iVOD / 160114

Field Value
IVOD_ID 160114
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160114
日期 2025-04-10
會議資料.會議代碼 委員會-11-3-19-8
會議資料.會議代碼:str 第11屆第3會期經濟委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-04-10T12:39:01+08:00
結束時間 2025-04-10T12:50:40+08:00
影片長度 00:11:39
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/127fafa562dc971221261c304d7efdfff11452c3877738ca1a30f584bceeba993ae7b583e42d3df95ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 12:39:01 - 12:50:40
會議時間 2025-04-10T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第8次全體委員會議(事由:邀請經濟部部長、農業部部長及財政部首長就「因應美國關税政策以維持我國農漁畜業及關鍵產業競爭力之協助措施」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 8.18159375
transcript.pyannote[0].end 9.93659375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 10.52721875
transcript.pyannote[1].end 12.45096875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 16.19721875
transcript.pyannote[2].end 17.00721875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 17.04096875
transcript.pyannote[3].end 17.96909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 17.96909375
transcript.pyannote[4].end 21.83346875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 21.98534375
transcript.pyannote[5].end 28.11096875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 28.80284375
transcript.pyannote[6].end 30.03471875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 30.11909375
transcript.pyannote[7].end 32.93721875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 33.34221875
transcript.pyannote[8].end 33.61221875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 34.00034375
transcript.pyannote[9].end 35.28284375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 35.65409375
transcript.pyannote[10].end 37.32471875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 37.56096875
transcript.pyannote[11].end 38.86034375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 39.88971875
transcript.pyannote[12].end 40.98659375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 41.35784375
transcript.pyannote[13].end 43.24784375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 43.38284375
transcript.pyannote[14].end 44.46284375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 45.08721875
transcript.pyannote[15].end 45.64409375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 45.76221875
transcript.pyannote[16].end 46.74096875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 46.99409375
transcript.pyannote[17].end 48.20909375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 49.32284375
transcript.pyannote[18].end 50.36909375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 51.21284375
transcript.pyannote[19].end 53.76096875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 54.53721875
transcript.pyannote[20].end 55.63409375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 55.70159375
transcript.pyannote[21].end 57.28784375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 57.74346875
transcript.pyannote[22].end 60.89909375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 60.96659375
transcript.pyannote[23].end 65.91096875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 67.00784375
transcript.pyannote[24].end 68.23971875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 68.54346875
transcript.pyannote[25].end 69.84284375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 70.53471875
transcript.pyannote[26].end 72.42471875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 72.67784375
transcript.pyannote[27].end 73.03221875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 73.43721875
transcript.pyannote[28].end 76.00221875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 76.39034375
transcript.pyannote[29].end 83.19096875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 83.59596875
transcript.pyannote[30].end 86.39721875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 86.59971875
transcript.pyannote[31].end 88.59096875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 88.97909375
transcript.pyannote[32].end 89.65409375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 90.56534375
transcript.pyannote[33].end 90.95346875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 91.15596875
transcript.pyannote[34].end 92.01659375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 93.16409375
transcript.pyannote[35].end 95.22284375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 96.75846875
transcript.pyannote[36].end 100.21784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 100.63971875
transcript.pyannote[37].end 108.63846875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 109.46534375
transcript.pyannote[38].end 112.35096875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 112.68846875
transcript.pyannote[39].end 115.82721875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 117.16034375
transcript.pyannote[40].end 124.90596875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 125.14221875
transcript.pyannote[41].end 129.42846875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 130.10346875
transcript.pyannote[42].end 131.90909375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 132.21284375
transcript.pyannote[43].end 142.94534375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 143.67096875
transcript.pyannote[44].end 144.95346875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 145.72971875
transcript.pyannote[45].end 148.85159375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 149.03721875
transcript.pyannote[46].end 153.28971875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 154.15034375
transcript.pyannote[47].end 155.46659375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 155.51721875
transcript.pyannote[48].end 156.91784375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 157.30596875
transcript.pyannote[49].end 158.18346875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 159.80346875
transcript.pyannote[50].end 161.45721875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 162.04784375
transcript.pyannote[51].end 164.29221875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 164.95034375
transcript.pyannote[52].end 169.13534375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 168.83159375
transcript.pyannote[53].end 168.91596875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 169.64159375
transcript.pyannote[54].end 181.40346875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 181.70721875
transcript.pyannote[55].end 184.05284375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 184.84596875
transcript.pyannote[56].end 185.31846875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 185.72346875
transcript.pyannote[57].end 186.56721875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 186.97221875
transcript.pyannote[58].end 189.58784375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 190.97159375
transcript.pyannote[59].end 191.07284375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 191.47784375
transcript.pyannote[60].end 195.15659375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 193.08096875
transcript.pyannote[61].end 193.19909375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 193.51971875
transcript.pyannote[62].end 202.14284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 202.14284375
transcript.pyannote[63].end 202.24409375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 202.42971875
transcript.pyannote[64].end 202.54784375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 202.54784375
transcript.pyannote[65].end 212.97659375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 213.19596875
transcript.pyannote[66].end 219.03471875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 219.27096875
transcript.pyannote[67].end 223.27034375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 223.59096875
transcript.pyannote[68].end 233.80034375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 234.22221875
transcript.pyannote[69].end 236.95596875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 237.46221875
transcript.pyannote[70].end 244.04346875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 244.38096875
transcript.pyannote[71].end 244.83659375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 245.24159375
transcript.pyannote[72].end 246.79409375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 247.75596875
transcript.pyannote[73].end 259.50096875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 253.98284375
transcript.pyannote[74].end 255.58596875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 259.93971875
transcript.pyannote[75].end 261.35721875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 261.59346875
transcript.pyannote[76].end 264.04034375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 264.34409375
transcript.pyannote[77].end 276.44346875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 276.69659375
transcript.pyannote[78].end 277.65846875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 278.04659375
transcript.pyannote[79].end 282.85596875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 283.48034375
transcript.pyannote[80].end 285.16784375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 285.38721875
transcript.pyannote[81].end 286.72034375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 287.83409375
transcript.pyannote[82].end 289.30221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 289.57221875
transcript.pyannote[83].end 291.15846875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 292.55909375
transcript.pyannote[84].end 294.65159375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 295.22534375
transcript.pyannote[85].end 300.03471875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 300.52409375
transcript.pyannote[86].end 301.77284375
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 301.97534375
transcript.pyannote[87].end 302.19471875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 302.19471875
transcript.pyannote[88].end 321.11159375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 321.34784375
transcript.pyannote[89].end 331.97909375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 332.80596875
transcript.pyannote[90].end 336.13034375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 336.24846875
transcript.pyannote[91].end 342.03659375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 342.57659375
transcript.pyannote[92].end 345.49596875
transcript.pyannote[93].speaker SPEAKER_04
transcript.pyannote[93].start 345.49596875
transcript.pyannote[93].end 345.86721875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 345.83346875
transcript.pyannote[94].end 350.52471875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 351.09846875
transcript.pyannote[95].end 354.40596875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 354.77721875
transcript.pyannote[96].end 358.18596875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 359.24909375
transcript.pyannote[97].end 360.68346875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 360.90284375
transcript.pyannote[98].end 366.31971875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 366.80909375
transcript.pyannote[99].end 368.61471875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 369.07034375
transcript.pyannote[100].end 371.24721875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 372.05721875
transcript.pyannote[101].end 373.08659375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 373.18784375
transcript.pyannote[102].end 374.57159375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 374.90909375
transcript.pyannote[103].end 375.12846875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 376.68096875
transcript.pyannote[104].end 378.82409375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 379.21221875
transcript.pyannote[105].end 380.15721875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 380.74784375
transcript.pyannote[106].end 382.13159375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 382.65471875
transcript.pyannote[107].end 389.28659375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 390.09659375
transcript.pyannote[108].end 390.80534375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 391.80096875
transcript.pyannote[109].end 401.62221875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 401.90909375
transcript.pyannote[110].end 407.41034375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 407.51159375
transcript.pyannote[111].end 409.80659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 410.54909375
transcript.pyannote[112].end 410.73471875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 411.25784375
transcript.pyannote[113].end 413.11409375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 414.09284375
transcript.pyannote[114].end 417.88971875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 419.07096875
transcript.pyannote[115].end 422.61471875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 422.95221875
transcript.pyannote[116].end 423.37409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 423.89721875
transcript.pyannote[117].end 426.24284375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 426.42846875
transcript.pyannote[118].end 427.59284375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 428.20034375
transcript.pyannote[119].end 429.82034375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 429.93846875
transcript.pyannote[120].end 433.54971875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 434.32596875
transcript.pyannote[121].end 435.59159375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 436.89096875
transcript.pyannote[122].end 441.97034375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 442.35846875
transcript.pyannote[123].end 444.02909375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 444.19784375
transcript.pyannote[124].end 444.73784375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 445.15971875
transcript.pyannote[125].end 445.78409375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 446.61096875
transcript.pyannote[126].end 447.01596875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 447.99471875
transcript.pyannote[127].end 448.66971875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 448.83846875
transcript.pyannote[128].end 451.63971875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 452.51721875
transcript.pyannote[129].end 454.27221875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 455.13284375
transcript.pyannote[130].end 456.61784375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 456.88784375
transcript.pyannote[131].end 457.17471875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 457.52909375
transcript.pyannote[132].end 459.01409375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 459.85784375
transcript.pyannote[133].end 462.20346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 462.96284375
transcript.pyannote[134].end 470.23596875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 470.43846875
transcript.pyannote[135].end 471.18096875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 471.94034375
transcript.pyannote[136].end 474.03284375
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 474.03284375
transcript.pyannote[137].end 474.48846875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 474.84284375
transcript.pyannote[138].end 474.85971875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 474.85971875
transcript.pyannote[139].end 498.34971875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 498.36659375
transcript.pyannote[140].end 501.53909375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 501.53909375
transcript.pyannote[141].end 504.27284375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 504.61034375
transcript.pyannote[142].end 510.36471875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 510.97221875
transcript.pyannote[143].end 514.56659375
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 514.95471875
transcript.pyannote[144].end 515.25846875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 515.27534375
transcript.pyannote[145].end 519.79784375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 519.79784375
transcript.pyannote[146].end 520.08471875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 521.41784375
transcript.pyannote[147].end 521.85659375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 522.00846875
transcript.pyannote[148].end 530.76659375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 530.85096875
transcript.pyannote[149].end 533.46659375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 534.19221875
transcript.pyannote[150].end 534.86721875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 536.67284375
transcript.pyannote[151].end 539.60909375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 539.67659375
transcript.pyannote[152].end 541.21221875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 541.68471875
transcript.pyannote[153].end 542.27534375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 542.30909375
transcript.pyannote[154].end 554.05409375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 554.39159375
transcript.pyannote[155].end 556.65284375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 557.32784375
transcript.pyannote[156].end 558.79596875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 559.01534375
transcript.pyannote[157].end 559.96034375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 561.07409375
transcript.pyannote[158].end 564.66846875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 565.32659375
transcript.pyannote[159].end 566.72721875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 567.21659375
transcript.pyannote[160].end 568.66784375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 569.17409375
transcript.pyannote[161].end 574.15221875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 573.24096875
transcript.pyannote[162].end 573.52784375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 574.15221875
transcript.pyannote[163].end 581.13846875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 581.98221875
transcript.pyannote[164].end 591.87096875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 593.62596875
transcript.pyannote[165].end 596.91659375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 597.55784375
transcript.pyannote[166].end 614.50034375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 614.56784375
transcript.pyannote[167].end 626.02596875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 626.24534375
transcript.pyannote[168].end 627.94971875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 628.67534375
transcript.pyannote[169].end 629.18159375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 629.77221875
transcript.pyannote[170].end 630.83534375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 631.15596875
transcript.pyannote[171].end 631.57784375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 633.61971875
transcript.pyannote[172].end 634.22721875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 634.58159375
transcript.pyannote[173].end 635.42534375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 636.13409375
transcript.pyannote[174].end 636.94409375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 637.01159375
transcript.pyannote[175].end 642.00659375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 642.34409375
transcript.pyannote[176].end 645.22971875
transcript.pyannote[177].speaker SPEAKER_04
transcript.pyannote[177].start 644.30159375
transcript.pyannote[177].end 656.85659375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 655.72596875
transcript.pyannote[178].end 668.38221875
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 663.28596875
transcript.pyannote[179].end 663.70784375
transcript.pyannote[180].speaker SPEAKER_04
transcript.pyannote[180].start 668.38221875
transcript.pyannote[180].end 669.96846875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 668.82096875
transcript.pyannote[181].end 669.19221875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 669.41159375
transcript.pyannote[182].end 674.64284375
transcript.pyannote[183].speaker SPEAKER_04
transcript.pyannote[183].start 674.77784375
transcript.pyannote[183].end 675.63846875
transcript.pyannote[184].speaker SPEAKER_04
transcript.pyannote[184].start 675.73971875
transcript.pyannote[184].end 688.48034375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 685.62846875
transcript.pyannote[185].end 685.89846875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 686.20221875
transcript.pyannote[186].end 686.74221875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 688.05846875
transcript.pyannote[187].end 688.58159375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 688.75034375
transcript.pyannote[188].end 691.46721875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 691.56846875
transcript.pyannote[189].end 696.17534375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 693.23909375
transcript.pyannote[190].end 693.28971875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 693.35721875
transcript.pyannote[191].end 693.55971875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 696.42846875
transcript.pyannote[192].end 697.10346875
transcript.whisperx[0].start 8.508
transcript.whisperx[0].end 9.271
transcript.whisperx[0].text 謝謝主席有請經濟部賴次長還有農業部陳部長
transcript.whisperx[1].start 17.881
transcript.whisperx[1].end 38.638
transcript.whisperx[1].text 主要影響是農業部跟經濟部所以今天主題是對我國農漁序以及關鍵產業競爭力的相關的影響那當然這個川普當然他的是變動性的常態常態是個變動性變動性的常態也是常態是變動性就好像川劇變的一樣
transcript.whisperx[2].start 40.209
transcript.whisperx[2].end 64.978
transcript.whisperx[2].text 目不暇及 今天變成怎樣 但是明天又換另外一種臉彷彿這個川劇變臉 但是他的內心沒有變他的內心就是 他把那個臉 他不講你的真實臉孔在哪裡但是他的內心就是 讓美國再次偉大他的核心是美國的這個國家利益 對不對所以他是基本上 他是這個進攻型的這個現實主義者
transcript.whisperx[3].start 67.402
transcript.whisperx[3].end 93.454
transcript.whisperx[3].text 他主動出擊去爭取他的國家利益用強勢逼迫透過這種方式我覺得他已經達到初步的目的所以各國要怎麼樣去因應川普的關稅的政策我認為我國可以用不變應萬變什麼叫不變第一對內的部分一定要強化這個產業的競爭力
transcript.whisperx[4].start 96.806
transcript.whisperx[4].end 115.441
transcript.whisperx[4].text 你有競爭力你才有跟其他國家這個競爭的本錢不然你關稅制度調整你有競爭力一定是比其他國家更有機會所以要不斷的強化這個產業競爭力第二個我們這個賴總統不是提到這個均衡台灣嗎我們要均衡全球的貿易市場
transcript.whisperx[5].start 117.233
transcript.whisperx[5].end 137.983
transcript.whisperx[5].text 均衡全球貿易市場不要把所有的市場集中在特定國家比方說過去集中在中國 還是美國有一陣子是東協我覺得全球六大洲都是我們的主要市場沒有分什麼次要市場所以你要持續強化均衡全球貿易市場強化對國際的行銷
transcript.whisperx[6].start 143.715
transcript.whisperx[6].end 157.912
transcript.whisperx[6].text 另外一方面就是要全面透過這個時間 盤點當前農工相關產品的關稅政策是不是也不合時宜 是不是也有檢討的必要 這三個不變
transcript.whisperx[7].start 159.887
transcript.whisperx[7].end 187.428
transcript.whisperx[7].text 持續推動 持續加強這對內的部分是可操之在我們但是不可操之在我們是在在美國的這個關稅政策我剛剛所提到 川劇變臉幾乎常常每天這變動是一個常態所以我們強化是如何跟這個主要貿易國家的這個協商的機制跟談判人員的強化駐美 我們談判小組駐美的這個經濟組統有多少人 那個賴市長
transcript.whisperx[8].start 191.744
transcript.whisperx[8].end 210.103
transcript.whisperx[8].text 駐美經濟組的同仁,我去過,他們人蠻多的18個人,不只是美國,整個北美,所以我告訴你,18個人你要加強,像行政院有跨部會的這個因應小組,我希望你這個經濟部也要組成跨局處的這個因應小組
transcript.whisperx[9].start 213.706
transcript.whisperx[9].end 218.088
transcript.whisperx[9].text 國貿局、以前工業局、現在產發署相關的局處跟駐美經濟小組的同仁要保持一個密切的聯繫前線跟後勤能夠馬上得到這個訊息的無縫接軌同樣的農業部也要如此辦理
transcript.whisperx[10].start 237.998
transcript.whisperx[10].end 263.129
transcript.whisperx[10].text 包括你這個六項主要影響農業產品六項是主要影響的那六項總金額是多少錢蕭美總金額是多少錢六項加起來現在目前加起來六項加起來大概是五十多億五十多億嘛相對於比這個經濟部主管的相關的我們產業的金額相當比較小但是不是因為比較小我們就不重視
transcript.whisperx[11].start 264.469
transcript.whisperx[11].end 291.014
transcript.whisperx[11].text 但是我要強調就是說這個前線跟我們後行後線的這個協調機制非常重要所以怎麼樣派更多的紅人到這段時間去美國啊來協助怎麼樣去跟川普政府做更多的政策的協調磋商也好因為90天之後他是暫緩90天90天之後還不知道是不是90天之後如期上路
transcript.whisperx[12].start 292.728
transcript.whisperx[12].end 312.982
transcript.whisperx[12].text 還是會變 沒有人知道 只有川普知道但是我們做最壞的打算就是說如果九十天 三個月之後他要如期上路那我們還是要因應那九十天是黃金的九十天黃金的三個月你要把握這個時間去跟美國相關的部位包括他們農業部 包括他們的商務部包括跟白宮相關的經濟的閣員
transcript.whisperx[13].start 316.104
transcript.whisperx[13].end 329.78
transcript.whisperx[13].text 有更多的溝通 更多的協調在90天之內有一個進展讓美國可以接受我們做相關的政策的調整包括我們加強對美國的投資也要讓他們知道說投資哪些項目加強對美國的這個購買
transcript.whisperx[14].start 332.847
transcript.whisperx[14].end 357.967
transcript.whisperx[14].text 比方說對美國有哪些產品我們可以加強來對他們的購買來平衡對美國的貿易的這個順利差我們對他們的順差非常高所以因為順差高我們才被他認為是高關稅的國家嘛所以我們加強投資加強對美採購這個一定要在三十九十天之內確實到位
transcript.whisperx[15].start 359.298
transcript.whisperx[15].end 369.484
transcript.whisperx[15].text 品相經得都要清楚 當然也包括其他部會 包括我想能源也算是進一步吧 對不對包括天然氣的採購啦 包括相關的農產品的採購 也當然包括國防
transcript.whisperx[16].start 376.861
transcript.whisperx[16].end 390.603
transcript.whisperx[16].text 我覺得日本政府對這個因應我覺得還不錯從以前的這個歷任的這個這個首相對美國的貿易政策他們這個敏銳度非常高安倍
transcript.whisperx[17].start 392.56
transcript.whisperx[17].end 417.454
transcript.whisperx[17].text 安倍首相他跟美國的只要說稍微跟美國對這個日本貿易的這個有一些意見的時候安倍他就馬上立刻放下身上去談判透過加強的這個採購來把這個貿易的順差把它降下來得到美國的這個信任然後美日關係又變成一個很準同盟的關係
transcript.whisperx[18].start 419.127
transcript.whisperx[18].end 446.666
transcript.whisperx[18].text 另外一個極端例子就是這個中國中國對抗你看現在75國全部90天的暫緩對不對暫緩之後搞不好有這個談判的結果有談判的進度搞不好這些關稅又會再下降又會回到原來的水準所以我覺得這個是川普過去他的這個執政一貫的策略先用高壓高壓之後逼著你一定要去談判
transcript.whisperx[19].start 448.135
transcript.whisperx[19].end 471.008
transcript.whisperx[19].text 談判之後有一個好的結果也當成共識當然對雙方都是好的對他的美國的國家利益也是好的對台灣也不見之不好對貿易的對手國也不見之不好所以我說剛剛說對內的三個變對外我們要積極怎麼樣把握這次黃金三個月去跟美國建立起磋商的機制談判的這個具體成果這個很重要
transcript.whisperx[20].start 472.411
transcript.whisperx[20].end 501.053
transcript.whisperx[20].text 這個農業部有沒有相關的單位在美國我想農業部我們有農業組在那邊那其實特別是針對剛才委員所說的其實均能全權的貿易是非常重要的就是我們沒辦法依賴一個單一的國家所以我們在這一次的支持方案裡面我們其實也考慮到這個所以在這些相關的這些行銷面的部分除了美國市場以外我們也針對主要的目標市場也同步在啟動讓這些產品能夠有更多元的這些市場
transcript.whisperx[21].start 501.813
transcript.whisperx[21].end 518.108
transcript.whisperx[21].text 劇本不是我們寫的劇本是川普寫的但是我們要有因應劇本的相關的戰略你要想想看他可能會有哪些劇本過去說有這個李登輝總統說他掌握18套劇本對不對你們要設想到每一個scenario可能對台灣的產業衝擊對農業衝擊
transcript.whisperx[22].start 521.462
transcript.whisperx[22].end 540.544
transcript.whisperx[22].text 然後針對這些相關的影響我們去做對內的相關的協調也好或者是跟產業界座談也好對外要加強對這個溝通時間到了還有很多事情另外投資台灣三大方案這也是經濟部的業務
transcript.whisperx[23].start 542.358
transcript.whisperx[23].end 557.984
transcript.whisperx[23].text 我們希望說這一波的產業結構的調整這些全球供應鏈的重新的重組我希望有更多的這個核心關鍵產業能夠回來台灣但回來台灣你這個三大方案再延長到2027年對不對 那個市長
transcript.whisperx[24].start 561.527
transcript.whisperx[24].end 580.885
transcript.whisperx[24].text 這個部分我們已經有規劃了那院長也有表示那基本上我們會依照這個三大投資方案的這個部分就你剛剛所說的到2027的部分去做規劃這個如果這一波回來可能是關鍵的產業所以他們回來的中心反而是更高
transcript.whisperx[25].start 582.548
transcript.whisperx[25].end 596.66
transcript.whisperx[25].text 重要性更高所以我認為經濟部門要提供更好的EOE讓這些產業類重組的過程中願意來台灣再來投資回來台灣投資所以各國的經貿政策一定是以他的國家利益為主
transcript.whisperx[26].start 597.648
transcript.whisperx[26].end 625.54
transcript.whisperx[26].text 所以我們當然我們在規劃任何的這個經貿政策當然以台灣的國家利益為主產業政策的利益為主所以包括農民的利益為主我相信兩位包括陳部長包括剛剛郭部長也來還有賴市長我想這段時間執政團隊非常辛苦那我相信你們也做好準備只是說很多事情非超支在我們是超支在美方超支在川普政府但是我們這些所有劇本都要很清楚做盤點
transcript.whisperx[27].start 626.34
transcript.whisperx[27].end 627.802
transcript.whisperx[27].text 那我也提醒財政部理事長
transcript.whisperx[28].start 633.826
transcript.whisperx[28].end 649.779
transcript.whisperx[28].text 那個關稅啊 關稅你要怎麼利用這段時間做一些相關的全面盤點跟調整這個財政部有沒有相關的記錄因為關稅的調整主要還是要看這個產業主管機關他們對產業的這個影響評估啦那這部分財政部會來尊重主管機關評估的結果
transcript.whisperx[29].start 657.325
transcript.whisperx[29].end 669.631
transcript.whisperx[29].text 那相關主管機關也要針對各個品項的關稅目前是到底合不合理到底造成的順差對美國的影響有多大這個應該去盤點只要說主管機關做出相關的建議財政部都願意做調整嗎
transcript.whisperx[30].start 674.913
transcript.whisperx[30].end 695.239
transcript.whisperx[30].text 我們會經由這個主管機關做審慎評估因為他們會考量整個產業的這個發展還有就是會不會對台灣的就業造成影響或衝擊這個部分我們會尊重產業主管機關評估的意見我要特別謝謝史上這個最好的召委給我給我額外的幾分鐘謝謝你