iVOD / 160129

Field Value
IVOD_ID 160129
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160129
日期 2025-04-11
會議資料.會議代碼 院會-11-3-7
會議資料.會議代碼:str 第11屆第3會期第7次會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 院會
會議資料.標題 第11屆第3會期第7次會議
影片種類 Clip
開始時間 2025-04-11T16:44:44+08:00
結束時間 2025-04-11T17:01:06+08:00
影片長度 00:16:22
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/612fb6649aede235fb2ae266f758ee3f4ee85e61fece82c2d9574523edc1765d7c5064231c774fdb5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 16:44:44 - 17:01:06
會議時間 2025-04-11T09:00:00+08:00
會議名稱 第11屆第3會期第7次會議(事由:一、覆議案之處理事項(4月11日上午)。二、行政院院長提出針對美國關稅政策因應作為專案報告並備質詢(4月11日下午)。三、對行政院院長提出施政方針及施政報告繼續質詢(4月15日)。四、4月11日上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 6.27471875
transcript.pyannote[0].end 11.57346875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 11.96159375
transcript.pyannote[1].end 14.66159375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 14.12159375
transcript.pyannote[2].end 14.29034375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 14.79659375
transcript.pyannote[3].end 20.41596875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 21.04034375
transcript.pyannote[4].end 33.74721875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 33.94971875
transcript.pyannote[5].end 34.03409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 34.03409375
transcript.pyannote[6].end 35.48534375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 35.48534375
transcript.pyannote[7].end 35.51909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 35.67096875
transcript.pyannote[8].end 35.68784375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 35.68784375
transcript.pyannote[9].end 37.15596875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 37.47659375
transcript.pyannote[10].end 38.57346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 39.11346875
transcript.pyannote[11].end 40.00784375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 39.16409375
transcript.pyannote[12].end 39.82221875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 40.95284375
transcript.pyannote[13].end 43.31534375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 48.27659375
transcript.pyannote[14].end 49.32284375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 48.44534375
transcript.pyannote[15].end 49.55909375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 49.55909375
transcript.pyannote[16].end 49.60971875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 49.60971875
transcript.pyannote[17].end 49.67721875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 49.67721875
transcript.pyannote[18].end 49.82909375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 49.82909375
transcript.pyannote[19].end 49.96409375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 49.96409375
transcript.pyannote[20].end 54.09846875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 50.52096875
transcript.pyannote[21].end 51.29721875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 55.24596875
transcript.pyannote[22].end 58.11471875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 58.90784375
transcript.pyannote[23].end 58.97534375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 58.97534375
transcript.pyannote[24].end 58.99221875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 58.99221875
transcript.pyannote[25].end 59.59971875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 60.10596875
transcript.pyannote[26].end 60.67971875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 63.04221875
transcript.pyannote[27].end 67.27784375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 64.72971875
transcript.pyannote[28].end 64.78034375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 64.78034375
transcript.pyannote[29].end 64.93221875
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 64.93221875
transcript.pyannote[30].end 66.14721875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 66.45096875
transcript.pyannote[31].end 66.68721875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 67.27784375
transcript.pyannote[32].end 67.59846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 67.59846875
transcript.pyannote[33].end 68.32409375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 68.52659375
transcript.pyannote[34].end 68.57721875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 68.57721875
transcript.pyannote[35].end 69.87659375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 70.28159375
transcript.pyannote[36].end 71.31096875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 71.41221875
transcript.pyannote[37].end 72.17159375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 72.55971875
transcript.pyannote[38].end 74.14596875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 75.04034375
transcript.pyannote[39].end 76.23846875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 76.66034375
transcript.pyannote[40].end 78.55034375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 78.85409375
transcript.pyannote[41].end 81.89159375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 82.17846875
transcript.pyannote[42].end 82.68471875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 83.24159375
transcript.pyannote[43].end 85.50284375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 85.58721875
transcript.pyannote[44].end 95.00346875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 91.74659375
transcript.pyannote[45].end 92.42159375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 96.26909375
transcript.pyannote[46].end 98.95221875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 99.18846875
transcript.pyannote[47].end 100.97721875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 100.97721875
transcript.pyannote[48].end 120.83909375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 121.36221875
transcript.pyannote[49].end 125.41221875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 125.68221875
transcript.pyannote[50].end 135.75659375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 136.21221875
transcript.pyannote[51].end 137.42721875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 137.52846875
transcript.pyannote[52].end 142.84409375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 142.96221875
transcript.pyannote[53].end 150.94409375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 150.94409375
transcript.pyannote[54].end 150.97784375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 151.45034375
transcript.pyannote[55].end 151.50096875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 151.50096875
transcript.pyannote[56].end 152.83409375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 153.17159375
transcript.pyannote[57].end 161.96346875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 156.83346875
transcript.pyannote[58].end 157.20471875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 158.95971875
transcript.pyannote[59].end 160.59659375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 161.96346875
transcript.pyannote[60].end 162.53721875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 162.53721875
transcript.pyannote[61].end 162.57096875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 162.57096875
transcript.pyannote[62].end 162.63846875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 162.63846875
transcript.pyannote[63].end 162.67221875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 162.67221875
transcript.pyannote[64].end 162.73971875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 162.73971875
transcript.pyannote[65].end 162.80721875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 162.80721875
transcript.pyannote[66].end 165.25409375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 165.84471875
transcript.pyannote[67].end 166.57034375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 166.92471875
transcript.pyannote[68].end 169.65846875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 170.04659375
transcript.pyannote[69].end 176.05409375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 176.54346875
transcript.pyannote[70].end 179.42909375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 180.10409375
transcript.pyannote[71].end 180.99846875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 181.33596875
transcript.pyannote[72].end 183.96846875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 184.49159375
transcript.pyannote[73].end 188.82846875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 188.92971875
transcript.pyannote[74].end 191.81534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 192.43971875
transcript.pyannote[75].end 209.63534375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 210.19221875
transcript.pyannote[76].end 211.03596875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 211.57596875
transcript.pyannote[77].end 213.95534375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 211.71096875
transcript.pyannote[78].end 212.20034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 215.13659375
transcript.pyannote[79].end 232.01159375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 232.48409375
transcript.pyannote[80].end 233.81721875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 234.76221875
transcript.pyannote[81].end 235.20096875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 235.74096875
transcript.pyannote[82].end 239.60534375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 239.90909375
transcript.pyannote[83].end 244.58346875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 244.78596875
transcript.pyannote[84].end 253.40909375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 254.10096875
transcript.pyannote[85].end 257.64471875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 258.10034375
transcript.pyannote[86].end 259.02846875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 259.02846875
transcript.pyannote[87].end 260.80034375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 261.22221875
transcript.pyannote[88].end 264.88409375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 265.22159375
transcript.pyannote[89].end 268.46159375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 267.49971875
transcript.pyannote[90].end 268.02284375
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 268.66409375
transcript.pyannote[91].end 270.06471875
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 271.44846875
transcript.pyannote[92].end 274.67159375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 274.67159375
transcript.pyannote[93].end 274.70534375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 274.70534375
transcript.pyannote[94].end 274.72221875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 274.87409375
transcript.pyannote[95].end 277.57409375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 274.94159375
transcript.pyannote[96].end 275.16096875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 277.30409375
transcript.pyannote[97].end 277.55721875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 277.57409375
transcript.pyannote[98].end 280.20659375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 280.62846875
transcript.pyannote[99].end 283.48034375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 283.71659375
transcript.pyannote[100].end 284.71221875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 285.67409375
transcript.pyannote[101].end 290.24721875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 290.77034375
transcript.pyannote[102].end 291.14159375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 291.59721875
transcript.pyannote[103].end 294.78659375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 295.07346875
transcript.pyannote[104].end 296.49096875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 297.01409375
transcript.pyannote[105].end 298.95471875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 299.61284375
transcript.pyannote[106].end 301.75596875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 302.02596875
transcript.pyannote[107].end 305.09721875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 305.50221875
transcript.pyannote[108].end 307.24034375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 307.40909375
transcript.pyannote[109].end 307.94909375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 308.23596875
transcript.pyannote[110].end 311.07096875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 311.66159375
transcript.pyannote[111].end 320.43659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 320.70659375
transcript.pyannote[112].end 326.46096875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 327.03471875
transcript.pyannote[113].end 333.78471875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 333.78471875
transcript.pyannote[114].end 334.10534375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 334.10534375
transcript.pyannote[115].end 334.94909375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 335.42159375
transcript.pyannote[116].end 339.43784375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 339.91034375
transcript.pyannote[117].end 345.68159375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 346.00221875
transcript.pyannote[118].end 349.95096875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 349.98471875
transcript.pyannote[119].end 350.03534375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 350.06909375
transcript.pyannote[120].end 352.71846875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 352.97159375
transcript.pyannote[121].end 354.89534375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 355.11471875
transcript.pyannote[122].end 356.39721875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 356.56596875
transcript.pyannote[123].end 357.91596875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 358.45596875
transcript.pyannote[124].end 358.82721875
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 359.33346875
transcript.pyannote[125].end 360.43034375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 360.83534375
transcript.pyannote[126].end 361.57784375
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 360.86909375
transcript.pyannote[127].end 361.94909375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 362.05034375
transcript.pyannote[128].end 364.91909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 365.20596875
transcript.pyannote[129].end 369.76221875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 369.98159375
transcript.pyannote[130].end 375.02721875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 375.43221875
transcript.pyannote[131].end 378.50346875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 378.95909375
transcript.pyannote[132].end 381.49034375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 381.70971875
transcript.pyannote[133].end 384.57846875
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 385.42221875
transcript.pyannote[134].end 387.19409375
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 387.32909375
transcript.pyannote[135].end 391.15971875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 390.53534375
transcript.pyannote[136].end 390.88971875
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 391.58159375
transcript.pyannote[137].end 392.96534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 392.96534375
transcript.pyannote[138].end 397.42034375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 397.62284375
transcript.pyannote[139].end 404.13659375
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 404.13659375
transcript.pyannote[140].end 404.15346875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 404.89596875
transcript.pyannote[141].end 404.91284375
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 404.91284375
transcript.pyannote[142].end 404.96346875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 404.96346875
transcript.pyannote[143].end 404.98034375
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 404.98034375
transcript.pyannote[144].end 405.92534375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 405.92534375
transcript.pyannote[145].end 406.02659375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 406.02659375
transcript.pyannote[146].end 406.07721875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 406.07721875
transcript.pyannote[147].end 407.03909375
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 407.03909375
transcript.pyannote[148].end 413.35034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 412.05096875
transcript.pyannote[149].end 426.44534375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 427.64346875
transcript.pyannote[150].end 428.36909375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 428.36909375
transcript.pyannote[151].end 430.39409375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 430.93409375
transcript.pyannote[152].end 437.49846875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 438.19034375
transcript.pyannote[153].end 440.21534375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 440.67096875
transcript.pyannote[154].end 441.98721875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 442.62846875
transcript.pyannote[155].end 443.35409375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 443.43846875
transcript.pyannote[156].end 445.76721875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 445.98659375
transcript.pyannote[157].end 447.35346875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 449.26034375
transcript.pyannote[158].end 449.64846875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 450.40784375
transcript.pyannote[159].end 452.16284375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 452.75346875
transcript.pyannote[160].end 453.36096875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 453.61409375
transcript.pyannote[161].end 454.86284375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 455.13284375
transcript.pyannote[162].end 458.86221875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 459.48659375
transcript.pyannote[163].end 459.95909375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 460.36409375
transcript.pyannote[164].end 463.73909375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 466.10159375
transcript.pyannote[165].end 466.11846875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 466.11846875
transcript.pyannote[166].end 467.51909375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 467.70471875
transcript.pyannote[167].end 470.77596875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 468.02534375
transcript.pyannote[168].end 468.48096875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 471.24846875
transcript.pyannote[169].end 475.18034375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 475.51784375
transcript.pyannote[170].end 481.72784375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 482.11596875
transcript.pyannote[171].end 484.34346875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 484.73159375
transcript.pyannote[172].end 488.71409375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 489.00096875
transcript.pyannote[173].end 491.98784375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 492.49409375
transcript.pyannote[174].end 493.03409375
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 493.03409375
transcript.pyannote[175].end 493.42221875
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 494.40096875
transcript.pyannote[176].end 495.51471875
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 496.02096875
transcript.pyannote[177].end 497.59034375
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 497.69159375
transcript.pyannote[178].end 500.69534375
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 501.31971875
transcript.pyannote[179].end 502.56846875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 502.56846875
transcript.pyannote[180].end 502.61909375
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 503.24346875
transcript.pyannote[181].end 503.27721875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 503.27721875
transcript.pyannote[182].end 506.23034375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 506.77034375
transcript.pyannote[183].end 508.66034375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 508.99784375
transcript.pyannote[184].end 512.64284375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 513.11534375
transcript.pyannote[185].end 514.33034375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 514.44846875
transcript.pyannote[186].end 514.48221875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 514.51596875
transcript.pyannote[187].end 517.06409375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 517.23284375
transcript.pyannote[188].end 518.53221875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 518.76846875
transcript.pyannote[189].end 519.66284375
transcript.pyannote[190].speaker SPEAKER_03
transcript.pyannote[190].start 520.74284375
transcript.pyannote[190].end 524.77596875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 526.05846875
transcript.pyannote[191].end 527.50971875
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 527.74596875
transcript.pyannote[192].end 530.71596875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 529.95659375
transcript.pyannote[193].end 531.52596875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 530.71596875
transcript.pyannote[194].end 530.74971875
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 531.93096875
transcript.pyannote[195].end 531.94784375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 531.94784375
transcript.pyannote[196].end 531.99846875
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 531.99846875
transcript.pyannote[197].end 532.75784375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 532.75784375
transcript.pyannote[198].end 532.79159375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 534.44534375
transcript.pyannote[199].end 538.47846875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 538.64721875
transcript.pyannote[200].end 549.83534375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 547.18596875
transcript.pyannote[201].end 547.92846875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 547.92846875
transcript.pyannote[202].end 547.94534375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 550.18971875
transcript.pyannote[203].end 552.43409375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 550.51034375
transcript.pyannote[204].end 559.16721875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 560.16284375
transcript.pyannote[205].end 560.87159375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 561.41159375
transcript.pyannote[206].end 562.06971875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 562.62659375
transcript.pyannote[207].end 564.04409375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 564.71909375
transcript.pyannote[208].end 589.54221875
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 589.96409375
transcript.pyannote[209].end 601.89471875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 594.25034375
transcript.pyannote[210].end 595.36409375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 600.52784375
transcript.pyannote[211].end 611.66534375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 611.76659375
transcript.pyannote[212].end 614.02784375
transcript.pyannote[213].speaker SPEAKER_03
transcript.pyannote[213].start 614.02784375
transcript.pyannote[213].end 616.03596875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 616.03596875
transcript.pyannote[214].end 620.05221875
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 616.05284375
transcript.pyannote[215].end 618.21284375
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 619.73159375
transcript.pyannote[216].end 620.01846875
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 620.05221875
transcript.pyannote[217].end 620.96346875
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 620.96346875
transcript.pyannote[218].end 628.96221875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 629.45159375
transcript.pyannote[219].end 630.95346875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 631.15596875
transcript.pyannote[220].end 632.21909375
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 632.45534375
transcript.pyannote[221].end 633.60284375
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 633.95721875
transcript.pyannote[222].end 647.10284375
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 648.26721875
transcript.pyannote[223].end 651.45659375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 651.79409375
transcript.pyannote[224].end 653.17784375
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 651.91221875
transcript.pyannote[225].end 657.32909375
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 654.19034375
transcript.pyannote[226].end 659.26971875
transcript.pyannote[227].speaker SPEAKER_03
transcript.pyannote[227].start 657.86909375
transcript.pyannote[227].end 658.74659375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 659.35409375
transcript.pyannote[228].end 662.84721875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 663.23534375
transcript.pyannote[229].end 667.65659375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 668.38221875
transcript.pyannote[230].end 671.40284375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 671.53784375
transcript.pyannote[231].end 672.14534375
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 672.87096875
transcript.pyannote[232].end 675.26721875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 675.50346875
transcript.pyannote[233].end 677.52846875
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 677.96721875
transcript.pyannote[234].end 678.72659375
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 679.38471875
transcript.pyannote[235].end 681.69659375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 682.13534375
transcript.pyannote[236].end 685.13909375
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 685.57784375
transcript.pyannote[237].end 689.86409375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 690.30284375
transcript.pyannote[238].end 696.78284375
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 697.00221875
transcript.pyannote[239].end 703.80284375
transcript.pyannote[240].speaker SPEAKER_03
transcript.pyannote[240].start 705.20346875
transcript.pyannote[240].end 706.85721875
transcript.pyannote[241].speaker SPEAKER_03
transcript.pyannote[241].start 707.14409375
transcript.pyannote[241].end 709.10159375
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 707.68409375
transcript.pyannote[242].end 709.23659375
transcript.pyannote[243].speaker SPEAKER_03
transcript.pyannote[243].start 709.23659375
transcript.pyannote[243].end 709.25346875
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 709.25346875
transcript.pyannote[244].end 709.28721875
transcript.pyannote[245].speaker SPEAKER_03
transcript.pyannote[245].start 709.28721875
transcript.pyannote[245].end 709.30409375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 709.30409375
transcript.pyannote[246].end 710.51909375
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 710.56971875
transcript.pyannote[247].end 712.71284375
transcript.pyannote[248].speaker SPEAKER_03
transcript.pyannote[248].start 713.06721875
transcript.pyannote[248].end 713.37096875
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 714.34971875
transcript.pyannote[249].end 714.48471875
transcript.pyannote[250].speaker SPEAKER_03
transcript.pyannote[250].start 714.48471875
transcript.pyannote[250].end 716.40846875
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 716.40846875
transcript.pyannote[251].end 718.04534375
transcript.pyannote[252].speaker SPEAKER_03
transcript.pyannote[252].start 716.61096875
transcript.pyannote[252].end 716.96534375
transcript.pyannote[253].speaker SPEAKER_03
transcript.pyannote[253].start 717.03284375
transcript.pyannote[253].end 717.35346875
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 718.80471875
transcript.pyannote[254].end 722.23034375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 722.55096875
transcript.pyannote[255].end 732.06846875
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 732.20346875
transcript.pyannote[256].end 734.26221875
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 734.39721875
transcript.pyannote[257].end 736.77659375
transcript.pyannote[258].speaker SPEAKER_03
transcript.pyannote[258].start 737.21534375
transcript.pyannote[258].end 737.45159375
transcript.pyannote[259].speaker SPEAKER_02
transcript.pyannote[259].start 738.17721875
transcript.pyannote[259].end 738.80159375
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 739.17284375
transcript.pyannote[260].end 739.54409375
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 739.79721875
transcript.pyannote[261].end 740.96159375
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 741.13034375
transcript.pyannote[262].end 742.22721875
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 742.44659375
transcript.pyannote[263].end 747.18846875
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 747.52596875
transcript.pyannote[264].end 749.82096875
transcript.pyannote[265].speaker SPEAKER_02
transcript.pyannote[265].start 750.07409375
transcript.pyannote[265].end 750.79971875
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 751.17096875
transcript.pyannote[266].end 753.49971875
transcript.pyannote[267].speaker SPEAKER_02
transcript.pyannote[267].start 754.73159375
transcript.pyannote[267].end 755.33909375
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 756.70596875
transcript.pyannote[268].end 758.37659375
transcript.pyannote[269].speaker SPEAKER_02
transcript.pyannote[269].start 759.49034375
transcript.pyannote[269].end 764.06346875
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 764.77221875
transcript.pyannote[270].end 765.54846875
transcript.pyannote[271].speaker SPEAKER_02
transcript.pyannote[271].start 765.70034375
transcript.pyannote[271].end 767.28659375
transcript.pyannote[272].speaker SPEAKER_02
transcript.pyannote[272].start 767.99534375
transcript.pyannote[272].end 769.15971875
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 769.46346875
transcript.pyannote[273].end 772.73721875
transcript.pyannote[274].speaker SPEAKER_02
transcript.pyannote[274].start 773.41221875
transcript.pyannote[274].end 781.05659375
transcript.pyannote[275].speaker SPEAKER_02
transcript.pyannote[275].start 781.44471875
transcript.pyannote[275].end 785.54534375
transcript.pyannote[276].speaker SPEAKER_02
transcript.pyannote[276].start 785.66346875
transcript.pyannote[276].end 786.99659375
transcript.pyannote[277].speaker SPEAKER_02
transcript.pyannote[277].start 787.18221875
transcript.pyannote[277].end 788.53221875
transcript.pyannote[278].speaker SPEAKER_02
transcript.pyannote[278].start 788.59971875
transcript.pyannote[278].end 792.80159375
transcript.pyannote[279].speaker SPEAKER_02
transcript.pyannote[279].start 793.44284375
transcript.pyannote[279].end 795.19784375
transcript.pyannote[280].speaker SPEAKER_02
transcript.pyannote[280].start 795.45096875
transcript.pyannote[280].end 796.44659375
transcript.pyannote[281].speaker SPEAKER_02
transcript.pyannote[281].start 797.08784375
transcript.pyannote[281].end 798.13409375
transcript.pyannote[282].speaker SPEAKER_02
transcript.pyannote[282].start 798.60659375
transcript.pyannote[282].end 804.78284375
transcript.pyannote[283].speaker SPEAKER_02
transcript.pyannote[283].start 805.20471875
transcript.pyannote[283].end 807.46596875
transcript.pyannote[284].speaker SPEAKER_02
transcript.pyannote[284].start 807.78659375
transcript.pyannote[284].end 810.25034375
transcript.pyannote[285].speaker SPEAKER_02
transcript.pyannote[285].start 810.94221875
transcript.pyannote[285].end 813.11909375
transcript.pyannote[286].speaker SPEAKER_02
transcript.pyannote[286].start 813.30471875
transcript.pyannote[286].end 815.68409375
transcript.pyannote[287].speaker SPEAKER_02
transcript.pyannote[287].start 816.12284375
transcript.pyannote[287].end 826.18034375
transcript.pyannote[288].speaker SPEAKER_02
transcript.pyannote[288].start 826.56846875
transcript.pyannote[288].end 838.36409375
transcript.pyannote[289].speaker SPEAKER_02
transcript.pyannote[289].start 838.75221875
transcript.pyannote[289].end 839.25846875
transcript.pyannote[290].speaker SPEAKER_02
transcript.pyannote[290].start 839.35971875
transcript.pyannote[290].end 842.34659375
transcript.pyannote[291].speaker SPEAKER_02
transcript.pyannote[291].start 844.16909375
transcript.pyannote[291].end 846.41346875
transcript.pyannote[292].speaker SPEAKER_03
transcript.pyannote[292].start 845.82284375
transcript.pyannote[292].end 850.09221875
transcript.pyannote[293].speaker SPEAKER_03
transcript.pyannote[293].start 850.14284375
transcript.pyannote[293].end 850.75034375
transcript.pyannote[294].speaker SPEAKER_02
transcript.pyannote[294].start 850.75034375
transcript.pyannote[294].end 850.80096875
transcript.pyannote[295].speaker SPEAKER_02
transcript.pyannote[295].start 851.30721875
transcript.pyannote[295].end 856.26846875
transcript.pyannote[296].speaker SPEAKER_02
transcript.pyannote[296].start 856.50471875
transcript.pyannote[296].end 860.43659375
transcript.pyannote[297].speaker SPEAKER_02
transcript.pyannote[297].start 860.87534375
transcript.pyannote[297].end 867.28784375
transcript.pyannote[298].speaker SPEAKER_02
transcript.pyannote[298].start 867.40596875
transcript.pyannote[298].end 868.57034375
transcript.pyannote[299].speaker SPEAKER_02
transcript.pyannote[299].start 868.87409375
transcript.pyannote[299].end 873.46409375
transcript.pyannote[300].speaker SPEAKER_02
transcript.pyannote[300].start 874.00409375
transcript.pyannote[300].end 877.02471875
transcript.pyannote[301].speaker SPEAKER_02
transcript.pyannote[301].start 877.07534375
transcript.pyannote[301].end 878.00346875
transcript.pyannote[302].speaker SPEAKER_02
transcript.pyannote[302].start 878.22284375
transcript.pyannote[302].end 881.27721875
transcript.pyannote[303].speaker SPEAKER_02
transcript.pyannote[303].start 881.58096875
transcript.pyannote[303].end 882.72846875
transcript.pyannote[304].speaker SPEAKER_02
transcript.pyannote[304].start 883.21784375
transcript.pyannote[304].end 885.19221875
transcript.pyannote[305].speaker SPEAKER_02
transcript.pyannote[305].start 885.42846875
transcript.pyannote[305].end 889.63034375
transcript.pyannote[306].speaker SPEAKER_02
transcript.pyannote[306].start 889.79909375
transcript.pyannote[306].end 896.41409375
transcript.pyannote[307].speaker SPEAKER_02
transcript.pyannote[307].start 896.78534375
transcript.pyannote[307].end 898.40534375
transcript.pyannote[308].speaker SPEAKER_02
transcript.pyannote[308].start 899.99159375
transcript.pyannote[308].end 900.37971875
transcript.pyannote[309].speaker SPEAKER_02
transcript.pyannote[309].start 900.76784375
transcript.pyannote[309].end 901.89846875
transcript.pyannote[310].speaker SPEAKER_02
transcript.pyannote[310].start 902.28659375
transcript.pyannote[310].end 903.29909375
transcript.pyannote[311].speaker SPEAKER_02
transcript.pyannote[311].start 903.60284375
transcript.pyannote[311].end 905.57721875
transcript.pyannote[312].speaker SPEAKER_02
transcript.pyannote[312].start 905.72909375
transcript.pyannote[312].end 907.07909375
transcript.pyannote[313].speaker SPEAKER_02
transcript.pyannote[313].start 907.19721875
transcript.pyannote[313].end 908.15909375
transcript.pyannote[314].speaker SPEAKER_03
transcript.pyannote[314].start 909.59346875
transcript.pyannote[314].end 912.25971875
transcript.pyannote[315].speaker SPEAKER_03
transcript.pyannote[315].start 912.49596875
transcript.pyannote[315].end 921.50721875
transcript.pyannote[316].speaker SPEAKER_02
transcript.pyannote[316].start 913.57596875
transcript.pyannote[316].end 916.32659375
transcript.pyannote[317].speaker SPEAKER_02
transcript.pyannote[317].start 918.13221875
transcript.pyannote[317].end 919.70159375
transcript.pyannote[318].speaker SPEAKER_02
transcript.pyannote[318].start 919.73534375
transcript.pyannote[318].end 919.75221875
transcript.pyannote[319].speaker SPEAKER_02
transcript.pyannote[319].start 921.50721875
transcript.pyannote[319].end 921.81096875
transcript.pyannote[320].speaker SPEAKER_03
transcript.pyannote[320].start 921.81096875
transcript.pyannote[320].end 921.82784375
transcript.pyannote[321].speaker SPEAKER_03
transcript.pyannote[321].start 922.23284375
transcript.pyannote[321].end 922.24971875
transcript.pyannote[322].speaker SPEAKER_02
transcript.pyannote[322].start 922.24971875
transcript.pyannote[322].end 928.49346875
transcript.pyannote[323].speaker SPEAKER_03
transcript.pyannote[323].start 922.28346875
transcript.pyannote[323].end 923.14409375
transcript.pyannote[324].speaker SPEAKER_02
transcript.pyannote[324].start 928.79721875
transcript.pyannote[324].end 935.04096875
transcript.pyannote[325].speaker SPEAKER_02
transcript.pyannote[325].start 935.29409375
transcript.pyannote[325].end 939.54659375
transcript.pyannote[326].speaker SPEAKER_02
transcript.pyannote[326].start 940.17096875
transcript.pyannote[326].end 941.14971875
transcript.pyannote[327].speaker SPEAKER_02
transcript.pyannote[327].start 941.43659375
transcript.pyannote[327].end 943.84971875
transcript.pyannote[328].speaker SPEAKER_02
transcript.pyannote[328].start 944.30534375
transcript.pyannote[328].end 945.75659375
transcript.pyannote[329].speaker SPEAKER_02
transcript.pyannote[329].start 945.90846875
transcript.pyannote[329].end 946.87034375
transcript.pyannote[330].speaker SPEAKER_02
transcript.pyannote[330].start 947.07284375
transcript.pyannote[330].end 950.71784375
transcript.pyannote[331].speaker SPEAKER_02
transcript.pyannote[331].start 951.46034375
transcript.pyannote[331].end 954.59909375
transcript.pyannote[332].speaker SPEAKER_02
transcript.pyannote[332].start 954.76784375
transcript.pyannote[332].end 956.96159375
transcript.pyannote[333].speaker SPEAKER_02
transcript.pyannote[333].start 957.29909375
transcript.pyannote[333].end 959.30721875
transcript.pyannote[334].speaker SPEAKER_03
transcript.pyannote[334].start 960.23534375
transcript.pyannote[334].end 960.97784375
transcript.pyannote[335].speaker SPEAKER_02
transcript.pyannote[335].start 960.97784375
transcript.pyannote[335].end 961.07909375
transcript.pyannote[336].speaker SPEAKER_02
transcript.pyannote[336].start 961.33221875
transcript.pyannote[336].end 967.35659375
transcript.pyannote[337].speaker SPEAKER_02
transcript.pyannote[337].start 967.59284375
transcript.pyannote[337].end 969.02721875
transcript.pyannote[338].speaker SPEAKER_03
transcript.pyannote[338].start 969.73596875
transcript.pyannote[338].end 970.47846875
transcript.pyannote[339].speaker SPEAKER_01
transcript.pyannote[339].start 978.96659375
transcript.pyannote[339].end 981.97034375
transcript.whisperx[0].start 6.431
transcript.whisperx[0].end 35.318
transcript.whisperx[0].text 主席、在場委員先進列席的政府局官、首長、官員、會長、工作夥伴、媒體記者、女士先生先有請行政院卓院長那因為總談判代表楊政委員不能上台就請我們國發會劉主委那另外經濟部跟農業部長昨天聽過了我就不請了但是可以幫助我們院長的協助一下那另外也請我們彭金榮、彭主委代表金管會來上台一共三位卓院長還有劉主委跟彭主委
transcript.whisperx[1].start 35.758
transcript.whisperx[1].end 57.519
transcript.whisperx[1].text 好來請卓院長 劉主委 彭主委要不要等一下那個主席 因為彭主委還沒回來我們休息時間不夠 廁所太小他還在休息 進來了嗎 還沒彭主委有在會場嗎還是
transcript.whisperx[2].start 63.069
transcript.whisperx[2].end 73.219
transcript.whisperx[2].text 那沒關係我就先開始啦那他回來就請他上來不好意思謝謝中委好院長好主委好關稅站為中美元自貿區
transcript.whisperx[3].start 75.046
transcript.whisperx[3].end 94.782
transcript.whisperx[3].text 同盟成形啊外銷呢要防洗產地內需要降產業衝擊好 來 左院長接下來我要跟你請教的事情跟各位首長請教的事情呢您可以多看一下這個簡報比較容易一目了然那我就請教一下請問您認為川普的關稅清單是目的還是手段
transcript.whisperx[4].start 96.291
transcript.whisperx[4].end 120.64
transcript.whisperx[4].text 他透過關稅是要達到他的一個對國家經濟安全的目的所以可能是一個手段好 我們看看他開出的清單當中台灣上一頁台灣是十大貿易逆差國的第六名結果排名第一的中國也被開了34%但是中國堅決反制所以他報復提到84%結果很清楚最近我們看到了除了中國之外
transcript.whisperx[5].start 121.4
transcript.whisperx[5].end 150.88
transcript.whisperx[5].text 其他的國家都可以等你90天用10%來計算往下看好 那麼中國的目的是圍堵對其他的國家只要求你來談判我們看到川普他說你中國不公平貿易啊說要跟你加徵關稅欸 達到目的啦現在中國跟他彼此一個是145啊一個是84啊但是他對其他的貿易對手國他說我要跟你加徵關稅但是如果你同意對等關稅0也可以 是不是這樣子
transcript.whisperx[6].start 151.5
transcript.whisperx[6].end 179.153
transcript.whisperx[6].text 他的邏輯是不是這樣大體上是他認為可以跟他繼續談判雙方平等互惠的原則底下對等之下可能零都可以對等 好但是有一個國家馬上跳出來說我願意零叫越南但是呢白宮的高級顧問納瓦羅說啊越南不是零就了事喔因為你們有什麼傾銷跟出國補貼涉及到非關稅欺騙您了解他說的非關稅欺騙是越南什麼事嗎
transcript.whisperx[7].start 181.592
transcript.whisperx[7].end 209.293
transcript.whisperx[7].text 所以我們零關稅同盟一旦成行唯獨中國產生的結果首先美中之間已經有關稅的壁壘美國的東西賣不到中國去中國的貨品也賣不到美國來但是中國貨品在美國市場的地位被這些去中的自由貿易同盟所取代同時美國雖然貨賣不到中國去也可以賣給這些自由貿易同盟是不是這樣子出口暢旺
transcript.whisperx[8].start 210.214
transcript.whisperx[8].end 233.29
transcript.whisperx[8].text 反而這個同盟之間貿易往來是不是更創旺 是不是這樣應該是這樣 我想好 是這樣但是呢 美國不是這樣而已喔他說 欸 你不是跟我互相領關稅而已啊你也要對中國超關稅 超高關稅而且呢 你對於特殊商品呢 要管制晶片你不能跟我美國買了 賣到中國去 是不是這樣子所以還有附帶條件
transcript.whisperx[9].start 235.873
transcript.whisperx[9].end 253.279
transcript.whisperx[9].text 所以在這種前提之下,越南縱使零關稅,一樣要嚴防中國製品透過供應鏈。台灣有這個問題,因為在川普2.0的關稅戰當中,中國就提出他的單車可以牽到哪裡?台灣、越南、馬來西亞、柬埔寨跟印度,是不是這樣子?
transcript.whisperx[10].start 254.144
transcript.whisperx[10].end 269.793
transcript.whisperx[10].text 好 那請問一下台灣有沒有可能成為中國製品席產地透過供應鏈銷到美國去有沒有可能對未來的這種情勢的發展我們已經設想到在未來會嚴密的嚴控有五大方案嘛這五大方案夠不夠
transcript.whisperx[11].start 271.536
transcript.whisperx[11].end 299.101
transcript.whisperx[11].text 方案是方案 臨時變動的應該會是很多各種手段會不斷的推陳出新我跟您提醒一下 我這幾年常去越南有台商的電子廠在越南的河內弄一個組裝廠他從中國那邊把原來在中國昆山蘇州的貨供應鏈的貨都用陸運24小時送抵河內 關鍵的切面從台灣去出口當然是打著越南的Mark
transcript.whisperx[12].start 299.653
transcript.whisperx[12].end 326.298
transcript.whisperx[12].text 那這裡面他這些其他在中國的供應鏈這些廠商透過入運這是美國疑慮的地方因為越南跟中國的入運的海關資料不透明但是如果說台灣的晶片賣到了檳城檳城從世界各國拿了零組件透過國際的港部跟航商美國知道你檳城馬來西亞賣給我的有多少成分來自哪裡是不是這樣子
transcript.whisperx[13].start 327.113
transcript.whisperx[13].end 334.744
transcript.whisperx[13].text 所以越南是美國最嚴格防止的台灣要繼續的嚴格防止棲產地對不對好往下看
transcript.whisperx[14].start 335.515
transcript.whisperx[14].end 360.022
transcript.whisperx[14].text 所以呢我們除此之外我們還要政策採購改善台美的貿易的差額首先在零關稅之後本來黃小玉牛肉我們就擴大進口嘛對不對那如果不受關稅影響的像軍備像火雞台灣人不吃美國的火雞肉關稅零也沒有差所以這個是屬於政策決定你會政策決定叫去買美國的火雞肉嗎會不會如果沒有那個市場
transcript.whisperx[15].start 360.902
transcript.whisperx[15].end 384.269
transcript.whisperx[15].text 那會不會增加跟美國買軍備 譬如說買F35可不可以就要考慮我們的財政跟國防的需要好 有需要 那最後哪一種剛性需求就是本來就要用天然氣都要用LNG另外呢 我們的波音客機Airbus最近華航才簽了Airbus 簽了實價這個可不可以改跟美國買 有人在討論 對不對天然氣本來跟澳洲買 可不可以考慮跟美國買 有沒有考慮
transcript.whisperx[16].start 385.484
transcript.whisperx[16].end 392.346
transcript.whisperx[16].text 我們正在盤點這些個未來可以擴大把美國當作一個世界市場這樣來購買儘管這樣子擴大採購我們來看一下但是你們現在880億他的思維呢工業製品700億農業180億是針對出口還是針對進口
transcript.whisperx[17].start 404.929
transcript.whisperx[17].end 426.296
transcript.whisperx[17].text 不是針對產業的協助產業出口遇到阻礙高關稅阻礙協助產業升級我了解協助產業向外貨產市場主要目的是針對這些出口產業遇到了高關稅的阻礙後我們要輔導他嘛但是如果是零關稅的話方向跟對象要反過來了要去思考這些會被美國進口的產品所取代的產業是不是這樣子
transcript.whisperx[18].start 427.674
transcript.whisperx[18].end 444.581
transcript.whisperx[18].text 理論上是這樣 是這樣那我們來看一下農產品好了農產品目前我們從美國進口這五大項當中黃小玉不用說牛肉不用說有沒有注意到雞肉是一個項目因為雞肉我們本國產的四成美國進口的35%但是如果說關稅從20%調下來你覺得雞肉會不會受到影響
transcript.whisperx[19].start 449.415
transcript.whisperx[19].end 463.432
transcript.whisperx[19].text 會不會最可能受到的影響就是雞肉就是怎麼樣美國的零關稅進口來的雞肉取代了本土的雞肉是不是所以除了這個之外還有什麼農產品會受到零關稅的進口影響
transcript.whisperx[20].start 466.121
transcript.whisperx[20].end 495.152
transcript.whisperx[20].text 我跟委員報告齁 就是我昨天已經問過你了我要聽聽院長的齁 院長我們現在的稻米是這樣子齁我們自產115萬公噸在WTO的配額之下呢14萬公噸以內是零關稅美國已經賣了6萬多公噸了平均銷價29元零關稅如果現在美國對我們是零關稅這29塊就是軍價但是我們自產的稻米呢是50塊一公斤所以會不會受影響如果是這樣的
transcript.whisperx[21].start 496.472
transcript.whisperx[21].end 524.544
transcript.whisperx[21].text 關稅的調整跟結果當然是受影響的所以請你指示旁邊的農業部部長剛才的880億其中的110億對120億呢180億本來是要協助出口受挫的現在要調整思維萬一零關稅要用來輔導這些受進口影響的院長是不是這樣子我們是對業者因為美國關稅調整而受影響的業者不管是
transcript.whisperx[22].start 526.231
transcript.whisperx[22].end 532.688
transcript.whisperx[22].text 出口還是進口是不是這樣如果真的受到影響我們就會在...如果受到進口影響也要輔導部長有沒有了解了
transcript.whisperx[23].start 534.962
transcript.whisperx[23].end 561.66
transcript.whisperx[23].text 我跟委員報告一百八十億是針對出口的產品那這個您剛才講這個道明的部分是未來有可能從美國進來的部分如果有任何的調整的時候的一個影響但是從農業部的角度來講因為農業的答案我昨天聽過了我現在要院長的答案除了農業產品之外還有哪四種產業是受到進口零關稅美國製品的衝擊農業產品汽車保健食品還有紡織品
transcript.whisperx[24].start 564.778
transcript.whisperx[24].end 576.768
transcript.whisperx[24].text 我從經濟部的資料上調出來在我們屏東這四種產業呢我們的保健營養食品從業人員380人我們的成衣製造外銷有200人汽車大概有2800人總共有3360個人未來如果美國銷台灣是零關稅這3360個家庭會受到影響院長 是不是指示相關部會來協助盤查跟協助家語輔導
transcript.whisperx[25].start 590.031
transcript.whisperx[25].end 611.434
transcript.whisperx[25].text 所以這個零關稅的前提是不是存在 這個還是一個考量我們不就是要追求零關稅嗎 院長從零關稅談起 不是我們去追求 零關稅談起我剛才已經說了 美國的目的叫創造一個零關稅的自由貿易同盟這是他的目的所以很可能零關稅是我們可能必要考慮的一種結果 是不是這樣子
transcript.whisperx[26].start 612.694
transcript.whisperx[26].end 632.699
transcript.whisperx[26].text 但是我們也知道經濟學者財政學者包括政治工作人員不可能在一夕之間一夕之間就是零關稅不可能一夕之間是零關稅沒有錯所以給你九十天好好想清楚來我們往下看全力爭取改善美國對等關稅我們這裡提到我們有談判關稅要幹嘛要擴大對美採購
transcript.whisperx[27].start 633.899
transcript.whisperx[27].end 634.72
transcript.whisperx[27].text 目前我們並沒有朝向這個方式在做思考
transcript.whisperx[28].start 653.461
transcript.whisperx[28].end 678.234
transcript.whisperx[28].text 現在這個階段目前我們持有的美債全世界排名第11名其實美國的立場是這樣子他的美國的債務目前單單是今年到期的9.2兆大概是美國聯邦總收入5兆的兩倍在6月底到期也有6兆多這些到期的美債對他產生什麼影響他要怎麼還
transcript.whisperx[29].start 679.394
transcript.whisperx[29].end 702.319
transcript.whisperx[29].text 他當然還啊加稅嗎現在還沒有然後呢政府減少開支政府瘦身那是明年度的事情他最大的需求就怎樣降低債息所以呢就有一個人我們來談一下齁如果對美談判川普政府要求說台幣對美國美元升值或者說央行的外匯儲備改持低利的美債你認為哪一個對台灣的經濟影響較衝擊較輕
transcript.whisperx[30].start 705.502
transcript.whisperx[30].end 716.314
transcript.whisperx[30].text 匯率的調整是一個未來可能有的你認為匯率比較影響小我們對於匯率A跟B哪一個影響比較輕我覺得我們不要在這裡談好 那我們往下看
transcript.whisperx[31].start 718.82
transcript.whisperx[31].end 738.608
transcript.whisperx[31].text 待會我要請那個彭主委再來因為昨天我已經問過總裁了好美國的白宮經濟顧問委員會有個主將米倫他去年11月發表一個用戶指南叫重組全國貿易體系裡面他提到說關稅本身不是目的而是手段他在7號的時候接受採訪講了五個點第一他不接受報復
transcript.whisperx[32].start 739.861
transcript.whisperx[32].end 767.098
transcript.whisperx[32].text 第二你要打開市場不能有不公平的行為第三呢他要各國提高國防支出和針對美國軍購大概這個我們都沒問題第四他說要投資美國這我們也做了他說第五直接捐還給美國財政部這什麼意思這什麼意思好大家來猜猜看往下看敏倫的意思是這樣他說他要要求大量持有美債的這些盟友貿易對手他說請你跟我
transcript.whisperx[33].start 768.298
transcript.whisperx[33].end 780.45
transcript.whisperx[33].text 換新債的時候跟我買超長期的50年的或100年的低利了但是我們的外匯如果去買這種超長期的美債影響到我們的流動性這種沒有市場
transcript.whisperx[34].start 781.479
transcript.whisperx[34].end 810.052
transcript.whisperx[34].text 對不對 那遇到了我們需要去調節匯率的時候就會受到限制米倫說沒關係我給你一個買權給你一個快速換回美元現金的官方渠道叫做report類似swap的一種回購機制如果你真的需要錢跟我掉頭順就好了結果呢 他認為一旦接受這個條件您知道結果是什麼會形成一個以美元為主的去中的準金融聯盟這是米倫的設想好 我往下走
transcript.whisperx[35].start 811.004
transcript.whisperx[35].end 836.709
transcript.whisperx[35].text 米倫的方案我算給你看他說台灣的外匯存本比加進5800億如果我們合理的外匯準備是4000到4500億我們可能有1000億的美金可以在美債到期之後改持低利的長期美債假設這些美債按照現在美債的利息4%來算我們假設算2%我們一年大概會讓利讓20億美元的利息大概折合台幣600億到660億
transcript.whisperx[36].start 838.849
transcript.whisperx[36].end 840.013
transcript.whisperx[36].text 請問601到661有沒有小於現在的880億
transcript.whisperx[37].start 844.209
transcript.whisperx[37].end 873.305
transcript.whisperx[37].text 有沒有小問題 數學問題嘛哪個比較大這個我們還在精算我們沒有辦法在這裡跟委員做這樣的答案我了解 你要想一下我要說的是說跟美國的談判有各種的可能性了解他們的談判背後的這些幕僚這些政策的思維各種的可能才會出現說連我們的外匯儲備的美債都有可能是一個談判的籌碼剛剛總裁說了籌碼 對不對剛剛你跟邱委員講了嘛籌碼跟準備不是一樣嗎好 往下走
transcript.whisperx[38].start 874.079
transcript.whisperx[38].end 897.895
transcript.whisperx[38].text 所以如果我們拿到了超長期的低利美債我們拿到什麼美國現在30年期的美債只要每掉1%它就可以淨賺20%對台外來講我雖然拿了1000億掛個洞把它買起來但是當我需要的時候我還是可以短期的美元的流通需求我可以跟美國的央行免費去調度也避開了短期的利率風險
transcript.whisperx[39].start 900.066
transcript.whisperx[39].end 908.089
transcript.whisperx[39].text 院長 您旁邊是總裁另外那邊是主委後面還有一個金融專家是我們彭主委請他們三個回去研究看看好不好
transcript.whisperx[40].start 909.856
transcript.whisperx[40].end 934.823
transcript.whisperx[40].text 我們過去對於美債的投資也有發生過不好的一個結果好請你研究我最後要做結論了昨天今天美國股市股匯債全部解體川普的任務川普任務有兩個一個是削減赤字一個是增加就業增加就業要增加投資跟減稅改善他中西部的弱勢選民削減赤字要解決貿易逆差他對中國的不公平貿易他用了高單位稅來解決之後
transcript.whisperx[41].start 935.37
transcript.whisperx[41].end 959.079
transcript.whisperx[41].text 他現在剩下什麼問題剩下財政支出的問題要減少負債有了一個零關稅的自由貿易同盟之後他的貿易逆差渴望解決但是遇下來的問題我有三個事情要請院長承諾第一請盤點消美主要產品上游供應鏈中有沒有含有中國製品請迅速的提出調整對策可以嗎
transcript.whisperx[42].start 960.45
transcript.whisperx[42].end 960.87
transcript.whisperx[42].text 這個也會做