iVOD / 160105

Field Value
IVOD_ID 160105
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160105
日期 2025-04-10
會議資料.會議代碼 委員會-11-3-19-8
會議資料.會議代碼:str 第11屆第3會期經濟委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-04-10T12:03:20+08:00
結束時間 2025-04-10T12:11:21+08:00
影片長度 00:08:01
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/127fafa562dc9712b07a381bc6b2e804f11452c3877738ca1a30f584bceeba9909889872e64f964c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 12:03:20 - 12:11:21
會議時間 2025-04-10T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第8次全體委員會議(事由:邀請經濟部部長、農業部部長及財政部首長就「因應美國關税政策以維持我國農漁畜業及關鍵產業競爭力之協助措施」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 1.09409375
transcript.pyannote[0].end 1.17846875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 10.34159375
transcript.pyannote[1].end 15.21846875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 15.75846875
transcript.pyannote[2].end 16.43346875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 16.66971875
transcript.pyannote[3].end 19.48784375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 19.82534375
transcript.pyannote[4].end 20.85471875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 24.17909375
transcript.pyannote[5].end 24.75284375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 24.95534375
transcript.pyannote[6].end 32.78534375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 32.98784375
transcript.pyannote[7].end 34.82721875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 35.21534375
transcript.pyannote[8].end 39.67034375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 39.95721875
transcript.pyannote[9].end 43.77096875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 44.17596875
transcript.pyannote[10].end 44.51346875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 44.74971875
transcript.pyannote[11].end 46.99409375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 46.99409375
transcript.pyannote[12].end 47.23034375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 47.44971875
transcript.pyannote[13].end 50.92596875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 51.16221875
transcript.pyannote[14].end 51.88784375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 52.15784375
transcript.pyannote[15].end 56.03909375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 56.30909375
transcript.pyannote[16].end 58.41846875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 58.73909375
transcript.pyannote[17].end 59.51534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 59.70096875
transcript.pyannote[18].end 60.03846875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 60.29159375
transcript.pyannote[19].end 62.45159375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 63.07596875
transcript.pyannote[20].end 64.24034375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 64.76346875
transcript.pyannote[21].end 68.77971875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 69.06659375
transcript.pyannote[22].end 70.75409375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 71.12534375
transcript.pyannote[23].end 74.14596875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 74.60159375
transcript.pyannote[24].end 82.71846875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 76.60971875
transcript.pyannote[25].end 77.70659375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 78.14534375
transcript.pyannote[26].end 78.24659375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 82.97159375
transcript.pyannote[27].end 86.95409375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 87.37596875
transcript.pyannote[28].end 90.46409375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 90.48096875
transcript.pyannote[29].end 91.54409375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 92.20221875
transcript.pyannote[30].end 93.51846875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 93.68721875
transcript.pyannote[31].end 98.02409375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 98.15909375
transcript.pyannote[32].end 100.89284375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 101.26409375
transcript.pyannote[33].end 105.06096875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 105.19596875
transcript.pyannote[34].end 108.97596875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 109.38096875
transcript.pyannote[35].end 109.68471875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 110.02221875
transcript.pyannote[36].end 112.23284375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 112.58721875
transcript.pyannote[37].end 117.97034375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 118.66221875
transcript.pyannote[38].end 119.97846875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 120.34971875
transcript.pyannote[39].end 122.57721875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 122.76284375
transcript.pyannote[40].end 123.85971875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 124.83846875
transcript.pyannote[41].end 126.52596875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 126.71159375
transcript.pyannote[42].end 127.03221875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 127.03221875
transcript.pyannote[43].end 127.06596875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 127.06596875
transcript.pyannote[44].end 127.52159375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 129.96846875
transcript.pyannote[45].end 151.97346875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 133.22534375
transcript.pyannote[46].end 133.56284375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 151.97346875
transcript.pyannote[47].end 156.69846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 156.95159375
transcript.pyannote[48].end 157.22159375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 157.86284375
transcript.pyannote[49].end 159.63471875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 160.91721875
transcript.pyannote[50].end 179.69909375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 180.01971875
transcript.pyannote[51].end 184.23846875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 181.69034375
transcript.pyannote[52].end 181.84221875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 184.59284375
transcript.pyannote[53].end 185.41971875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 185.74034375
transcript.pyannote[54].end 187.76534375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 188.27159375
transcript.pyannote[55].end 191.74784375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 192.03471875
transcript.pyannote[56].end 193.36784375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 193.77284375
transcript.pyannote[57].end 199.15596875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 199.47659375
transcript.pyannote[58].end 200.77596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 201.58596875
transcript.pyannote[59].end 203.94846875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 203.98221875
transcript.pyannote[60].end 205.09596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 205.41659375
transcript.pyannote[61].end 207.99846875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 208.33596875
transcript.pyannote[62].end 211.72784375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 212.08221875
transcript.pyannote[63].end 213.34784375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 213.63471875
transcript.pyannote[64].end 222.78096875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 223.33784375
transcript.pyannote[65].end 226.45971875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 226.93221875
transcript.pyannote[66].end 228.06284375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 227.74221875
transcript.pyannote[67].end 227.87721875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 228.26534375
transcript.pyannote[68].end 231.55596875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 229.44659375
transcript.pyannote[69].end 229.96971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 231.69096875
transcript.pyannote[70].end 232.07909375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 232.16346875
transcript.pyannote[71].end 238.10346875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 238.10346875
transcript.pyannote[72].end 241.90034375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 242.05221875
transcript.pyannote[73].end 246.20346875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 244.00971875
transcript.pyannote[74].end 248.56596875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 248.88659375
transcript.pyannote[75].end 255.45096875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 249.02159375
transcript.pyannote[76].end 249.51096875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 255.45096875
transcript.pyannote[77].end 256.69971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 256.69971875
transcript.pyannote[78].end 256.95284375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 256.95284375
transcript.pyannote[79].end 269.77784375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 269.84534375
transcript.pyannote[80].end 280.49346875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 276.91596875
transcript.pyannote[81].end 277.48971875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 280.52721875
transcript.pyannote[82].end 287.41221875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 280.76346875
transcript.pyannote[83].end 281.48909375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 282.01221875
transcript.pyannote[84].end 282.40034375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 284.67846875
transcript.pyannote[85].end 286.02846875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 286.70346875
transcript.pyannote[86].end 291.02346875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 291.27659375
transcript.pyannote[87].end 294.70221875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 294.95534375
transcript.pyannote[88].end 298.66784375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 300.43971875
transcript.pyannote[89].end 317.90534375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 307.69596875
transcript.pyannote[90].end 308.59034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 315.28971875
transcript.pyannote[91].end 316.75784375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 316.80846875
transcript.pyannote[92].end 317.63534375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 318.00659375
transcript.pyannote[93].end 319.57596875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 320.26784375
transcript.pyannote[94].end 324.65534375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 321.68534375
transcript.pyannote[95].end 321.97221875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 321.98909375
transcript.pyannote[96].end 323.11971875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 324.95909375
transcript.pyannote[97].end 334.98284375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 335.67471875
transcript.pyannote[98].end 337.88534375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 338.25659375
transcript.pyannote[99].end 338.67846875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 339.04971875
transcript.pyannote[100].end 347.85846875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 344.75346875
transcript.pyannote[101].end 344.97284375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 348.17909375
transcript.pyannote[102].end 350.96346875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 351.14909375
transcript.pyannote[103].end 354.64221875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 353.51159375
transcript.pyannote[104].end 354.13596875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 355.13159375
transcript.pyannote[105].end 356.73471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 357.27471875
transcript.pyannote[106].end 358.08471875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 358.45596875
transcript.pyannote[107].end 361.30784375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 361.34159375
transcript.pyannote[108].end 361.35846875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 361.37534375
transcript.pyannote[109].end 363.36659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 364.07534375
transcript.pyannote[110].end 365.91471875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 366.16784375
transcript.pyannote[111].end 368.37846875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 368.59784375
transcript.pyannote[112].end 372.10784375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 373.25534375
transcript.pyannote[113].end 384.08909375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 384.49409375
transcript.pyannote[114].end 387.39659375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 387.61596875
transcript.pyannote[115].end 393.80909375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 393.80909375
transcript.pyannote[116].end 394.16346875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 394.16346875
transcript.pyannote[117].end 394.18034375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 394.19721875
transcript.pyannote[118].end 398.07846875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 398.55096875
transcript.pyannote[119].end 402.41534375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 402.71909375
transcript.pyannote[120].end 408.33846875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 409.01346875
transcript.pyannote[121].end 411.29159375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 411.49409375
transcript.pyannote[122].end 414.98721875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 415.22346875
transcript.pyannote[123].end 415.98284375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 416.42159375
transcript.pyannote[124].end 419.54346875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 419.89784375
transcript.pyannote[125].end 439.69221875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 431.96346875
transcript.pyannote[126].end 432.41909375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 433.43159375
transcript.pyannote[127].end 433.93784375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 439.35471875
transcript.pyannote[128].end 439.79346875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 440.33346875
transcript.pyannote[129].end 444.14721875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 444.77159375
transcript.pyannote[130].end 446.76284375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 447.26909375
transcript.pyannote[131].end 450.18846875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 450.62721875
transcript.pyannote[132].end 453.04034375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 453.66471875
transcript.pyannote[133].end 455.75721875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 456.19596875
transcript.pyannote[134].end 462.76034375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 463.13159375
transcript.pyannote[135].end 465.84846875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 466.70909375
transcript.pyannote[136].end 471.02909375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 471.31596875
transcript.pyannote[137].end 474.96096875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 475.33221875
transcript.pyannote[138].end 477.91409375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 476.86784375
transcript.pyannote[139].end 477.79596875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 478.57221875
transcript.pyannote[140].end 480.81659375
transcript.whisperx[0].start 10.531
transcript.whisperx[0].end 17.436
transcript.whisperx[0].text 主席 在場留言先進 列席的政府機關所長 官員會長 工作夥伴 媒體記者 女士先生有請農業部陳部長 也請經濟部的郭部長好 請兩位部長
transcript.whisperx[1].start 25.333
transcript.whisperx[1].end 43.447
transcript.whisperx[1].text 兩位部長好我今天的題目呢就是零關稅同盟強化台美貿易880億因應進口衝擊要顧農業我先請教一下郭部長如果上個星期美國政府川普的宣布是個晴天霹靂你覺得早上看到他說延緩90天的感覺心情怎麼樣
transcript.whisperx[2].start 44.875
transcript.whisperx[2].end 73.937
transcript.whisperx[2].text 報告委員這也都在我們的預估之內都在預估之內難怪這幾天你都氣定神閒好這裡面呢說到因為後面我要問一下陳部長因為昨天我已經跟郭部長請教過了那目前呢川普是在暫停90天只抽10%好好了那有什麼連帶的改變呢來我們看一下下一頁那麼請教陳部長川普開出各國不對等的關稅清單目的是什麼譬如台灣莫名其妙是32%結果呢你覺得後來的結果從結果來看你覺得他的目的是什麼
transcript.whisperx[3].start 74.656
transcript.whisperx[3].end 91.155
transcript.whisperx[3].text 我覺得他是一個談判員他就是一個要比你上談判桌而且呢他很清楚的要創造一個零關稅的自由貿易同盟他對中國高關稅 中委都要報復結果兩個越來越高越來越高然後呢其他的國家看看苗頭不對都說好了我們對等嘛因為只有對等
transcript.whisperx[4].start 92.613
transcript.whisperx[4].end 117.546
transcript.whisperx[4].text 你對美國零 那美國也會對你零嘛所以大家都把對美的關稅降到零了結果這產生什麼問題呢 產生什麼情況呢 往下看就是說原來中國貨 效往美國的中國貨被誰取代被這些跟美國互為零關稅的同盟所取代 是不是這樣子中國貨出場啦 因為它太貴啦但是相對台灣去的啦 以色列去的變便宜了嘛 所以就改買
transcript.whisperx[5].start 118.82
transcript.whisperx[5].end 140.979
transcript.whisperx[5].text 這些其他的同盟國的貨但是美國貨也賣不到中國去嘛 那換賣到哪裡去賣到台灣 賣到這些同盟國嘛 部長你同意嗎報告委員 我們針對你昨天的這些指導我們回去有做一些模擬 謝謝你的這個先見之明所以我們大概才會推估一些這個狀況
transcript.whisperx[6].start 142.677
transcript.whisperx[6].end 159.317
transcript.whisperx[6].text 那對這個趨勢大概是朝您所指導的這個方向我想會這樣朝這個方向來發展謝謝郭部長的肯定那我也請教陳部長如果台灣降低對美關稅甚至到達零那能夠降低台美的貿易逆差嗎
transcript.whisperx[7].start 161.25
transcript.whisperx[7].end 185.245
transcript.whisperx[7].text 我想某個程度現在不確定性還蠻高的最主要是從美國進到台灣的這些這些主要的農產品是以黃小玉為主那黃小玉這些飼料的這個部分最主要是跟我們產業的規模是有關係的所以說跟關稅的關聯性有一點但是還是看你的未納量好我們來看一下美國進口台灣對不起往上往上往上
transcript.whisperx[8].start 186.846
transcript.whisperx[8].end 200.598
transcript.whisperx[8].text 好來美國進口美國的商品因為零關稅會什麼進口增加像黃小玉對不對當然有些是不受影響因為他的因素是非關稅因素不是關稅因素像汽車昨天我問過郭部長了嘛
transcript.whisperx[9].start 201.601
transcript.whisperx[9].end 222.106
transcript.whisperx[9].text 那你日本車跟美國車都零關稅你要買什麼當然買日本車啦美國的火雞肉向來人家台灣人民就不喜歡吃嘛但是我們必須政策性的去擴大採購譬如買軍備買天然氣是不是這樣子那請教陳部長你認為目前880的方案是為了因應出口商品因為美國的高關稅而受到的衝擊嗎
transcript.whisperx[10].start 223.41
transcript.whisperx[10].end 247.313
transcript.whisperx[10].text 原來的八百八十億以農業部門來講是一百八十億對然後我們一百八十億我先問你是為了因應出口嘛對不對是因應出口受阻嘛所以博部長是不是也同意原來的八百八十億也是為了因應出口受阻嗎這是我們第一步先能夠是個舒緩國內這些出口廠商那你覺得現在當初母親戶口90天之後有沒有出口受阻的這個憂慮了
transcript.whisperx[11].start 248.934
transcript.whisperx[11].end 269.404
transcript.whisperx[11].text 沒有沒有 我們現在因為只有在 我們必須要快速在90天裡面看到最後的決定是什麼好 那個最後的決定是台灣跟美國都互相零關稅你覺得工業的這700億要協助出口受阻的 還有需要用到嗎你這邊都評估的是外銷的啊 申請資格都是要出口業啊農業部門的呢 這就外銷美國的產品啊 是不是這樣
transcript.whisperx[12].start 270.044
transcript.whisperx[12].end 298.508
transcript.whisperx[12].text 報告委員 我想我們會評估各種不同的狀況這個是只是其中的一個狀況但是它可能發生的會根據全球的我相信美國不是只有談台美之間的狀況是的 我們要考慮到全球如果實際發生了是台灣對美國出口不受影響是台灣變成零關稅美國會進口很多我們受到影響那這個時候這881票調整使用的方向跟對象
transcript.whisperx[13].start 300.472
transcript.whisperx[13].end 315.538
transcript.whisperx[13].text 好來陳部長就是你了來我們現在看很快的結我跟委員報告現在目前181大概是以出國轉向但是如果農業進口呢但是農業進口的部分我們會看最後的一個結果假如是美國進口台灣是零關稅的話呢我講農業部不可能
transcript.whisperx[14].start 320.541
transcript.whisperx[14].end 331.756
transcript.whisperx[14].text 黃小玉本來就零關稅了對這不就有影響嗎但是那個雞肉牛肉的部分因為國內的比重非常低但是雞肉我們有一定的比重所以像我們國內有產業的話我們關稅不會輕易讓步所以
transcript.whisperx[15].start 336.102
transcript.whisperx[15].end 363.224
transcript.whisperx[15].text 等一等 你說關稅不會輕易讓步如果台灣對美國不零關稅讓他的肌肉進來我們經濟部就沒有辦法零關稅去美國我跟委員報告所有的關稅在談判的過程中不是用國家的零關稅全部一致零關稅他會現在回到不同的產業別我了解 部長你的想法跟川普的不一樣他就是簡單我就是要你們站到台灣跟我美國站在一起零關稅自由貿易同盟
transcript.whisperx[16].start 364.285
transcript.whisperx[16].end 372.037
transcript.whisperx[16].text 盡量不要有那些不是關稅造成的障礙所以零關稅會造成台灣肌肉的影響你同不同意
transcript.whisperx[17].start 373.288
transcript.whisperx[17].end 397.861
transcript.whisperx[17].text 如果未來被迫接受我們互相互惠零關稅不過我想在我們現在目前談判的過程中我們還會堅持因為農業有它的特殊性我了解因為特殊性我們來看一下在WTO的時候往下看本來在WTO之後我們台灣稻米年長115萬噸WTO給我們的進口費容許在14萬噸裡面是零關稅但是超出的部分還是要課稅對不對是縱使是這樣子台灣的稻米的成本大概是四五十萬一公斤
transcript.whisperx[18].start 399.182
transcript.whisperx[18].end 414.236
transcript.whisperx[18].text 但是如果說我們今天是零關稅,軍價可能是29,所以你要因應衝擊,因為時間快到了,我就請你衝擊,來往下看,郭部長換你了。這個裕隆汽車前兩天發出一個聲明,他說如果台灣對美國是零關稅,他的汽車進來零關稅的話,他們覺得會很難撐下去,你認同這樣的說法嗎?
transcript.whisperx[19].start 420.429
transcript.whisperx[19].end 434.4
transcript.whisperx[19].text 這個在現象上面可能會發生這樣子不過我們經濟部的角度來講我們還是因為我們有10萬多人的從業人員在所以我們會讓他轉型調整轉型調整譬如說台灣的電子零組件這麼強讓他轉型生產電動車這也是一個項目很好
transcript.whisperx[20].start 440.505
transcript.whisperx[20].end 465.358
transcript.whisperx[20].text 陳部長這就是我希望農業部要及早因應的我是揣在蛋其實如果是台灣出口受阻其實相對農業縣受到的影響相對低但是如果台灣現在是進口是開放那麼我們農業縣受到的影響是大的但是如果出口沒有問題進口有問題我們郭部長只要擔心台灣的汽車裝配業等一些少數的產業但是如果農業部門我們就受到很大影響所以結論
transcript.whisperx[21].start 466.775
transcript.whisperx[21].end 479.475
transcript.whisperx[21].text 是不是請農業部就我國 若我國對美的關稅降至零如何協助我國的農漁畜牧業因應衝擊提出農業報告 可以嗎可以 我們會做這樣的一個分析那多久可以給本席一個月好 謝謝 謝謝兩位部長 謝謝