從哪裡來只要在台灣加工產生的附加價值超過35%就認為是台灣製造那我剛剛那個case剛好half and half |
transcript.whisperx[15].start |
336.852 |
transcript.whisperx[15].end |
365.158 |
transcript.whisperx[15].text |
台灣認為是台灣製造美國認為是中國製造這就剛好是美國認為你在替他洗產地啊在替中國洗產地不是嗎?相關的規定我們會再跟美國政府來做溝通我就說以剛剛我講的那個例子是不是就剛好美國政府就可以認為你台灣在幫中國洗產地這個部分的話要由美國來美國的海關來當你被美國海關認定你就慘啦你幫中國洗產地的時候台灣所有產品的關稅 |
transcript.whisperx[16].start |
368.163 |
transcript.whisperx[16].end |
382.447 |
transcript.whisperx[16].text |
所以我們現在是積極的鼓勵要降低這個所有的產品的含中成分我們經濟部也會輔導相關的業者做所以我在今天再跟兩位溝通就是說我們台灣那個附加價值超過35% |
transcript.whisperx[17].start |
384.508 |
transcript.whisperx[17].end |
401.341 |
transcript.whisperx[17].text |
如果你是銷到別的國家去或許這我們可以定義問題是你銷美國的產品你的定義要跟美國海關採取接近或一致的標準這樣我們台灣才不會有這個危險啊我今天就是在跟你溝通這件事情啊那你贊不贊成這樣的講法呢 |
transcript.whisperx[18].start |
403.649 |
transcript.whisperx[18].end |
419.261 |
transcript.whisperx[18].text |
所以我們一直有在鼓勵一定要降低他的產品有含中的成分這是經濟部一直在努力的方向我知道你剛剛已經有談過了你講的這個方式我也認同問題是你沒有回答到我的問題我們兩個的問題沒有在同一個平面上 |
transcript.whisperx[19].start |
420.222 |
transcript.whisperx[19].end |
448.404 |
transcript.whisperx[19].text |
你要鼓勵大家盡量原料或是半成品盡量不要有含重的成分這我也贊成問題是你至少要跟美國要協同商量有相同的計算方法我們才有辦法有一致的標準我現在看你談的是相同的規範一致的標準而不是你在我也鼓勵我們應該要盡量往好的地方去啊但是這跟我剛剛跟你談的題目是兩件事情啦 |
transcript.whisperx[20].start |
450.966 |
transcript.whisperx[20].end |
470.5 |
transcript.whisperx[20].text |
所以這個提供給你們參考啦另外這個稀產地的太陽喔剛剛也還包括農業部這很難定義的啦我舉個例子我們在海上台灣海峽抓到的漁獲假設是中國的漁船抓到了台灣的漁船抓到的啊在海上做交易然後拿到台灣來在這邊銷售 |
transcript.whisperx[21].start |
473.629 |
transcript.whisperx[21].end |
499.29 |
transcript.whisperx[21].text |
那假設在這邊加工又出口去美國有沒有息產地的問題這也很難定義啊 農業部是不是來回答一下杜市長我剛剛的問題你有聽到水產的部分海上抓貨其實它本來沒有國籍但是中國旅船抓貨 台灣旅船抓貨不一樣如果在海上做交易然後把它運回來台灣然後再 |
transcript.whisperx[22].start |
500.171 |
transcript.whisperx[22].end |
510.399 |
transcript.whisperx[22].text |
出口去美國會不會有棲產地的問題應該這樣說啦 那個棲產地不是我們自己的棲產地那不是我們的貨嘛 對不對對啊 問題是你也知道我們的棲產地在海淀館寫中國棲產地在海淀館寫寫寫有時候就在海淀館購入海巡視會去寫這個部分 不行就不行 |
transcript.whisperx[23].start |
522.788 |
transcript.whisperx[23].end |
527.794 |
transcript.whisperx[23].text |
我當然知道不行啦 我的意思是說你這個有辦法很嚴格的來去處理這個事情不一定啦 境外要處理 國內要出口也是要來顧這個部分只有MIT才能叫MIT好 那你先請回 江次長也先請回 |
transcript.whisperx[24].start |
540.233 |
transcript.whisperx[24].end |
566.394 |
transcript.whisperx[24].text |
部長我上次跟你諮詢的時候在跟你談到那個小額包裹的事情現在中國出現一種態樣大量的產品運到墨西哥去然後再用小額包裹分拆整個過去然後分拆用小額包裹進到美國去這樣給逃避關稅那我還是再次跟你強調小額包裹的免稅 |
transcript.whisperx[25].start |
568.069 |
transcript.whisperx[25].end |
575.417 |
transcript.whisperx[25].text |
我知道有一些消費者因為他想要得到免稅的福利其實要向這裡澄清 稅金是賣的人要交的不是買方交的你賣方得到錢 買方得到貨物所以要交稅 當然是賣方的人要交 |
transcript.whisperx[26].start |
587.694 |
transcript.whisperx[26].end |
613.914 |
transcript.whisperx[26].text |
但是他們都是貪圖說我一年有幾次可以稅額他是像這樣子去降低那個價格可是這對台灣的製造業者非常的不公平台灣的製造業者有貨物稅出廠之後還有交易稅然後他的公司獲利將來還有盈利事業所得稅分配股利到個人股東的時候還有綜合所得稅 |
transcript.whisperx[27].start |
615.615 |
transcript.whisperx[27].end |
636.409 |
transcript.whisperx[27].text |
結果這些小荷包滾免稅進來通通不用了那再來就是加害給付的問題這上次我也跟你提過所以這部分拜託你一定要好好把關我們美國全部都希望製造業能夠重回美國了那台灣我們如果讓我們台灣的製造業者在一個不公平的競爭環境下那對台灣的業者是不公平的話是傷害台灣自身的產業 |
transcript.whisperx[28].start |
645.979 |
transcript.whisperx[28].end |
664.944 |
transcript.whisperx[28].text |
是我知道委員一直對這個問題非常關注然後上次提案也要我們要提出一個報告這個部分我們會審慎的來最後問一個問題一個小問題請問西產地從第一次美中貿易戰爭之後開始強調就重視到現在請問抓到多少件罰了多少金額罰了多少金額 |
transcript.whisperx[29].start |
676.275 |
transcript.whisperx[29].end |
703.092 |
transcript.whisperx[29].text |
這個是一年的價格一年還是從2018到現在應該是從2018到現在2018到現在抓到四十幾件罰了一百多萬報告委員這是自貿港區的部分因為它是依照自貿港區設置管理條例那還有其他還有貿易法的那多少貿易法的這個部分要貿易署這邊有所以我可以說部長今天來這邊報告寫的都很好看 |
transcript.whisperx[30].start |
705.646 |
transcript.whisperx[30].end |
725.685 |
transcript.whisperx[30].text |
不要供給本地做不到一場戲啊這個事情會嚴重影響到台灣未來美國如果對台灣界定他關稅該繳多少這會影響到台灣重大的產業所以今天這件事情絕對不是在這邊說一說文章講一講寫一寫很漂亮自貿港區2018到現在7年啊 |
transcript.whisperx[31].start |
729.352 |
transcript.whisperx[31].end |
731.575 |
transcript.whisperx[31].text |
40幾件100多萬你認為這有可能嗎我想這個部分也跟委員報告我們會擴大查查的範圍剛剛就是說原來我們是針對他301這個高關稅可不可以每兩個月或是三個月給財政委員一個報告說你們有查獲多少 |
transcript.whisperx[32].start |
745.671 |
transcript.whisperx[32].end |
752.775 |
transcript.whisperx[32].text |
每兩個月提一個報告我們把我們各項的做法也可以提報對 要把你們已經查獲多少做的怎麼樣處罰做一個統計表統計數量給我們可以嗎可以 私貿港區的部分採訪是海關來採訪 |
transcript.whisperx[33].start |
761.159 |
transcript.whisperx[33].end |
771.502 |
transcript.whisperx[33].text |
那貿易法的部分要請貿易署這邊協助來統計數據對啊 我經濟部那邊有聽到啊這個也要一起做啊最後再一個問題說你們報告裡面講說鼓勵民眾檢舉有沒有考慮給獎金 |
transcript.whisperx[34].start |
778.225 |
transcript.whisperx[34].end |
804.985 |
transcript.whisperx[34].text |
市產地抓獲有罰款嘛那對於檢舉的這個民眾有沒有給獎金 增加誘因啊不然干我什麼事 我為什麼要去檢舉報告委員 這部分我們來研議看看好 研議喔 好 謝謝好 謝謝委員好 那個市產地就是檢舉人那個給獎金這個要研擬兩個月那個就是會籍就是提供給那個財政委員會必要的一個就是市產地的一個報告謝謝 |