iVOD / 160163

Field Value
IVOD_ID 160163
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160163
日期 2025-04-15
會議資料.會議代碼 院會-11-3-7
會議資料.會議代碼:str 第11屆第3會期第7次會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 院會
會議資料.標題 第11屆第3會期第7次會議
影片種類 Clip
開始時間 2025-04-15T11:18:33+08:00
結束時間 2025-04-15T11:35:04+08:00
影片長度 00:16:31
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ff8fb8a229f5b3ffc19532611a132e9307f87cc90aeb78e39b53bf68f23d1baf86cf5dcbc0b7422b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 11:18:33 - 11:35:04
會議時間 2025-04-15T09:00:00+08:00
會議名稱 第11屆第3會期第7次會議(事由:一、覆議案之處理事項(4月11日上午)。二、行政院院長提出針對美國關稅政策因應作為專案報告並備質詢(4月11日下午)。三、對行政院院長提出施政方針及施政報告繼續質詢(4月15日)。四、4月11日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 15.10034375
transcript.pyannote[0].end 17.46284375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 17.78346875
transcript.pyannote[1].end 19.23471875
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 29.24159375
transcript.pyannote[2].end 30.99659375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 31.51971875
transcript.pyannote[3].end 32.76846875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 32.02596875
transcript.pyannote[4].end 33.83159375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 34.33784375
transcript.pyannote[5].end 35.26596875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 35.99159375
transcript.pyannote[6].end 36.46409375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 36.09284375
transcript.pyannote[7].end 39.26534375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 39.13034375
transcript.pyannote[8].end 39.63659375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 40.12596875
transcript.pyannote[9].end 49.57596875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 50.03159375
transcript.pyannote[10].end 51.65159375
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 52.14096875
transcript.pyannote[11].end 53.87909375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 55.85346875
transcript.pyannote[12].end 56.59596875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 57.76034375
transcript.pyannote[13].end 59.48159375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 59.90346875
transcript.pyannote[14].end 60.56159375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 61.08471875
transcript.pyannote[15].end 63.00846875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 63.41346875
transcript.pyannote[16].end 65.10096875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 66.73784375
transcript.pyannote[17].end 67.54784375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 67.91909375
transcript.pyannote[18].end 68.47596875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 68.88096875
transcript.pyannote[19].end 72.25596875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 73.70721875
transcript.pyannote[20].end 74.12909375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 74.85471875
transcript.pyannote[21].end 78.85409375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 79.10721875
transcript.pyannote[22].end 81.58784375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 82.22909375
transcript.pyannote[23].end 84.49034375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 84.84471875
transcript.pyannote[24].end 87.40971875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 88.16909375
transcript.pyannote[25].end 92.97846875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 93.23159375
transcript.pyannote[26].end 94.04159375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 94.58159375
transcript.pyannote[27].end 100.26846875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 100.89284375
transcript.pyannote[28].end 106.02284375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 106.68096875
transcript.pyannote[29].end 110.25846875
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 110.49471875
transcript.pyannote[30].end 111.54096875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 112.08096875
transcript.pyannote[31].end 113.98784375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 114.40971875
transcript.pyannote[32].end 116.83971875
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 117.41346875
transcript.pyannote[33].end 119.47221875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 120.04596875
transcript.pyannote[34].end 122.03721875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 122.08784375
transcript.pyannote[35].end 123.03284375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 123.50534375
transcript.pyannote[36].end 126.03659375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 126.34034375
transcript.pyannote[37].end 127.33596875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 127.84221875
transcript.pyannote[38].end 129.54659375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 129.79971875
transcript.pyannote[39].end 131.25096875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 131.62221875
transcript.pyannote[40].end 132.51659375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 133.02284375
transcript.pyannote[41].end 133.61346875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 133.98471875
transcript.pyannote[42].end 137.07284375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 137.52846875
transcript.pyannote[43].end 141.35909375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 141.93284375
transcript.pyannote[44].end 142.74284375
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 143.04659375
transcript.pyannote[45].end 147.31596875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 147.88971875
transcript.pyannote[46].end 148.61534375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 149.07096875
transcript.pyannote[47].end 149.35784375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 150.15096875
transcript.pyannote[48].end 150.57284375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 150.91034375
transcript.pyannote[49].end 151.63596875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 152.46284375
transcript.pyannote[50].end 153.23909375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 153.71159375
transcript.pyannote[51].end 154.69034375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 155.23034375
transcript.pyannote[52].end 158.23409375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 158.28471875
transcript.pyannote[53].end 159.43221875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 159.93846875
transcript.pyannote[54].end 161.25471875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 161.77784375
transcript.pyannote[55].end 163.29659375
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 163.70159375
transcript.pyannote[56].end 165.45659375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 165.69284375
transcript.pyannote[57].end 168.78096875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 169.18596875
transcript.pyannote[58].end 171.90284375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 172.35846875
transcript.pyannote[59].end 173.65784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 173.87721875
transcript.pyannote[60].end 174.63659375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 175.00784375
transcript.pyannote[61].end 175.98659375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 176.34096875
transcript.pyannote[62].end 176.84721875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 177.45471875
transcript.pyannote[63].end 180.30659375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 180.81284375
transcript.pyannote[64].end 182.75346875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 182.90534375
transcript.pyannote[65].end 183.83346875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 184.18784375
transcript.pyannote[66].end 194.24534375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 194.66721875
transcript.pyannote[67].end 199.47659375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 199.88159375
transcript.pyannote[68].end 202.27784375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 202.58159375
transcript.pyannote[69].end 204.30284375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 204.92721875
transcript.pyannote[70].end 205.18034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 205.72034375
transcript.pyannote[71].end 207.71159375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 208.13346875
transcript.pyannote[72].end 211.30596875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 211.74471875
transcript.pyannote[73].end 212.94284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 213.29721875
transcript.pyannote[74].end 215.54159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 216.09846875
transcript.pyannote[75].end 217.70159375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 218.39346875
transcript.pyannote[76].end 220.16534375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 220.57034375
transcript.pyannote[77].end 222.61221875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 223.20284375
transcript.pyannote[78].end 225.02534375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 225.34596875
transcript.pyannote[79].end 227.87721875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 228.26534375
transcript.pyannote[80].end 230.79659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 231.28596875
transcript.pyannote[81].end 232.18034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 232.45034375
transcript.pyannote[82].end 235.28534375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 235.67346875
transcript.pyannote[83].end 235.94346875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 236.38221875
transcript.pyannote[84].end 241.22534375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 241.98471875
transcript.pyannote[85].end 244.43159375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 244.49909375
transcript.pyannote[86].end 246.74346875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 246.28784375
transcript.pyannote[87].end 248.17784375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 247.46909375
transcript.pyannote[88].end 259.46721875
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 259.68659375
transcript.pyannote[89].end 265.08659375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 265.45784375
transcript.pyannote[90].end 267.21284375
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 267.53346875
transcript.pyannote[91].end 280.34159375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 280.51034375
transcript.pyannote[92].end 281.47221875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 281.80971875
transcript.pyannote[93].end 291.98534375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 292.33971875
transcript.pyannote[94].end 295.02284375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 295.30971875
transcript.pyannote[95].end 301.08096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 301.89096875
transcript.pyannote[96].end 308.59034375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 308.72534375
transcript.pyannote[97].end 311.76284375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 311.96534375
transcript.pyannote[98].end 317.65221875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 318.27659375
transcript.pyannote[99].end 323.27159375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 323.69346875
transcript.pyannote[100].end 324.94221875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 325.09409375
transcript.pyannote[101].end 328.08096875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 328.24971875
transcript.pyannote[102].end 331.11846875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 331.18596875
transcript.pyannote[103].end 335.62409375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 336.06284375
transcript.pyannote[104].end 342.50909375
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 342.79596875
transcript.pyannote[105].end 346.96409375
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 347.92596875
transcript.pyannote[106].end 348.36471875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 348.56721875
transcript.pyannote[107].end 376.24221875
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 375.34784375
transcript.pyannote[108].end 377.59221875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 377.52471875
transcript.pyannote[109].end 377.87909375
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 377.86221875
transcript.pyannote[110].end 379.00971875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 379.70159375
transcript.pyannote[111].end 381.87846875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 380.30909375
transcript.pyannote[112].end 385.11846875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 383.70096875
transcript.pyannote[113].end 396.59346875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 387.16034375
transcript.pyannote[114].end 387.58221875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 396.59346875
transcript.pyannote[115].end 404.81159375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 399.47909375
transcript.pyannote[116].end 400.25534375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 400.54221875
transcript.pyannote[117].end 401.20034375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 405.36846875
transcript.pyannote[118].end 407.89971875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 405.45284375
transcript.pyannote[119].end 405.48659375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 408.30471875
transcript.pyannote[120].end 413.73846875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 413.38409375
transcript.pyannote[121].end 417.38346875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 417.90659375
transcript.pyannote[122].end 418.56471875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 418.66596875
transcript.pyannote[123].end 422.47971875
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 422.95221875
transcript.pyannote[124].end 435.38909375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 424.65659375
transcript.pyannote[125].end 424.79159375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 430.84971875
transcript.pyannote[126].end 430.96784375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 430.96784375
transcript.pyannote[127].end 431.30534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 431.30534375
transcript.pyannote[128].end 431.33909375
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 435.99659375
transcript.pyannote[129].end 449.24346875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 449.24346875
transcript.pyannote[130].end 454.79534375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 455.25096875
transcript.pyannote[131].end 457.22534375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 456.83721875
transcript.pyannote[132].end 476.86784375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 459.21659375
transcript.pyannote[133].end 459.84096875
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 477.13784375
transcript.pyannote[134].end 483.34784375
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 483.93846875
transcript.pyannote[135].end 488.34284375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 488.91659375
transcript.pyannote[136].end 490.90784375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 491.34659375
transcript.pyannote[137].end 496.98284375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 497.42159375
transcript.pyannote[138].end 502.55159375
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 501.58971875
transcript.pyannote[139].end 502.28159375
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 502.55159375
transcript.pyannote[140].end 515.02221875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 515.12346875
transcript.pyannote[141].end 516.59159375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 516.97971875
transcript.pyannote[142].end 518.17784375
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 517.45221875
transcript.pyannote[143].end 531.23909375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 531.64409375
transcript.pyannote[144].end 531.67784375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 531.67784375
transcript.pyannote[145].end 532.75784375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 531.76221875
transcript.pyannote[146].end 538.41096875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 538.41096875
transcript.pyannote[147].end 542.49471875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 542.49471875
transcript.pyannote[148].end 542.84909375
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 542.84909375
transcript.pyannote[149].end 548.99159375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 548.99159375
transcript.pyannote[150].end 549.22784375
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 549.51471875
transcript.pyannote[151].end 551.28659375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 552.61971875
transcript.pyannote[152].end 566.42346875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 562.99784375
transcript.pyannote[153].end 563.45346875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 566.81159375
transcript.pyannote[154].end 568.66784375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 568.95471875
transcript.pyannote[155].end 573.34221875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 573.51096875
transcript.pyannote[156].end 574.28721875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 574.52346875
transcript.pyannote[157].end 577.37534375
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 576.02534375
transcript.pyannote[158].end 592.10721875
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 592.74846875
transcript.pyannote[159].end 593.87909375
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 594.30096875
transcript.pyannote[160].end 596.07284375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 596.52846875
transcript.pyannote[161].end 598.46909375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 598.75596875
transcript.pyannote[162].end 604.59471875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 604.98284375
transcript.pyannote[163].end 605.89409375
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 607.68284375
transcript.pyannote[164].end 609.30284375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 609.52221875
transcript.pyannote[165].end 610.31534375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 610.92284375
transcript.pyannote[166].end 611.34471875
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 611.74971875
transcript.pyannote[167].end 612.44159375
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 612.79596875
transcript.pyannote[168].end 613.74096875
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 614.56784375
transcript.pyannote[169].end 617.94284375
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 618.29721875
transcript.pyannote[170].end 619.34346875
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 619.61346875
transcript.pyannote[171].end 620.92971875
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 620.98034375
transcript.pyannote[172].end 621.45284375
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 623.17409375
transcript.pyannote[173].end 624.97971875
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 625.41846875
transcript.pyannote[174].end 631.32471875
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 632.11784375
transcript.pyannote[175].end 638.44596875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 637.21409375
transcript.pyannote[176].end 638.46284375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 638.46284375
transcript.pyannote[177].end 638.47971875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 638.49659375
transcript.pyannote[178].end 642.90096875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 643.23846875
transcript.pyannote[179].end 646.05659375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 646.29284375
transcript.pyannote[180].end 648.52034375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 648.70596875
transcript.pyannote[181].end 651.69284375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 652.03034375
transcript.pyannote[182].end 653.95409375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 654.27471875
transcript.pyannote[183].end 656.65409375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 657.04221875
transcript.pyannote[184].end 659.82659375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 659.97846875
transcript.pyannote[185].end 661.73346875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 662.15534375
transcript.pyannote[186].end 663.20159375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 663.53909375
transcript.pyannote[187].end 665.95221875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 666.27284375
transcript.pyannote[188].end 667.84221875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 668.19659375
transcript.pyannote[189].end 669.20909375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 669.31034375
transcript.pyannote[190].end 679.06409375
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 677.08971875
transcript.pyannote[191].end 686.01659375
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 686.26971875
transcript.pyannote[192].end 688.21034375
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 688.44659375
transcript.pyannote[193].end 690.35346875
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 690.74159375
transcript.pyannote[194].end 692.64846875
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 692.98596875
transcript.pyannote[195].end 693.99846875
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 694.26846875
transcript.pyannote[196].end 694.84221875
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 695.43284375
transcript.pyannote[197].end 701.18721875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 703.11096875
transcript.pyannote[198].end 703.16159375
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 703.16159375
transcript.pyannote[199].end 703.60034375
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 703.17846875
transcript.pyannote[200].end 703.58346875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 703.60034375
transcript.pyannote[201].end 703.80284375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 704.39346875
transcript.pyannote[202].end 713.86034375
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 713.15159375
transcript.pyannote[203].end 718.23096875
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 718.46721875
transcript.pyannote[204].end 722.53409375
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 722.63534375
transcript.pyannote[205].end 732.62534375
transcript.pyannote[206].speaker SPEAKER_03
transcript.pyannote[206].start 733.06409375
transcript.pyannote[206].end 738.36284375
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 738.58221875
transcript.pyannote[207].end 739.67909375
transcript.pyannote[208].speaker SPEAKER_03
transcript.pyannote[208].start 740.06721875
transcript.pyannote[208].end 741.24846875
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 741.46784375
transcript.pyannote[209].end 742.48034375
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 743.37471875
transcript.pyannote[210].end 748.11659375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 748.21784375
transcript.pyannote[211].end 751.45784375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 751.67721875
transcript.pyannote[212].end 753.87096875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 754.20846875
transcript.pyannote[213].end 756.94221875
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 757.27971875
transcript.pyannote[214].end 759.82784375
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 760.24971875
transcript.pyannote[215].end 761.51534375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 762.07221875
transcript.pyannote[216].end 763.20284375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 763.57409375
transcript.pyannote[217].end 765.78471875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 765.86909375
transcript.pyannote[218].end 769.95284375
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 771.20159375
transcript.pyannote[219].end 794.48909375
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 772.46721875
transcript.pyannote[220].end 772.56846875
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 794.48909375
transcript.pyannote[221].end 797.22284375
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 797.96534375
transcript.pyannote[222].end 799.06221875
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 799.56846875
transcript.pyannote[223].end 802.21784375
transcript.pyannote[224].speaker SPEAKER_03
transcript.pyannote[224].start 802.55534375
transcript.pyannote[224].end 804.36096875
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 804.88409375
transcript.pyannote[225].end 805.67721875
transcript.pyannote[226].speaker SPEAKER_03
transcript.pyannote[226].start 806.33534375
transcript.pyannote[226].end 808.95096875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 809.45721875
transcript.pyannote[227].end 826.11284375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 826.83846875
transcript.pyannote[228].end 828.82971875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 828.96471875
transcript.pyannote[229].end 834.68534375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 835.05659375
transcript.pyannote[230].end 838.02659375
transcript.pyannote[231].speaker SPEAKER_03
transcript.pyannote[231].start 838.02659375
transcript.pyannote[231].end 842.12721875
transcript.pyannote[232].speaker SPEAKER_03
transcript.pyannote[232].start 842.43096875
transcript.pyannote[232].end 845.13096875
transcript.pyannote[233].speaker SPEAKER_03
transcript.pyannote[233].start 845.62034375
transcript.pyannote[233].end 849.36659375
transcript.pyannote[234].speaker SPEAKER_03
transcript.pyannote[234].start 849.51846875
transcript.pyannote[234].end 851.89784375
transcript.pyannote[235].speaker SPEAKER_03
transcript.pyannote[235].start 852.84284375
transcript.pyannote[235].end 853.65284375
transcript.pyannote[236].speaker SPEAKER_03
transcript.pyannote[236].start 853.95659375
transcript.pyannote[236].end 856.82534375
transcript.pyannote[237].speaker SPEAKER_03
transcript.pyannote[237].start 857.07846875
transcript.pyannote[237].end 861.24659375
transcript.pyannote[238].speaker SPEAKER_03
transcript.pyannote[238].start 861.60096875
transcript.pyannote[238].end 866.10659375
transcript.pyannote[239].speaker SPEAKER_03
transcript.pyannote[239].start 866.62971875
transcript.pyannote[239].end 870.27471875
transcript.pyannote[240].speaker SPEAKER_03
transcript.pyannote[240].start 870.66284375
transcript.pyannote[240].end 878.34096875
transcript.pyannote[241].speaker SPEAKER_03
transcript.pyannote[241].start 878.52659375
transcript.pyannote[241].end 882.34034375
transcript.pyannote[242].speaker SPEAKER_03
transcript.pyannote[242].start 882.82971875
transcript.pyannote[242].end 888.70221875
transcript.pyannote[243].speaker SPEAKER_03
transcript.pyannote[243].start 889.15784375
transcript.pyannote[243].end 901.13909375
transcript.pyannote[244].speaker SPEAKER_03
transcript.pyannote[244].start 901.44284375
transcript.pyannote[244].end 903.24846875
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 903.72096875
transcript.pyannote[245].end 903.92346875
transcript.pyannote[246].speaker SPEAKER_03
transcript.pyannote[246].start 904.09221875
transcript.pyannote[246].end 905.03721875
transcript.pyannote[247].speaker SPEAKER_03
transcript.pyannote[247].start 905.59409375
transcript.pyannote[247].end 906.85971875
transcript.pyannote[248].speaker SPEAKER_03
transcript.pyannote[248].start 907.56846875
transcript.pyannote[248].end 909.84659375
transcript.pyannote[249].speaker SPEAKER_03
transcript.pyannote[249].start 909.98159375
transcript.pyannote[249].end 912.96846875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 912.96846875
transcript.pyannote[250].end 913.10346875
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 914.26784375
transcript.pyannote[251].end 924.03846875
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 924.22409375
transcript.pyannote[252].end 925.81034375
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 925.99596875
transcript.pyannote[253].end 927.27846875
transcript.pyannote[254].speaker SPEAKER_03
transcript.pyannote[254].start 927.27846875
transcript.pyannote[254].end 930.90659375
transcript.pyannote[255].speaker SPEAKER_03
transcript.pyannote[255].start 931.56471875
transcript.pyannote[255].end 932.29034375
transcript.pyannote[256].speaker SPEAKER_03
transcript.pyannote[256].start 932.59409375
transcript.pyannote[256].end 933.20159375
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 982.17284375
transcript.pyannote[257].end 986.59409375
transcript.whisperx[0].start 15.735
transcript.whisperx[0].end 19.318
transcript.whisperx[0].text 謝主席 有請卓院長麻煩再請卓院長備詢卓院長 辛苦了
transcript.whisperx[1].start 32.158
transcript.whisperx[1].end 60.338
transcript.whisperx[1].text 院長要撐住啊更要挺住國人都挺住我們一定跟國人一起站在一起挺住那你挺住的力道要特別特別的大然後率領著我們所有的這些閣員一起大家共同挺住因為面對台灣內有國會的不正常外有川普的千變亂化所以這是急劇挑戰那我個人
transcript.whisperx[2].start 61.121
transcript.whisperx[2].end 87.143
transcript.whisperx[2].text 一直感覺啦,我的感受是這樣子這個比疫情的時候更加的嚴重甚至挑戰的面向會更多、更廣然後擔任行政院的院長基本上要率領各位面對這樣的一個挑戰跟衝擊所以我才會特別跟院長講說一定要挺住啦,要撐住啦
transcript.whisperx[3].start 88.22
transcript.whisperx[3].end 116.517
transcript.whisperx[3].text 你看在4月13號你特別攔下到高雄去跟產業界來座談那現在這個關稅戰已經慢慢有在浮現兩件事情就請教院長第一個這個AI的產業中最重要的核心顯示卡等這類的電子零組件已經開始準備在漲價那未來他可能有相關的這些骨牌的效應會持續的一直延伸下來
transcript.whisperx[4].start 117.486
transcript.whisperx[4].end 141.011
transcript.whisperx[4].text 那最後可能會導致衝擊到民生的經濟萬物皆漲行政院要如何做因應這是第一件事情那第二件事情曾經也是我們行政院的副院長現在是高雄市的連任的市長與你一起參加座談會的時候特別當你的面提出來希望可以調降這個存款的準備率
transcript.whisperx[5].start 142.057
transcript.whisperx[5].end 161.109
transcript.whisperx[5].text 院長當然有做一個簡單的回應,簽立法動全身,那院長到目前為止有沒有什麼改變?有沒有什麼因應之道?因為畢竟是同黨的,然後也是直轄市執政的首長來對你提出這樣建議,這個社會相當關注,請院長簡單回顧這兩件事情。
transcript.whisperx[6].start 165.725
transcript.whisperx[6].end 178.682
transcript.whisperx[6].text 好的 第一件我們在伺服器跟顯示卡是在我們自通訊產業電視產業當中在蘇美最重要的大宗產品之一它一旦關稅加重於現在的負擔對整個
transcript.whisperx[7].start 181.915
transcript.whisperx[7].end 204.186
transcript.whisperx[7].text 這個產業鏈來講都是一個成本的增加所以我們在支撐的產業的需求方面我們就提出了支持的計畫從各方面來協助大家能夠轉移市場開發市場進行研發甚至做其他更多的行政上的一個成本的降低等等這是第一個部分但是我們會把它列為很重要因為台灣不只支持有高科技
transcript.whisperx[8].start 205.921
transcript.whisperx[8].end 217.237
transcript.whisperx[8].text 影響帶的這個中小企業 傳統企業更是重要 更是影響更大那第二個問題是那天陳其邁市長提到的這個問題那就是那幾天當中
transcript.whisperx[9].start 218.424
transcript.whisperx[9].end 240.901
transcript.whisperx[9].text 不是第一次聽到這個建議所以回來我馬上有跟我們央行的總裁 楊總裁我請教他說這個真的是牽一髮而動全身對銀行來講可能讓他的資金更寬鬆 更餘裕但對市場來講會不會產生一個什麼樣的訊息對金融的安全會不會產生一樣什麼樣的訊息我請央行總裁能夠
transcript.whisperx[10].start 242.085
transcript.whisperx[10].end 266.997
transcript.whisperx[10].text 去理性的討論內部討論這個事情所以還沒有做最後的結論嘛對不對你可以問一下央行總裁我還是請院長可能要快速因應喔因為千變萬化的川普我們要如何去做最快速的積極的因應真的是還是有老院長的智慧了那第二件事情再過15天我們就要報稅那院長已經有責成財政部針對這次的報稅可以延到6月底但是這個面向不寬不管
transcript.whisperx[11].start 267.637
transcript.whisperx[11].end 294.435
transcript.whisperx[11].text 如果面對到過去的疫情來講對上過去的疫情來講基本上它延長的時間還有面向包含可能會有人被減薪減班甚至有失業甚至會造成一些衝擊是不是可以再折騰財政部這邊能針對在這個報稅的過程裡面可以朝向更寬敞的時間然後甚至也可以提出這個分期的這樣的一個繳稅可不可以過去疫情期間曾經有過這樣的歷史
transcript.whisperx[12].start 295.356
transcript.whisperx[12].end 320.761
transcript.whisperx[12].text 我想那個時候主要是要減輕大家的負擔之外一個重要因素是讓大家不要群聚免得這個疫情擴大那這一次我們也是一樣除了希望大家能夠紓解一下壓力之外就在這一段時間讓所有的廠商或是個人盡量去面對關稅做內部公司產業的自我調適把重要的時間精神放在這裡報稅的部分可以往後延一下讓大家能夠習慣這個動作所以
transcript.whisperx[13].start 324.322
transcript.whisperx[13].end 344.499
transcript.whisperx[13].text 往後延增加一個月並不是降稅啦 是增加時間但這個也會增加我們財政部相當多的成本那天部長有跟我說明這個事情我說該吸收我們就吸收 這個沒有問題對 我當然不是講降稅 我是講說延後報稅嘛這時間能不能再往後延 不是只有一個月的時間啦能不能 針對失業的 針對減班的 針對相關衝擊的產業
transcript.whisperx[14].start 347.964
transcript.whisperx[14].end 375.9
transcript.whisperx[14].text 可以嗎跟委員報告您提的事就是報稅就是所得稅的結算申報原來是在五月份一個月那現在延長到六月底的時候有兩個月可以去申報但是呢如果他受到這個有關財務上的衝擊的話那他可以去申請延期繳稅也可以做分期繳稅分期那我們可以分36期就分三年來繳稅所以申報有已經寬了一個月然後繳稅期限也可以讓他往後延
transcript.whisperx[15].start 376.28
transcript.whisperx[15].end 402.057
transcript.whisperx[15].text 分期這個我都很清楚我強調是延長就像你講的五月六月我們現在可以延到六月底能不能再延嘛它是申報 這是申報的動作那繳稅的話可以申請延期或者是三年期間的分期這樣子讓它可以減輕有關資金上的壓力我們現在同意報稅延長一個月嘛 對不對沒有錯嘛能不能面對這幾個我剛剛講的狀況可以再延長
transcript.whisperx[16].start 405.559
transcript.whisperx[16].end 421.838
transcript.whisperx[16].text 我這樣的題目很清楚嘛,能不能研議嘛是,我想這個部分我們會用從寬從幽的方式來處理好啦,就請院長是不是可以就哲程來做一些相關的研議啦,可不可以應該可以吧我想申報應該可以,他可以先申報嘛,對
transcript.whisperx[17].start 423.121
transcript.whisperx[17].end 447.264
transcript.whisperx[17].text 我們不需要糾結這個事情好不好,我覺得這樣很奇怪你們就可以主動去延長申報到六月底,原本是五月底嘛那我想因為剛剛特別提到跟院長提醒讓他們了解這個事情相關的一些衝擊慢慢在弧限了,在弧限的過程裡面我們希望讓這些產業可以專注他去應應這些衝擊所以他報稅的期間能不能再延長再寬鬆一點
transcript.whisperx[18].start 448.385
transcript.whisperx[18].end 463.645
transcript.whisperx[18].text 就這樣而已啊我跟委員報告現在因為他整個電腦程式程序都要更改目前更改的程式是到六月底那我也希望說這個時候大家能夠請委員長我們就已經有更改到月月底那我剛剛特別提到AI的相關的一些零組件都已經受到衝擊了已經在浮現了
transcript.whisperx[19].start 465.387
transcript.whisperx[19].end 465.967
transcript.whisperx[19].text 第一個我希望我們這個
transcript.whisperx[20].start 491.46
transcript.whisperx[20].end 515.756
transcript.whisperx[20].text 形勢能夠迅速的趨向穩定下來大家能夠在這個時間內完成再來一直往後延對我們國家的現金的流動是有一些影響的我們糾結在這個地方不對啦我是講說可能會立即受到衝擊的這些三文產業因為我們要做很快速的應變嘛我們今天已經馬上應變可以全部都可以延長一個月對不對你已經做這個應變了啊
transcript.whisperx[21].start 517.137
transcript.whisperx[21].end 541.984
transcript.whisperx[21].text 我是講說有些敏感的產業 特殊的產業立即會產生到如同我剛剛跟你講的AI相關的這些零組件是不是大家還有更長的一個緩衝擊來做申報能不能嚴厲嘛 你就打火槍就好了啊能不能嚴厲 不要馬上答應嘛我們現在嚴這個時間都設計好了如果到六月的時候真的有情況發生我們當然會預先來做預判我們就朝向可以嚴厲來做相關的因應了好不好
transcript.whisperx[22].start 542.924
transcript.whisperx[22].end 565.186
transcript.whisperx[22].text 我們這樣處理事情,我覺得您的速度太慢,您的變化,您的應變,這樣是不及格,抱歉喔真的很抱歉,部長你先回吧不能太僵硬啦,自己都會主動延一個月,我只是提供可能會一直面對到的相關的歷史性的這些傷害的產業能不能有更寬鬆的這樣申報的期限部長你這樣答我會覺得,我聽起來很難聽啦
transcript.whisperx[23].start 567.372
transcript.whisperx[23].end 591.503
transcript.whisperx[23].text 32%的稅率上週五台灣也正式跟美方進行第一次的會談嘛對不對那目前都朝向好的方向嘛應該是這樣嘛應該是很順利的展開第一次的但是美國貿易代表所在3月31去公布2025的對外貿易障礙的評估報告中點名台灣的豬牛馬鈴薯稻米及基改食品設有貿易障礙這是一個事實那國人就非常擔心嘛台灣的農糧實際上會不會變成談判桌上的籌碼
transcript.whisperx[24].start 593.053
transcript.whisperx[24].end 619.732
transcript.whisperx[24].text 台灣以農為本院長非常清楚我們再怎麼樣的談判坦白講這一次川普的事件基本上還是以美國利益為導向最終還是以政治來做解決我個人的看法所以農業上院長能不能承諾我再怎麼樣都不可以成為談判上的籌碼甚至於絕對不能讓步因為
transcript.whisperx[25].start 623.266
transcript.whisperx[25].end 647.772
transcript.whisperx[25].text 食安是國人最低的要求那農產是我們整個國安的戰備上的一個位階所以院長能不能直接承諾我說農業絕對不能成為談判桌上的一個籌碼我們要設最低的底線第一次的談判結束裡面對等關稅跟非關稅貿易障礙跟出國管制都是重要議題當中的一部分所以其中談到非關稅貿易障礙
transcript.whisperx[26].start 648.812
transcript.whisperx[26].end 660.922
transcript.whisperx[26].text 非關稅貿易障礙不僅在農業在工業上也有那這個都是將來大家必須面對的那我們對於國人的健康安全我們會很重視的所以基於健康安全也基於我們消費的習慣
transcript.whisperx[27].start 662.402
transcript.whisperx[27].end 687.555
transcript.whisperx[27].text 這個是我們的原則但是我們要考量的也包括國際的標準也包括有沒有科學的認證如果在這個通常考量底下我們才能在談判的桌上去跟對方表示我方國家所需要的因為我們國情是所需那這一點我們是列為談判的重點院長啦 台灣的榮養跟食安這個絕對不能成為談判桌上的籌碼我再實行 我已經強調三次了我們自己也編了180億來因應這次的關稅衝擊嘛 對不對
transcript.whisperx[28].start 690.797
transcript.whisperx[28].end 700.31
transcript.whisperx[28].text 那是不是有能比照2023年易貨特別預算,農業部排編列了268億,投入了改善農水路、漁港、養殖等這個基礎設施?
transcript.whisperx[29].start 704.471
transcript.whisperx[29].end 731.258
transcript.whisperx[29].text 我跟委員報告我們現在的支持方案裡面最主要是針對受影響的產業去協助那您剛才提到的農水路的部分我那個是一個比喻我是說1號車我們還編了268億對不對我們現在當然要趕快來最好是可以馬上成立一個針對農業面對到對等關稅的相關的營業小組甚至我在這邊也希望院長能不能責成一位政委來統籌這件事情從農糧從食安
transcript.whisperx[30].start 733.158
transcript.whisperx[30].end 735.581
transcript.whisperx[30].text 所以我特別剛剛強調說農業絕對不能成為這一次的對等關稅談判桌上的一個籌碼我強調第四次了
transcript.whisperx[31].start 743.424
transcript.whisperx[31].end 769.906
transcript.whisperx[31].text 疫後特別條例非常的成功因為他是針對普遍性國人受到疫情的影響那這一次我們是要針對受到美國關稅影響國際貿易情勢改變的這些對象所以基本上有一些不完全相同的地方所以我們針對這產業受影響了我們給他一些支持讓他研發開發多元市場等等那倒不是說我們想要把這個農水路水庫設施做好那是用一般的年度預算來做的
transcript.whisperx[32].start 771.506
transcript.whisperx[32].end 796.788
transcript.whisperx[32].text 我跟委員補充一下就是您剛才所關切的其實在關稅的部分在農業部本身我們就有一個因應小組那我們所研析所評估的我們隨時會提供給我們的談判小組做一個討論所以基本上在農業部已經有一個因應小組然後這個因應小組的一些評估跟他的一個建議都會進到我們的談判小組裡面部長你如果覺得說農業部的因應小組就已足夠
transcript.whisperx[33].start 798.038
transcript.whisperx[33].end 825.807
transcript.whisperx[33].text 我也可以接受我們現在講了農業部這一次面對到預算被大刪減大凍結對農業部有造成什麼樣影響能不能簡單說一下我們這一次的預算被刪了20.14億那其中被刪了因為我們在今年度提了非常多的新的工作特別是院長非常重視的所謂的那個那個系統性的水治理那系統性的水治理牽涉到四山防洪
transcript.whisperx[34].start 827.037
transcript.whisperx[34].end 850.968
transcript.whisperx[34].text 牽涉到集水區的一個整治牽涉到下游的濃水路的一個建設那這個建設基本上都已經因我們的20.14億的預算被刪而受到影響農業部好不容易從112年當時的農委會我們因為促改讓他可以升級到變成農業部好不容易相關的經費可以逐步逐步的到位多增加一點預算
transcript.whisperx[35].start 852.884
transcript.whisperx[35].end 882.027
transcript.whisperx[35].text 非常符合公平與正義因為不正義太久了對台南農業不正義太久了哪有說今天農業部的預算增加一些被當成在野黨的這個刪減相關預算的進卵我覺得實在是講不過去我們對農業已經不公平太久時間了還有民進黨執政可以讓農委會變成農業部增加幾次的預算是有相關的項目跟計畫必須要去執行就好比說你今天的冷鏈
transcript.whisperx[36].start 882.828
transcript.whisperx[36].end 902.894
transcript.whisperx[36].text 今天能力我們去補助,讓農民可以在農產品提升相關的競爭我們補助相關提出申請的人,他們還是要自從對等的比例的預算經費來做處理這也帶動國內的一些產業的需求去做一些刺激但是你看今天煤圈被統三
transcript.whisperx[37].start 906.455
transcript.whisperx[37].end 932.146
transcript.whisperx[37].text 60% 然後環貫非洲豬瘟 邊境管制及國內防疫整理計畫被刪了6000萬 這個有沒有影響這都有影響 特別是我們在非洲豬瘟的話 我們守得非常努力那相關的這些沒宣費 最主要就是做這些宣導 包括在飛機上 在邊境還有在我們的民間 都有做這樣的一個宣導剛剛被延長要報稅的時間拖太久了太多了 還有龍水
transcript.whisperx[38].start 982.21
transcript.whisperx[38].end 983.234
transcript.whisperx[38].text 好 謝謝 謝謝劉建國委員指揮謝謝卓院長 相關部會首長貝雪
gazette.lineno 622
gazette.blocks[0][0] 劉委員建國:(11時18分)謝謝主席。有請卓院長。
gazette.blocks[1][0] 主席:麻煩再請卓院長備詢。
gazette.blocks[2][0] 卓院長榮泰:劉委員好。
gazette.blocks[3][0] 劉委員建國:院長辛苦了。
gazette.blocks[4][0] 卓院長榮泰:不會,大家都辛苦。
gazette.blocks[5][0] 劉委員建國:院長要撐住,更要挺住。
gazette.blocks[6][0] 卓院長榮泰:會,國人都挺住,我們一定跟國人站在一起挺住。
gazette.blocks[7][0] 劉委員建國:對,你挺住的力道要特別的大。
gazette.blocks[8][0] 卓院長榮泰:好的。
gazette.blocks[9][0] 劉委員建國:然後率領我們所有的閣員大家一起共同挺住,因為面對臺灣內有國會的不正常,外有川普的千變萬化,所以這是極具挑戰。我的感受是這樣子,我個人一直感覺這個比疫情的時候更加的嚴重,甚至於挑戰的面向會更多、更廣。擔任行政院的院長基本上要率領閣揆面對這樣的挑戰跟衝擊,所以我才會特別跟院長講一定要挺住,要撐住。
gazette.blocks[9][1] 4月13號院長特別南下高雄跟產業界座談,現在這個關稅戰已經慢慢浮現,兩件事情請教院長,第一個,AI產業中最重要的核心,顯示卡等這類電子零組件已經開始準備漲價,未來可能會有相關骨牌效應持續一直延伸下來,最後可能衝擊到民生經濟,導致萬物皆漲,行政院要如何因應?這是第一件事情。
gazette.blocks[9][2] 第二件事情,曾經也是行政院副院長,而現在是高雄市連任的市長在與你一起參加座談會的時候,特別當面提出建議,希望可以調降存款準備率,院長當時做了一個簡單回應,表示牽一髮而動全身。請問院長,到目前為止,有沒有什麼改變?有沒有什麼因應之道?畢竟這是同黨的直轄市執政首長對你提出的建言,社會相當關注,請院長簡單回復這兩件事情。
gazette.blocks[10][0] 卓院長榮泰:好的,第一件,伺服器跟顯示卡在我們資通訊產業、電子產業當中,是輸美最重要的大宗產品之一,一旦關稅加重於現在的負擔,對整個產業鏈來講,都是成本的增加,所以我們在支撐產業的需求方面,提出了支持計畫,從各方面來協助大家轉移市場、開發市場、進行研發,甚至做其他更多行政上的成本降低等等,這是第一個部分,我們會把它列為很重要的課題,但是臺灣不是只有高科技業,影響到的中小企業、傳統企業更是重要,影響也更大。
gazette.blocks[10][1] 第二個問題,那天陳其邁市長提到的這個問題,在那幾天當中,我不是第一次聽到這樣的建議,所以回來我馬上請教央行楊總裁這個牽一髮而動全身的問題,對銀行來講,可能讓它的資金更寬鬆、更餘裕,但對市場來講,會不會產生一個什麼樣的訊息、對金融安全會不會產生什麼樣的訊息?我請央行總裁在內部能夠理性討論這個事情。
gazette.blocks[11][0] 劉委員建國:所以還沒有做最後的結論?
gazette.blocks[12][0] 卓院長榮泰:你可以問一下央行總裁……
gazette.blocks[13][0] 劉委員建國:我還是請院長可能要快速因應,因為針對千變萬化的川普,我們要如何做最快速、積極的因應,還是要有勞院長的智慧。
gazette.blocks[13][1] 第二件事情,再過15天就要報稅,院長已經責成財政部針對這次的報稅可以延到6月底,但是這個面向不寬不廣,面對過去的疫情、對照過去的疫情來講,基本上,延長的時間還有面向,包含可能有人被減薪、減班,甚至失業、甚至造成一些衝擊,所以是不是可以再責成財政部針對報稅的過程,朝向更寬長的時間,甚至也可以提出分期繳稅的作法,可不可以?
gazette.blocks[14][0] 卓院長榮泰:過去疫情期間,曾經有過這樣的例子,我想那個時候主要除了是要減輕大家的負擔之外,一個重要的因素是讓大家不要群聚,免得疫情擴大。這一次也是一樣,除了希望大家能夠紓緩壓力之外,在這段時間,可以讓所有廠商或個人儘量去面對關稅做內部公司產業的自我調適,把重要的時間、精神放在這裡,報稅的部分可以往後延一下,讓大家能夠習慣這個動作,所以往後延,增加一個月時間,這並不是降稅,而是增加時間,但這個也會增加財政部相當多的成本,那天部長跟我說明這個事情時,我說該吸收我們就吸收,這個沒有問題。
gazette.blocks[15][0] 劉委員建國:對,我當然不是講降稅,我是說延後報稅,就是時間能不能再往後延,而不是只有一個月的時間?針對失業的、針對減班的、針對衝擊的相關產業,可以嗎?
gazette.blocks[16][0] 莊部長翠雲:跟委員報告,您提的是報稅,就是所得稅的結算申報,原來是在5月份一個月,現在延長到6月底,所以有兩個月時間可以申報,但是如果他受到有關財務上的衝擊,可以申請延期繳稅,也可以分期繳稅,我們可以分36期、三年來繳稅,所以申報已經寬了一個月,然後繳稅期限也可以讓他往後延……
gazette.blocks[17][0] 劉委員建國:不是,部長,分期這個我都很清楚,我強調的是延長。
gazette.blocks[18][0] 莊部長翠雲:延長、延後……
gazette.blocks[19][0] 劉委員建國:就像你講的,本來是5月底,現在可以延到6月底,能夠再延嘛!
gazette.blocks[20][0] 莊部長翠雲:延到6月底,它是申報,這只是申報的動作。
gazette.blocks[21][0] 劉委員建國:是。
gazette.blocks[22][0] 莊部長翠雲:那繳稅的話,可以申請延期或者是三年期間的分期,讓他可以減輕有關資金上的壓力。
gazette.blocks[23][0] 劉委員建國:我們現在同意報稅延長一個月,對不對?
gazette.blocks[24][0] 莊部長翠雲:對。
gazette.blocks[25][0] 劉委員建國:沒有錯嘛?
gazette.blocks[26][0] 莊部長翠雲:是。
gazette.blocks[27][0] 劉委員建國:面對這幾個我剛剛講的狀況能不能再延長?我這樣的題目很清楚,能不能研議嘛?
gazette.blocks[28][0] 莊部長翠雲:是,我想這個部分我們會用從寬從優的方式來處理。
gazette.blocks[29][0] 劉委員建國:就請院長是不是可以責成做一些相關的研議,可不可以?應該可以吧?
gazette.blocks[30][0] 莊部長翠雲:我想申報應該……他可以先申報嘛!是繳期往後延。
gazette.blocks[31][0] 劉委員建國:我們不需要糾結這個事情,好不好?我覺得這樣很奇怪,你們就可以主動去延長申報到6月底,原本是5月底嘛!那我剛剛也特別跟院長提醒兩件事情,相關的一些衝擊慢慢在浮現了,在浮現的過程裡面,我們希望讓這些產業可以專注去因應這些衝擊,所以他報稅的期間能不能再延長、再寬鬆一點,就這樣而已啊!
gazette.blocks[32][0] 卓院長榮泰:我跟委員報告,現在因為整個電腦程式、程序都要更改,目前更改的程式就是到6月底,那我也希望說這個時候大家能夠……
gazette.blocks[33][0] 劉委員建國:院長,我們就已經有更改到6月底……
gazette.blocks[34][0] 卓院長榮泰:對。
gazette.blocks[35][0] 劉委員建國:那我剛剛特別提到AI相關的一些零組件都已經受到衝擊了,影響已經在浮現了,那剛才院長答復我的是,希望他們可以專注在應對這次的關稅,所以報稅我們才會主動多延長一個月的時間,對不對?那未來相關的產業可能會有立即的衝擊,是不是可以再有更長的緩衝時間給他們來做申報,就這樣而已啊?
gazette.blocks[36][0] 卓院長榮泰:第一個,我希望這個情勢能夠迅速的穩定下來,大家能夠在這個時間內完成。再來,一直往後延,對我們國家的現金流動是有一些影響的,這個我必須……
gazette.blocks[37][0] 劉委員建國:院長,我們糾結在這個地方不對啦!我是講說可能會立即受到衝擊的這些相關產業,因為我們要做很快速的應變嘛!我們接下來就馬上應變,全部都可以延長一個月,對不對?你已經做了這個應變了啊!那我是講說有些敏感的產業、特殊的產業立即會產生……如同我剛剛跟你講的AI相關的這些零組件,是不是大家還有更長的緩衝期來做申報,能不能研議嘛?你就答復我這樣就好了啊!能不能研議?不用馬上答應嘛!
gazette.blocks[38][0] 卓院長榮泰:我們要延這個時間都設計好,如果到6月的時候真的有情況發生,我們當然會預先來做預判。
gazette.blocks[39][0] 劉委員建國:我們就朝向可以研議來做相關的因應,好不好?
gazette.blocks[40][0] 卓院長榮泰:好。
gazette.blocks[41][0] 劉委員建國:你們如果是這樣處理事情,我覺得你們的速度太慢,你們的變化、你們的應變是不及格的,不好意思,真的很不好意思。部長,你請回吧!不能太僵硬啦!自己都會主動延一個月,我只是提供可能會預期面對到立即性傷害的這些產業,能不能有更寬鬆的申報期限……
gazette.blocks[42][0] 卓院長榮泰:了解。
gazette.blocks[43][0] 劉委員建國:院長你這樣答復,我聽起來實在很難過啦!
gazette.blocks[43][1] 32%的稅率,上週五臺灣也正式跟美方進行第一次的會談,對不對?那目前都朝向好的方向,應該是這樣嘛?
gazette.blocks[44][0] 卓院長榮泰:應該是很順利的展開第一次的……
gazette.blocks[45][0] 劉委員建國:但是美國貿易代表署在3月31日公布2025對外貿易障礙的評估報告中,點名臺灣的豬、牛、馬鈴薯、稻米及基改食品設有貿易障礙,這是一個事實,那國人就非常擔心臺灣的農糧食安會不會變成談判桌上的籌碼?臺灣以農為本,院長非常清楚,我們再怎麼樣的談判,坦白講啦!這一次川普的事件,基本上還是以美國利益為導向,那最終最終還是以政治來做解決,這是我個人的看法,所以院長能不能承諾我,農業再怎麼樣都不可以成為談判上的籌碼,甚至於絕對不能讓步,因為食安是國人最低的要求,農產是我們整個國安戰備上的位階,所以院長能不能直接承諾我,農業絕對不能成為談判桌上的籌碼,我們要設最低的底線?
gazette.blocks[46][0] 卓院長榮泰:報告委員,第一次的談判接觸裡面,對等關稅跟非關稅貿易障礙跟出口管制,都是重要議題當中的一部分,所以其中談到非關稅貿易障礙,非關稅貿易障礙不僅在農業,在工業上也有,這個都是將來大家必須面對的。我們對於國人的健康安全會很重視,所以基於健康安全,也基於我們消費的習慣,這個是我們的原則,但是我們要考量的也包括國際的標準,也包括有沒有科學的認證,在這個通盤考量底下,我們才能在談判的桌上去跟對方表示我方國家所需要的,因為我們國情之所需,這個我們是列為談判的重點。
gazette.blocks[47][0] 劉委員建國:我這邊具體要求院長,臺灣的農糧跟食安絕對不能成為談判桌上的籌碼,我已經強調三次了,我們自己也編了180億來因應這次的關稅衝擊,對不對?是不是能比照2023年疫後特別預算,農業部還編列了268億投入改善農水路、漁港、養殖等基礎設施,可以嗎?
gazette.blocks[48][0] 卓院長榮泰:請部長講一下。
gazette.blocks[49][0] 陳部長駿季:我跟委員報告,我們現在的支持方案裡面最主要是針對受影響的產業去協助,你剛才提到農水路的部分,在我們的……
gazette.blocks[50][0] 劉委員建國:我那是個比喻,我是說疫後條例我們還編了268億,對不對?
gazette.blocks[51][0] 陳部長駿季:是。
gazette.blocks[52][0] 劉委員建國:我們現在當然要趕快,最好是可以馬上成立一個針對農業面對到對等關稅的相關因應小組,甚至我們在這邊也希望院長能不能責成一位政委來統籌這件事情?從農糧、從食安,所以我剛剛特別強調,農業絕對不能成為這一次對等關稅談判桌上的一個籌碼,我強調第四次了。
gazette.blocks[53][0] 卓院長榮泰:疫後特別條例非常成功,因為它是針對普遍性國人受到疫情的影響,這一次我們是要針對受到美國關稅影響、國際貿易情勢改變的這些對象,基本上有一些不完全相同的地方,所以我們針對受影響的產業,我們給它一些支持,讓它研發、開發多元市場等等,倒不是說我們想要把農水路、水庫的設施做好,那是用一般的年度預算來做的。
gazette.blocks[54][0] 陳部長駿季:我跟委員補充一下,您剛才所關切的,其實在關稅的部分我們農業部本身就有一個因應小組,我們所研析、所評估的部分隨時會提供給談判小組做個討論,所以基本上農業部已經有一個因應小組,然後這個因應小組的一些評估跟建議都會進到我們的談判小組裡面去。
gazette.blocks[55][0] 劉委員建國:部長,您如果覺得農業部的因應小組就已足夠,我也可以接受,我們現在講,農業部這一次面對到預算被大刪減、大凍結,對農業部造成什麼樣影響,能不能簡單說一下?
gazette.blocks[56][0] 陳部長駿季:我們這一次預算被刪了20.14億,其中被刪的部分,因為我們在今年度提了非常多的新工作,特別是院長非常重視所謂系統性的水治理,系統性的水治理牽涉到治山防洪、牽涉到集水區的整治、牽涉到下游農水路的建設,這個建設基本上都已經因我們20.14億的預算被刪而受到影響。
gazette.blocks[57][0] 劉委員建國:農業部好不容易從112年當時農委會因為組改讓它可以升級變成農業部,相關經費好不容易可以逐步、逐步到位,多增加一點預算,非常符合公平與正義,因為不正義太久了、對臺灣的農業不正義太久了,哪有說今天農業部的預算增加一些,就被當成在野黨刪減相關預算的禁臠?我覺得實在是講不過去,我們對農業已經不公平太久的時間了,還好民進黨執政可以讓農委會變成農業部,增加幾十億的預算是有相關的項目跟計畫必須要去執行,就好比今天的冷鏈,我們補助冷鏈讓農民可以在農產品上提升相關的競爭,我們補助相關提出申請的人,他們也要自籌對等比例的預算經費來做處理,這也帶動國內產業的需求去做一些刺激。但是你看媒宣費被統刪60%,防範非洲豬瘟邊境管制及國內防疫整體計畫被刪了6,000萬,這有沒有影響?
gazette.blocks[58][0] 陳部長駿季:這都有影響,特別是我們在非洲豬瘟守得非常非常努力,相關這些媒宣費最主要就是做這些宣導,包括在飛機上、在邊境還有在我們的民間都有做這樣的宣導。
gazette.blocks[59][0] 劉委員建國:我剛剛的時間在延長報稅時間上拖得太久。太多了,還有農水的整合發展計畫被刪了,有沒有影響?
gazette.blocks[60][0] 陳部長駿季:是,絕對有影響。
gazette.blocks[61][0] 劉委員建國:有太多太多的影響,我希望部長和院長可能要好好說清楚,不要有委員在這邊問,但你們的答復好像模稜兩可,也不是非常肯定。我再次強調,農業部可以增加一些預算,這是幾十年來大家努力共同打拚要去支持農業、要去保障農民,因為臺灣以農為本,這是非常重要的一件事情,所以當農業部的預算有增加,被刪之後還被講得一塌糊塗,我覺得行政院跟農業部必須要講清楚,甚至於要為農業跟農民捍衛到底,可不可以?
gazette.blocks[62][0] 卓院長榮泰:謝謝委員的建議,我們請農業部及院裡面也會審慎遵照委員的建議,我們來做思考。
gazette.blocks[63][0] 劉委員建國:好,謝謝。
gazette.blocks[64][0] 主席:謝謝劉建國委員的質詢,謝謝卓院長及相關部會首長備詢。
gazette.blocks[64][1] 報告院會,現在在議場二樓旁咡的是來自南投縣、南投市的好朋友,我們掌聲歡迎。
gazette.blocks[64][2] 接下來請登記第51號鄭正鈐委員質詢。
gazette.agenda.page_end 159
gazette.agenda.meet_id 院會-11-3-7
gazette.agenda.speakers[0] 韓國瑜
gazette.agenda.speakers[1] 蘇清泉
gazette.agenda.speakers[2] 范雲
gazette.agenda.speakers[3] 涂權吉
gazette.agenda.speakers[4] 王美惠
gazette.agenda.speakers[5] 洪孟楷
gazette.agenda.speakers[6] 劉建國
gazette.agenda.speakers[7] 鄭正鈐
gazette.agenda.speakers[8] 陳秀寳
gazette.agenda.speakers[9] 郭昱晴
gazette.agenda.speakers[10] 李柏毅
gazette.agenda.speakers[11] 楊瓊瓔
gazette.agenda.speakers[12] 葉元之
gazette.agenda.page_start 79
gazette.agenda.meetingDate[0] 2025-04-15
gazette.agenda.gazette_id 1143401
gazette.agenda.agenda_lcidc_ids[0] 1143401_00003
gazette.agenda.agenda_lcidc_ids[1] 1143401_00004
gazette.agenda.meet_name 立法院第11屆第3會期第7次會議紀錄
gazette.agenda.content 施政質詢 對行政院院長提出施政方針及施政報告繼續質詢─ 繼續質詢─
gazette.agenda.agenda_id 1143401_00004