IVOD_ID |
160105 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160105 |
日期 |
2025-04-10 |
會議資料.會議代碼 |
委員會-11-3-19-8 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第8次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
8 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第8次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-10T12:03:20+08:00 |
結束時間 |
2025-04-10T12:11:21+08:00 |
影片長度 |
00:08:01 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/127fafa562dc9712b07a381bc6b2e804f11452c3877738ca1a30f584bceeba9909889872e64f964c5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鍾佳濱 |
委員發言時間 |
12:03:20 - 12:11:21 |
會議時間 |
2025-04-10T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第8次全體委員會議(事由:邀請經濟部部長、農業部部長及財政部首長就「因應美國關税政策以維持我國農漁畜業及關鍵產業競爭力之協助措施」進行報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
1.09409375 |
transcript.pyannote[0].end |
1.17846875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
10.34159375 |
transcript.pyannote[1].end |
15.21846875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
15.75846875 |
transcript.pyannote[2].end |
16.43346875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
16.66971875 |
transcript.pyannote[3].end |
19.48784375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
19.82534375 |
transcript.pyannote[4].end |
20.85471875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
24.17909375 |
transcript.pyannote[5].end |
24.75284375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
24.95534375 |
transcript.pyannote[6].end |
32.78534375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
32.98784375 |
transcript.pyannote[7].end |
34.82721875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
35.21534375 |
transcript.pyannote[8].end |
39.67034375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
39.95721875 |
transcript.pyannote[9].end |
43.77096875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
44.17596875 |
transcript.pyannote[10].end |
44.51346875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
44.74971875 |
transcript.pyannote[11].end |
46.99409375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
46.99409375 |
transcript.pyannote[12].end |
47.23034375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
47.44971875 |
transcript.pyannote[13].end |
50.92596875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
51.16221875 |
transcript.pyannote[14].end |
51.88784375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
52.15784375 |
transcript.pyannote[15].end |
56.03909375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
56.30909375 |
transcript.pyannote[16].end |
58.41846875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
58.73909375 |
transcript.pyannote[17].end |
59.51534375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
59.70096875 |
transcript.pyannote[18].end |
60.03846875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
60.29159375 |
transcript.pyannote[19].end |
62.45159375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
63.07596875 |
transcript.pyannote[20].end |
64.24034375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
64.76346875 |
transcript.pyannote[21].end |
68.77971875 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
69.06659375 |
transcript.pyannote[22].end |
70.75409375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
71.12534375 |
transcript.pyannote[23].end |
74.14596875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
74.60159375 |
transcript.pyannote[24].end |
82.71846875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
76.60971875 |
transcript.pyannote[25].end |
77.70659375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
78.14534375 |
transcript.pyannote[26].end |
78.24659375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
82.97159375 |
transcript.pyannote[27].end |
86.95409375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
87.37596875 |
transcript.pyannote[28].end |
90.46409375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
90.48096875 |
transcript.pyannote[29].end |
91.54409375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
92.20221875 |
transcript.pyannote[30].end |
93.51846875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
93.68721875 |
transcript.pyannote[31].end |
98.02409375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
98.15909375 |
transcript.pyannote[32].end |
100.89284375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
101.26409375 |
transcript.pyannote[33].end |
105.06096875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
105.19596875 |
transcript.pyannote[34].end |
108.97596875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
109.38096875 |
transcript.pyannote[35].end |
109.68471875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
110.02221875 |
transcript.pyannote[36].end |
112.23284375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
112.58721875 |
transcript.pyannote[37].end |
117.97034375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
118.66221875 |
transcript.pyannote[38].end |
119.97846875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
120.34971875 |
transcript.pyannote[39].end |
122.57721875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
122.76284375 |
transcript.pyannote[40].end |
123.85971875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
124.83846875 |
transcript.pyannote[41].end |
126.52596875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
126.71159375 |
transcript.pyannote[42].end |
127.03221875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
127.03221875 |
transcript.pyannote[43].end |
127.06596875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
127.06596875 |
transcript.pyannote[44].end |
127.52159375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
129.96846875 |
transcript.pyannote[45].end |
151.97346875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
133.22534375 |
transcript.pyannote[46].end |
133.56284375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
151.97346875 |
transcript.pyannote[47].end |
156.69846875 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
156.95159375 |
transcript.pyannote[48].end |
157.22159375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
157.86284375 |
transcript.pyannote[49].end |
159.63471875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
160.91721875 |
transcript.pyannote[50].end |
179.69909375 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
180.01971875 |
transcript.pyannote[51].end |
184.23846875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
181.69034375 |
transcript.pyannote[52].end |
181.84221875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
184.59284375 |
transcript.pyannote[53].end |
185.41971875 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
185.74034375 |
transcript.pyannote[54].end |
187.76534375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
188.27159375 |
transcript.pyannote[55].end |
191.74784375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
192.03471875 |
transcript.pyannote[56].end |
193.36784375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
193.77284375 |
transcript.pyannote[57].end |
199.15596875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
199.47659375 |
transcript.pyannote[58].end |
200.77596875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
201.58596875 |
transcript.pyannote[59].end |
203.94846875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
203.98221875 |
transcript.pyannote[60].end |
205.09596875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
205.41659375 |
transcript.pyannote[61].end |
207.99846875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
208.33596875 |
transcript.pyannote[62].end |
211.72784375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
212.08221875 |
transcript.pyannote[63].end |
213.34784375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
213.63471875 |
transcript.pyannote[64].end |
222.78096875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
223.33784375 |
transcript.pyannote[65].end |
226.45971875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
226.93221875 |
transcript.pyannote[66].end |
228.06284375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
227.74221875 |
transcript.pyannote[67].end |
227.87721875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
228.26534375 |
transcript.pyannote[68].end |
231.55596875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
229.44659375 |
transcript.pyannote[69].end |
229.96971875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
231.69096875 |
transcript.pyannote[70].end |
232.07909375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
232.16346875 |
transcript.pyannote[71].end |
238.10346875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
238.10346875 |
transcript.pyannote[72].end |
241.90034375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
242.05221875 |
transcript.pyannote[73].end |
246.20346875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
244.00971875 |
transcript.pyannote[74].end |
248.56596875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
248.88659375 |
transcript.pyannote[75].end |
255.45096875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
249.02159375 |
transcript.pyannote[76].end |
249.51096875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
255.45096875 |
transcript.pyannote[77].end |
256.69971875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
256.69971875 |
transcript.pyannote[78].end |
256.95284375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
256.95284375 |
transcript.pyannote[79].end |
269.77784375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
269.84534375 |
transcript.pyannote[80].end |
280.49346875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
276.91596875 |
transcript.pyannote[81].end |
277.48971875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
280.52721875 |
transcript.pyannote[82].end |
287.41221875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
280.76346875 |
transcript.pyannote[83].end |
281.48909375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
282.01221875 |
transcript.pyannote[84].end |
282.40034375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
284.67846875 |
transcript.pyannote[85].end |
286.02846875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
286.70346875 |
transcript.pyannote[86].end |
291.02346875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
291.27659375 |
transcript.pyannote[87].end |
294.70221875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
294.95534375 |
transcript.pyannote[88].end |
298.66784375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
300.43971875 |
transcript.pyannote[89].end |
317.90534375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
307.69596875 |
transcript.pyannote[90].end |
308.59034375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
315.28971875 |
transcript.pyannote[91].end |
316.75784375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
316.80846875 |
transcript.pyannote[92].end |
317.63534375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
318.00659375 |
transcript.pyannote[93].end |
319.57596875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
320.26784375 |
transcript.pyannote[94].end |
324.65534375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
321.68534375 |
transcript.pyannote[95].end |
321.97221875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
321.98909375 |
transcript.pyannote[96].end |
323.11971875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
324.95909375 |
transcript.pyannote[97].end |
334.98284375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
335.67471875 |
transcript.pyannote[98].end |
337.88534375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
338.25659375 |
transcript.pyannote[99].end |
338.67846875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
339.04971875 |
transcript.pyannote[100].end |
347.85846875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
344.75346875 |
transcript.pyannote[101].end |
344.97284375 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
348.17909375 |
transcript.pyannote[102].end |
350.96346875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
351.14909375 |
transcript.pyannote[103].end |
354.64221875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
353.51159375 |
transcript.pyannote[104].end |
354.13596875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
355.13159375 |
transcript.pyannote[105].end |
356.73471875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
357.27471875 |
transcript.pyannote[106].end |
358.08471875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
358.45596875 |
transcript.pyannote[107].end |
361.30784375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
361.34159375 |
transcript.pyannote[108].end |
361.35846875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
361.37534375 |
transcript.pyannote[109].end |
363.36659375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
364.07534375 |
transcript.pyannote[110].end |
365.91471875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
366.16784375 |
transcript.pyannote[111].end |
368.37846875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
368.59784375 |
transcript.pyannote[112].end |
372.10784375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
373.25534375 |
transcript.pyannote[113].end |
384.08909375 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
384.49409375 |
transcript.pyannote[114].end |
387.39659375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
387.61596875 |
transcript.pyannote[115].end |
393.80909375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
393.80909375 |
transcript.pyannote[116].end |
394.16346875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
394.16346875 |
transcript.pyannote[117].end |
394.18034375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
394.19721875 |
transcript.pyannote[118].end |
398.07846875 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
398.55096875 |
transcript.pyannote[119].end |
402.41534375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
402.71909375 |
transcript.pyannote[120].end |
408.33846875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
409.01346875 |
transcript.pyannote[121].end |
411.29159375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
411.49409375 |
transcript.pyannote[122].end |
414.98721875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
415.22346875 |
transcript.pyannote[123].end |
415.98284375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
416.42159375 |
transcript.pyannote[124].end |
419.54346875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
419.89784375 |
transcript.pyannote[125].end |
439.69221875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
431.96346875 |
transcript.pyannote[126].end |
432.41909375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
433.43159375 |
transcript.pyannote[127].end |
433.93784375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
439.35471875 |
transcript.pyannote[128].end |
439.79346875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
440.33346875 |
transcript.pyannote[129].end |
444.14721875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
444.77159375 |
transcript.pyannote[130].end |
446.76284375 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
447.26909375 |
transcript.pyannote[131].end |
450.18846875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
450.62721875 |
transcript.pyannote[132].end |
453.04034375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
453.66471875 |
transcript.pyannote[133].end |
455.75721875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
456.19596875 |
transcript.pyannote[134].end |
462.76034375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
463.13159375 |
transcript.pyannote[135].end |
465.84846875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
466.70909375 |
transcript.pyannote[136].end |
471.02909375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
471.31596875 |
transcript.pyannote[137].end |
474.96096875 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
475.33221875 |
transcript.pyannote[138].end |
477.91409375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
476.86784375 |
transcript.pyannote[139].end |
477.79596875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
478.57221875 |
transcript.pyannote[140].end |
480.81659375 |
transcript.whisperx[0].start |
10.531 |
transcript.whisperx[0].end |
17.436 |
transcript.whisperx[0].text |
主席 在場留言先進 列席的政府機關所長 官員會長 工作夥伴 媒體記者 女士先生有請農業部陳部長 也請經濟部的郭部長好 請兩位部長 |
transcript.whisperx[1].start |
25.333 |
transcript.whisperx[1].end |
43.447 |
transcript.whisperx[1].text |
兩位部長好我今天的題目呢就是零關稅同盟強化台美貿易880億因應進口衝擊要顧農業我先請教一下郭部長如果上個星期美國政府川普的宣布是個晴天霹靂你覺得早上看到他說延緩90天的感覺心情怎麼樣 |
transcript.whisperx[2].start |
44.875 |
transcript.whisperx[2].end |
73.937 |
transcript.whisperx[2].text |
報告委員這也都在我們的預估之內都在預估之內難怪這幾天你都氣定神閒好這裡面呢說到因為後面我要問一下陳部長因為昨天我已經跟郭部長請教過了那目前呢川普是在暫停90天只抽10%好好了那有什麼連帶的改變呢來我們看一下下一頁那麼請教陳部長川普開出各國不對等的關稅清單目的是什麼譬如台灣莫名其妙是32%結果呢你覺得後來的結果從結果來看你覺得他的目的是什麼 |
transcript.whisperx[3].start |
74.656 |
transcript.whisperx[3].end |
91.155 |
transcript.whisperx[3].text |
我覺得他是一個談判員他就是一個要比你上談判桌而且呢他很清楚的要創造一個零關稅的自由貿易同盟他對中國高關稅 中委都要報復結果兩個越來越高越來越高然後呢其他的國家看看苗頭不對都說好了我們對等嘛因為只有對等 |
transcript.whisperx[4].start |
92.613 |
transcript.whisperx[4].end |
117.546 |
transcript.whisperx[4].text |
你對美國零 那美國也會對你零嘛所以大家都把對美的關稅降到零了結果這產生什麼問題呢 產生什麼情況呢 往下看就是說原來中國貨 效往美國的中國貨被誰取代被這些跟美國互為零關稅的同盟所取代 是不是這樣子中國貨出場啦 因為它太貴啦但是相對台灣去的啦 以色列去的變便宜了嘛 所以就改買 |
transcript.whisperx[5].start |
118.82 |
transcript.whisperx[5].end |
140.979 |
transcript.whisperx[5].text |
這些其他的同盟國的貨但是美國貨也賣不到中國去嘛 那換賣到哪裡去賣到台灣 賣到這些同盟國嘛 部長你同意嗎報告委員 我們針對你昨天的這些指導我們回去有做一些模擬 謝謝你的這個先見之明所以我們大概才會推估一些這個狀況 |
transcript.whisperx[6].start |
142.677 |
transcript.whisperx[6].end |
159.317 |
transcript.whisperx[6].text |
那對這個趨勢大概是朝您所指導的這個方向我想會這樣朝這個方向來發展謝謝郭部長的肯定那我也請教陳部長如果台灣降低對美關稅甚至到達零那能夠降低台美的貿易逆差嗎 |
transcript.whisperx[7].start |
161.25 |
transcript.whisperx[7].end |
185.245 |
transcript.whisperx[7].text |
我想某個程度現在不確定性還蠻高的最主要是從美國進到台灣的這些這些主要的農產品是以黃小玉為主那黃小玉這些飼料的這個部分最主要是跟我們產業的規模是有關係的所以說跟關稅的關聯性有一點但是還是看你的未納量好我們來看一下美國進口台灣對不起往上往上往上 |
transcript.whisperx[8].start |
186.846 |
transcript.whisperx[8].end |
200.598 |
transcript.whisperx[8].text |
好來美國進口美國的商品因為零關稅會什麼進口增加像黃小玉對不對當然有些是不受影響因為他的因素是非關稅因素不是關稅因素像汽車昨天我問過郭部長了嘛 |
transcript.whisperx[9].start |
201.601 |
transcript.whisperx[9].end |
222.106 |
transcript.whisperx[9].text |
那你日本車跟美國車都零關稅你要買什麼當然買日本車啦美國的火雞肉向來人家台灣人民就不喜歡吃嘛但是我們必須政策性的去擴大採購譬如買軍備買天然氣是不是這樣子那請教陳部長你認為目前880的方案是為了因應出口商品因為美國的高關稅而受到的衝擊嗎 |
transcript.whisperx[10].start |
223.41 |
transcript.whisperx[10].end |
247.313 |
transcript.whisperx[10].text |
原來的八百八十億以農業部門來講是一百八十億對然後我們一百八十億我先問你是為了因應出口嘛對不對是因應出口受阻嘛所以博部長是不是也同意原來的八百八十億也是為了因應出口受阻嗎這是我們第一步先能夠是個舒緩國內這些出口廠商那你覺得現在當初母親戶口90天之後有沒有出口受阻的這個憂慮了 |
transcript.whisperx[11].start |
248.934 |
transcript.whisperx[11].end |
269.404 |
transcript.whisperx[11].text |
沒有沒有 我們現在因為只有在 我們必須要快速在90天裡面看到最後的決定是什麼好 那個最後的決定是台灣跟美國都互相零關稅你覺得工業的這700億要協助出口受阻的 還有需要用到嗎你這邊都評估的是外銷的啊 申請資格都是要出口業啊農業部門的呢 這就外銷美國的產品啊 是不是這樣 |
transcript.whisperx[12].start |
270.044 |
transcript.whisperx[12].end |
298.508 |
transcript.whisperx[12].text |
報告委員 我想我們會評估各種不同的狀況這個是只是其中的一個狀況但是它可能發生的會根據全球的我相信美國不是只有談台美之間的狀況是的 我們要考慮到全球如果實際發生了是台灣對美國出口不受影響是台灣變成零關稅美國會進口很多我們受到影響那這個時候這881票調整使用的方向跟對象 |
transcript.whisperx[13].start |
300.472 |
transcript.whisperx[13].end |
315.538 |
transcript.whisperx[13].text |
好來陳部長就是你了來我們現在看很快的結我跟委員報告現在目前181大概是以出國轉向但是如果農業進口呢但是農業進口的部分我們會看最後的一個結果假如是美國進口台灣是零關稅的話呢我講農業部不可能 |
transcript.whisperx[14].start |
320.541 |
transcript.whisperx[14].end |
331.756 |
transcript.whisperx[14].text |
黃小玉本來就零關稅了對這不就有影響嗎但是那個雞肉牛肉的部分因為國內的比重非常低但是雞肉我們有一定的比重所以像我們國內有產業的話我們關稅不會輕易讓步所以 |
transcript.whisperx[15].start |
336.102 |
transcript.whisperx[15].end |
363.224 |
transcript.whisperx[15].text |
等一等 你說關稅不會輕易讓步如果台灣對美國不零關稅讓他的肌肉進來我們經濟部就沒有辦法零關稅去美國我跟委員報告所有的關稅在談判的過程中不是用國家的零關稅全部一致零關稅他會現在回到不同的產業別我了解 部長你的想法跟川普的不一樣他就是簡單我就是要你們站到台灣跟我美國站在一起零關稅自由貿易同盟 |
transcript.whisperx[16].start |
364.285 |
transcript.whisperx[16].end |
372.037 |
transcript.whisperx[16].text |
盡量不要有那些不是關稅造成的障礙所以零關稅會造成台灣肌肉的影響你同不同意 |
transcript.whisperx[17].start |
373.288 |
transcript.whisperx[17].end |
397.861 |
transcript.whisperx[17].text |
如果未來被迫接受我們互相互惠零關稅不過我想在我們現在目前談判的過程中我們還會堅持因為農業有它的特殊性我了解因為特殊性我們來看一下在WTO的時候往下看本來在WTO之後我們台灣稻米年長115萬噸WTO給我們的進口費容許在14萬噸裡面是零關稅但是超出的部分還是要課稅對不對是縱使是這樣子台灣的稻米的成本大概是四五十萬一公斤 |
transcript.whisperx[18].start |
399.182 |
transcript.whisperx[18].end |
414.236 |
transcript.whisperx[18].text |
但是如果說我們今天是零關稅,軍價可能是29,所以你要因應衝擊,因為時間快到了,我就請你衝擊,來往下看,郭部長換你了。這個裕隆汽車前兩天發出一個聲明,他說如果台灣對美國是零關稅,他的汽車進來零關稅的話,他們覺得會很難撐下去,你認同這樣的說法嗎? |
transcript.whisperx[19].start |
420.429 |
transcript.whisperx[19].end |
434.4 |
transcript.whisperx[19].text |
這個在現象上面可能會發生這樣子不過我們經濟部的角度來講我們還是因為我們有10萬多人的從業人員在所以我們會讓他轉型調整轉型調整譬如說台灣的電子零組件這麼強讓他轉型生產電動車這也是一個項目很好 |
transcript.whisperx[20].start |
440.505 |
transcript.whisperx[20].end |
465.358 |
transcript.whisperx[20].text |
陳部長這就是我希望農業部要及早因應的我是揣在蛋其實如果是台灣出口受阻其實相對農業縣受到的影響相對低但是如果台灣現在是進口是開放那麼我們農業縣受到的影響是大的但是如果出口沒有問題進口有問題我們郭部長只要擔心台灣的汽車裝配業等一些少數的產業但是如果農業部門我們就受到很大影響所以結論 |
transcript.whisperx[21].start |
466.775 |
transcript.whisperx[21].end |
479.475 |
transcript.whisperx[21].text |
是不是請農業部就我國 若我國對美的關稅降至零如何協助我國的農漁畜牧業因應衝擊提出農業報告 可以嗎可以 我們會做這樣的一個分析那多久可以給本席一個月好 謝謝 謝謝兩位部長 謝謝 |