iVOD / 160077

Field Value
IVOD_ID 160077
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160077
日期 2025-04-10
會議資料.會議代碼 委員會-11-3-20-7
會議資料.會議代碼:str 第11屆第3會期財政委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-04-10T10:54:47+08:00
結束時間 2025-04-10T11:06:45+08:00
影片長度 00:11:58
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/127fafa562dc97127e5be5ec4dba066639fb4699fde532611a30f584bceeba99cc49edf8057848505ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 10:54:47 - 11:06:45
會議時間 2025-04-10T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第7次全體委員會議(事由:一、邀請中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、行政院主計總處陳主計長淑姿、財政部莊部長翠雲、經濟部郭部長智輝、農業部陳部長駿季就「川普對等關稅政策實施,對我國股匯市、經濟成長、物價、房市等項所造成之衝擊與因應措施」進行專題報告,並備質詢。 二、審查「納稅者權利保護法」4案: (一)本院委員賴士葆等22人擬具「納稅者權利保護法部分條文修正草案」案。 (二)本院委員羅廷瑋等18人擬具「納稅者權利保護法第四條條文修正草案」案。 (三)本院委員林思銘等20人擬具「納稅者權利保護法第七條及第二十一條條文修正草案」案。 (四)本院委員林思銘等18人擬具「納稅者權利保護法第二十一條條文修正草案」案。 三、審查「加值型及非加值型營業稅法」9案: (一) 本院委員鍾佳濱等18人、委員鍾佳濱等23人、委員郭國文等17人、委員吳沛憶等18人分別擬具「加值型及非加值型營業稅法部分條文修正草案」等4案。【本院委員吳沛憶等18人提案如經院會復議,則不予審查】 (二) 本院委員陳超明等18人、委員邱志偉等16人分別擬具「加值型及非加值型營業稅法第八條條文修正草案」等2案。 (三) 本院委員賴士葆等25人、委員顏寬恒等16人分別擬具「加值型及非加值型營業稅法第十三條條文修正草案」等2案。 (四) 本院委員賴士葆等22人擬具「加值型及非加值型營業稅法第五十八條條文修正草案」案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 6.44346875
transcript.pyannote[0].end 11.08409375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 11.59034375
transcript.pyannote[1].end 21.98534375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 14.89784375
transcript.pyannote[2].end 15.62346875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 18.66096875
transcript.pyannote[3].end 19.57221875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 20.36534375
transcript.pyannote[4].end 21.15846875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 22.13721875
transcript.pyannote[5].end 22.17096875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 22.17096875
transcript.pyannote[6].end 22.18784375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 22.18784375
transcript.pyannote[7].end 22.54221875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 22.54221875
transcript.pyannote[8].end 22.81221875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 22.81221875
transcript.pyannote[9].end 23.03159375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 23.03159375
transcript.pyannote[10].end 25.02284375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 25.02284375
transcript.pyannote[11].end 25.30971875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 25.30971875
transcript.pyannote[12].end 25.32659375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 25.32659375
transcript.pyannote[13].end 25.34346875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 25.91721875
transcript.pyannote[14].end 26.37284375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 26.37284375
transcript.pyannote[15].end 26.45721875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 31.23284375
transcript.pyannote[16].end 31.94159375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 33.54471875
transcript.pyannote[17].end 33.86534375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 36.04221875
transcript.pyannote[18].end 37.22346875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 41.23971875
transcript.pyannote[19].end 46.80846875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 47.06159375
transcript.pyannote[20].end 52.14096875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 53.00159375
transcript.pyannote[21].end 55.49909375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 56.03909375
transcript.pyannote[22].end 58.24971875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 58.55346875
transcript.pyannote[23].end 60.08909375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 60.22409375
transcript.pyannote[24].end 60.81471875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 60.89909375
transcript.pyannote[25].end 62.23221875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 62.36721875
transcript.pyannote[26].end 64.81409375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 65.16846875
transcript.pyannote[27].end 69.03284375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 69.03284375
transcript.pyannote[28].end 74.04471875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 74.61846875
transcript.pyannote[29].end 77.52096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 77.84159375
transcript.pyannote[30].end 78.68534375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 79.69784375
transcript.pyannote[31].end 84.18659375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 81.26721875
transcript.pyannote[32].end 81.84096875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 86.43096875
transcript.pyannote[33].end 87.83159375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 87.83159375
transcript.pyannote[34].end 90.31221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 90.53159375
transcript.pyannote[35].end 91.37534375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 91.45971875
transcript.pyannote[36].end 92.67471875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 93.50159375
transcript.pyannote[37].end 94.68284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 95.23971875
transcript.pyannote[38].end 98.74971875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 99.23909375
transcript.pyannote[39].end 100.09971875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 100.42034375
transcript.pyannote[40].end 103.77846875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 104.53784375
transcript.pyannote[41].end 106.52909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 106.81596875
transcript.pyannote[42].end 120.50159375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 112.09784375
transcript.pyannote[43].end 114.03846875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 121.15971875
transcript.pyannote[44].end 124.50096875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 124.63596875
transcript.pyannote[45].end 126.30659375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 126.69471875
transcript.pyannote[46].end 127.35284375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 127.96034375
transcript.pyannote[47].end 147.85596875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 148.61534375
transcript.pyannote[48].end 151.60221875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 151.80471875
transcript.pyannote[49].end 154.28534375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 155.12909375
transcript.pyannote[50].end 155.55096875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 155.98971875
transcript.pyannote[51].end 163.04346875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 161.74409375
transcript.pyannote[52].end 163.00971875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 163.04346875
transcript.pyannote[53].end 165.65909375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 164.25846875
transcript.pyannote[54].end 164.32596875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 166.03034375
transcript.pyannote[55].end 176.03721875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 176.29034375
transcript.pyannote[56].end 177.58971875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 177.67409375
transcript.pyannote[57].end 180.57659375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 180.88034375
transcript.pyannote[58].end 183.95159375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 184.23846875
transcript.pyannote[59].end 186.02721875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 186.34784375
transcript.pyannote[60].end 186.90471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 187.22534375
transcript.pyannote[61].end 190.41471875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 190.49909375
transcript.pyannote[62].end 196.77659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 196.94534375
transcript.pyannote[63].end 201.65346875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 201.77159375
transcript.pyannote[64].end 208.38659375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 207.86346875
transcript.pyannote[65].end 214.83284375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 212.09909375
transcript.pyannote[66].end 214.98471875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 215.18721875
transcript.pyannote[67].end 215.42346875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 216.38534375
transcript.pyannote[68].end 224.13096875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 224.33346875
transcript.pyannote[69].end 226.67909375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 227.16846875
transcript.pyannote[70].end 233.36159375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 233.49659375
transcript.pyannote[71].end 236.36534375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 237.00659375
transcript.pyannote[72].end 244.38096875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 245.02221875
transcript.pyannote[73].end 248.76846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 248.85284375
transcript.pyannote[74].end 250.45596875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 250.79346875
transcript.pyannote[75].end 278.08034375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 278.16471875
transcript.pyannote[76].end 280.27409375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 280.72971875
transcript.pyannote[77].end 281.38784375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 282.53534375
transcript.pyannote[78].end 285.35346875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 285.92721875
transcript.pyannote[79].end 287.51346875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 287.78346875
transcript.pyannote[80].end 289.70721875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 290.46659375
transcript.pyannote[81].end 291.25971875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 291.73221875
transcript.pyannote[82].end 292.44096875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 292.77846875
transcript.pyannote[83].end 293.55471875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 293.94284375
transcript.pyannote[84].end 294.80346875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 295.41096875
transcript.pyannote[85].end 302.19471875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 302.56596875
transcript.pyannote[86].end 304.48971875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 304.48971875
transcript.pyannote[87].end 304.86096875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 304.86096875
transcript.pyannote[88].end 309.51846875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 305.16471875
transcript.pyannote[89].end 306.58221875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 309.94034375
transcript.pyannote[90].end 311.76284375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 311.88096875
transcript.pyannote[91].end 316.96034375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 317.31471875
transcript.pyannote[92].end 325.92096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 319.77846875
transcript.pyannote[93].end 321.60096875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 326.32596875
transcript.pyannote[94].end 339.35346875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 327.45659375
transcript.pyannote[95].end 328.65471875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 328.68846875
transcript.pyannote[96].end 328.70534375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 328.85721875
transcript.pyannote[97].end 328.97534375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 329.38034375
transcript.pyannote[98].end 330.29159375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 330.71346875
transcript.pyannote[99].end 332.73846875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 336.77159375
transcript.pyannote[100].end 338.08784375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 339.75846875
transcript.pyannote[101].end 345.02346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 341.15909375
transcript.pyannote[102].end 342.03659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 345.64784375
transcript.pyannote[103].end 349.27596875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 349.52909375
transcript.pyannote[104].end 351.41909375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 351.52034375
transcript.pyannote[105].end 352.14471875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 352.63409375
transcript.pyannote[106].end 355.41846875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 355.72221875
transcript.pyannote[107].end 374.28471875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 374.38596875
transcript.pyannote[108].end 375.76971875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 375.87096875
transcript.pyannote[109].end 376.51221875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 377.08596875
transcript.pyannote[110].end 377.60909375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 377.94659375
transcript.pyannote[111].end 378.70596875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 378.92534375
transcript.pyannote[112].end 380.74784375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 380.96721875
transcript.pyannote[113].end 382.85721875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 383.17784375
transcript.pyannote[114].end 384.71346875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 384.91596875
transcript.pyannote[115].end 385.47284375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 385.60784375
transcript.pyannote[116].end 392.56034375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 393.08346875
transcript.pyannote[117].end 394.75409375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 396.39096875
transcript.pyannote[118].end 397.79159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 398.50034375
transcript.pyannote[119].end 400.52534375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 401.16659375
transcript.pyannote[120].end 403.00596875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 403.22534375
transcript.pyannote[121].end 405.73971875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 405.97596875
transcript.pyannote[122].end 409.09784375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 409.38471875
transcript.pyannote[123].end 410.85284375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 411.40971875
transcript.pyannote[124].end 412.28721875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 412.86096875
transcript.pyannote[125].end 415.51034375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 415.96596875
transcript.pyannote[126].end 416.82659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 417.34971875
transcript.pyannote[127].end 420.08346875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 420.33659375
transcript.pyannote[128].end 423.22221875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 423.72846875
transcript.pyannote[129].end 426.19221875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 426.79971875
transcript.pyannote[130].end 429.36471875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 429.75284375
transcript.pyannote[131].end 437.36346875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 437.66721875
transcript.pyannote[132].end 441.37971875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 442.18971875
transcript.pyannote[133].end 446.49284375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 447.28596875
transcript.pyannote[134].end 449.34471875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 449.63159375
transcript.pyannote[135].end 450.39096875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 450.84659375
transcript.pyannote[136].end 452.75346875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 453.27659375
transcript.pyannote[137].end 458.44034375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 457.74846875
transcript.pyannote[138].end 465.64596875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 466.16909375
transcript.pyannote[139].end 475.33221875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 467.26596875
transcript.pyannote[140].end 471.45096875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 475.66971875
transcript.pyannote[141].end 483.02721875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 478.31909375
transcript.pyannote[142].end 480.10784375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 483.02721875
transcript.pyannote[143].end 483.07784375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 483.07784375
transcript.pyannote[144].end 498.55221875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 488.15721875
transcript.pyannote[145].end 489.64221875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 496.03784375
transcript.pyannote[146].end 496.15596875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 497.01659375
transcript.pyannote[147].end 517.11471875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 498.87284375
transcript.pyannote[148].end 499.04159375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 517.03034375
transcript.pyannote[149].end 539.55846875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 534.41159375
transcript.pyannote[150].end 535.03596875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 535.76159375
transcript.pyannote[151].end 551.53971875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 540.01409375
transcript.pyannote[152].end 546.83159375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 551.72534375
transcript.pyannote[153].end 561.91784375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 562.05284375
transcript.pyannote[154].end 569.07284375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 562.18784375
transcript.pyannote[155].end 563.52096875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 569.07284375
transcript.pyannote[156].end 569.32596875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 569.39346875
transcript.pyannote[157].end 570.62534375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 570.97971875
transcript.pyannote[158].end 572.05971875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 572.19471875
transcript.pyannote[159].end 573.78096875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 573.86534375
transcript.pyannote[160].end 576.04221875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 576.27846875
transcript.pyannote[161].end 581.52659375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 581.56034375
transcript.pyannote[162].end 581.84721875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 582.35346875
transcript.pyannote[163].end 586.47096875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 586.79159375
transcript.pyannote[164].end 590.74034375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 590.80784375
transcript.pyannote[165].end 596.05596875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 596.35971875
transcript.pyannote[166].end 596.44409375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 596.51159375
transcript.pyannote[167].end 597.23721875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 598.73909375
transcript.pyannote[168].end 599.71784375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 600.51096875
transcript.pyannote[169].end 610.31534375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 602.55284375
transcript.pyannote[170].end 604.08846875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 606.85596875
transcript.pyannote[171].end 618.14534375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 618.14534375
transcript.pyannote[172].end 618.65159375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 618.58409375
transcript.pyannote[173].end 622.04346875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 622.19534375
transcript.pyannote[174].end 628.96221875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 629.26596875
transcript.pyannote[175].end 642.44534375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 642.78284375
transcript.pyannote[176].end 643.81221875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 644.41971875
transcript.pyannote[177].end 647.47409375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 647.71034375
transcript.pyannote[178].end 651.18659375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 651.70971875
transcript.pyannote[179].end 654.66284375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 654.66284375
transcript.pyannote[180].end 654.74721875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 654.74721875
transcript.pyannote[181].end 655.70909375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 656.13096875
transcript.pyannote[182].end 660.41721875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 660.67034375
transcript.pyannote[183].end 662.99909375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 663.26909375
transcript.pyannote[184].end 664.65284375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 664.93971875
transcript.pyannote[185].end 666.55971875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 666.77909375
transcript.pyannote[186].end 668.34846875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 668.66909375
transcript.pyannote[187].end 669.58034375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 670.15409375
transcript.pyannote[188].end 678.52409375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 677.83221875
transcript.pyannote[189].end 681.08909375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 679.16534375
transcript.pyannote[190].end 693.40784375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 693.40784375
transcript.pyannote[191].end 702.97596875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 693.42471875
transcript.pyannote[192].end 694.06596875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 695.39909375
transcript.pyannote[193].end 695.46659375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 695.56784375
transcript.pyannote[194].end 695.60159375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 703.38096875
transcript.pyannote[195].end 704.73096875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 704.98409375
transcript.pyannote[196].end 708.34221875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 708.49409375
transcript.pyannote[197].end 712.56096875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 711.75096875
transcript.pyannote[198].end 713.30346875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 713.30346875
transcript.pyannote[199].end 714.97409375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 714.97409375
transcript.pyannote[200].end 716.96534375
transcript.whisperx[0].start 6.482
transcript.whisperx[0].end 21.176
transcript.whisperx[0].text 主席 在場的委員先進 列席的政府計劃所長 官員 會長 共同國大媒體 記者 女士先生請來的比較多 有請楊總裁那麼請蔡局長協助那金管會請彭主委主席總裁請陳主席長陳主席長 陳主席長 再請莊部長莊部長 請會長關進莊委員好好委員好
transcript.whisperx[1].start 36.087
transcript.whisperx[1].end 64.394
transcript.whisperx[1].text 等一下我們主席講抱歉齁 幾位首長好齁今天我的題目很清楚高關稅排中來建立自貿同盟台幣升值跟美債減息兩害取其輕來 我要分別請教幾位首長齁請問一下我們看到了美國的關稅清單也看到了中國堅決反制這裡面台灣也列明其中請問川普的關稅清單是目的還是手段總裁你認為
transcript.whisperx[2].start 65.579
transcript.whisperx[2].end 83.854
transcript.whisperx[2].text 我覺得呢簡單講是目的還是手段是手段也是目的好很好來我們請今晚會主委彭主委你認為是手段還是目的我的看法跟總裁一樣好很好莊部長那您的看法呢我跟總裁和主委的意見一樣哇很好來那麼我們的那個主席長
transcript.whisperx[3].start 86.482
transcript.whisperx[3].end 102.81
transcript.whisperx[3].text 我也是覺得是一樣的啦好那總裁再請你回來大家都聽你的OK來我看齁我認為啊下一頁對中國的目的是圍堵但是對其他國家是要求你跟我談判我們看得很清楚川普說你中國對我不公平貿易說要對你加徵關稅
transcript.whisperx[4].start 104.551
transcript.whisperx[4].end 125.15
transcript.whisperx[4].text 但是他對其他的國家說什麼?說我對你加徵關稅,但是你要對等關稅的話,我們就可以談,是不是這樣子?順序不一樣,結果中國很生氣,馬上去提高到84,結果他好,我就給你提高到125,結果現在很多國家已經表示我要跟你零關稅了,是不是這樣?那這樣結果會變成什麼呢?
transcript.whisperx[5].start 128.372
transcript.whisperx[5].end 154.078
transcript.whisperx[5].text 可是當越南提出零關稅的時候美國說不是喔你的傾銷跟補貼貼補這個非關稅欺騙我要注意喔所以顯然的美國對有案零關稅是要建立一個零關稅的自由貿易同盟但是也要嚴防大家去跟中國要好所以要圍堵中國往下看那既然美國川普政府對中國的目的是圍堵那對其他國家要求談判的目的有哪些
transcript.whisperx[6].start 155.311
transcript.whisperx[6].end 183.764
transcript.whisperx[6].text 總裁我覺得啦我覺得啦就是說我那個還是我來跟你解釋一下好來這樣審視喔川普他說兩個任務要減少赤字一個要增加就業其中赤字有一個是貿易逆差一個是財政支出這當中的貿易逆差部分中國的不公平貿易是主要原因所以他加徵關稅同時籌組了一個自由貿易同盟彼此之間零關稅因此呢在美國市場上
transcript.whisperx[7].start 184.304
transcript.whisperx[7].end 204.143
transcript.whisperx[7].text 中國商品沒有競爭力了出去了讓出來的位置讓其他零關稅同盟進來遞補而且這些零關稅同盟也對美國開放了市場美國想要透過這方式解決貿易逆差但是他一方面要增加就業要投資減稅要改善他中西部的弱勢經濟選民還有一個很重要的財政支出他要減少負債
transcript.whisperx[8].start 204.804
transcript.whisperx[8].end 213.344
transcript.whisperx[8].text 要怎麼解決美國公債的問題總裁你同不同意這次川普我覺得我非常佩服委員你的整個邏輯是謝謝你的佩服我繼續讓你佩服來往下看
transcript.whisperx[9].start 216.448
transcript.whisperx[9].end 243.76
transcript.whisperx[9].text 我們目前呢 談判小組它有幾個任務第一個 談判關稅 這是減輕逆差貨到對美採購 也是縮減美國逆差貨到對美投資 這是改善它的就業排除非關稅障礙 這些改善逆差解決稀產業問題 要防堵中國但是有沒有注意到這個小組有一個任務 寫在這裡台灣大部分的外匯準備是購買美國公債也可納入作為關稅下降的郵遞條件
transcript.whisperx[10].start 245.22
transcript.whisperx[10].end 266.221
transcript.whisperx[10].text 總裁你認不認同這個報導我們的談判小組有這樣的一個籌碼我覺得也是也是喔很好很坦白那因為我這就不再對數了目前因為你說本來說92%你的副總裁說92%現在說82%所以我合理估計我們的外匯存益目前是5780億大概有推估4800億是由美在來持有好我們來看一下
transcript.whisperx[11].start 267.221
transcript.whisperx[11].end 289.576
transcript.whisperx[11].text 剛剛議員有提到 美國面臨債務到期他有9兆 36兆的有9兆 今年要到期相當於什麼 聯邦總收入的兩倍其中在6月到期的呢 有6.5兆 我們看一下川普怎麼做 他要減少負債 要政府讓他瘦身 找了馬斯克然後呢 他有可能加稅嗎 很困難 現在關稅都零啦
transcript.whisperx[12].start 290.526
transcript.whisperx[12].end 315.115
transcript.whisperx[12].text 要還債沒有錢還所以只剩什麼降低債息總裁你同不同意如果你是今天你是美國的財政部長你是美國的財政部長你認為減輕負債是不是這個是很重要的一個目標是啊是喔很好那往下看那請問總裁如果對美談判川普政府要求一台幣對美元升值跟B中央銀行持有部分美債減息你覺得哪一個對台灣的經濟衝擊比較大
transcript.whisperx[13].start 317.952
transcript.whisperx[13].end 343.339
transcript.whisperx[13].text 我覺得這個哪一個衝擊比較大 二則一我覺得這兩個都不是很好都不是很好 我知道當然不好這才問你 兩害相權取其輕不是 我的意思就是說台幣對美元升值我先問你 哪一個對台灣影響比較大我都一直覺得台幣 兩個都不好台幣是由市場來決定的
transcript.whisperx[14].start 345.697
transcript.whisperx[14].end 365.825
transcript.whisperx[14].text 好了,我就直接幫你講了,其實你兩個都不要了,但是被迫選的話,來看看你要選哪一個,我們來看一下下一頁,米倫,這是美國白宮經濟貿易顧問委員會的主席米倫,現在米倫在去年的11月他出了一個用戶指南,重組全國貿易體系,他講到什麼,講到說關稅本身不是目的是手段,
transcript.whisperx[15].start 366.505
transcript.whisperx[15].end 390.28
transcript.whisperx[15].text 解答了是手段不是目的今天的報紙也寫到了根據米倫的用戶指南他說對等關稅有五種方式來協助ABCDE很清楚關稅不要報復打開市場就是解決逆差然後提高國防出資增加採購投資美國增加就業直接捐款給美國財政部這是有點戲謔的說法簡單講就是檢討美國財政部的什麼美債的負擔來往下看
transcript.whisperx[16].start 396.445
transcript.whisperx[16].end 422.925
transcript.whisperx[16].text 美國的白宮經濟顧問委員會主席米倫的攝氧什麼他說接下來美國要有盟友來美債的部分手中的美債你們都有拿一部分來用超長期譬如說50到100年超低利譬如說2%來跟我買你們快到期的美債換買這個好不好可是這種影響會影響到我們外匯存備裡面的流動性這樣的美債沒有流動性等於是挖個坑把它買起來
transcript.whisperx[17].start 423.786
transcript.whisperx[17].end 440.365
transcript.whisperx[17].text 第二個呢也會影響我們匯率風險的管理所以米倫不是不知道所以他提出一個方案快速換回美元現金的官方渠道他說如果你有一千億兩千億的美債換成了一百年五十年那你短期銷售怎麼辦我讓你短期回購機制
transcript.whisperx[18].start 442.233
transcript.whisperx[18].end 464.666
transcript.whisperx[18].text 或者他說用一個類似SWAP SPOT的方式去互換協議總裁你認為這樣的米倫的建議有沒有可能當你要考慮被要求要買超長期低利的美債的時候你覺得這兩個有沒有幫助我們各種這樣我覺得米倫的這個建議是不合乎市場的運作
transcript.whisperx[19].start 466.275
transcript.whisperx[19].end 494.815
transcript.whisperx[19].text 而且我覺得美國的公債它的殖利率是它美國金融市場的一個穩定的力量這個不是在金融上買的喔這個是恰特定客戶這是恰特定客戶對嘛所以也就是說如果說是這樣子的話你不要就是說是特定客戶就其他一般的投資人也會怕
transcript.whisperx[20].start 495.612
transcript.whisperx[20].end 498.233
transcript.whisperx[20].text 今天如果說這個米倫說台灣來的談判小組我們現在談一下我這個建議你採論看看因為這隱含有什麼優勢當這兩個機制放進去的時候他形同是美國跟這些國家形成了一個沒有包括中國的準金融同盟啊
transcript.whisperx[21].start 514.762
transcript.whisperx[21].end 527.096
transcript.whisperx[21].text 大家把美元的儲備跟美國綁在一起啊我跟委員報告啦我跟委員報告美國如果說就我的猜想啦我先來觀察美國呢是第一個他才會就是說就這個關稅的問題來解決這個問題
transcript.whisperx[22].start 531.221
transcript.whisperx[22].end 545.325
transcript.whisperx[22].text 那講到這個的時候呢我還是覺得都不好都是言之貴早連講都不要講言之貴早我同意言之貴早因為現在還沒有到亮底牌的時候我也不是亂講我們就不要講了因為言之貴早就不要講了因為言之貴早還是亮底牌但是我們來看一下剛剛有位人問你啊合理的外匯儲備是多少彭淮南前副總裁提到說總裁說什麼
transcript.whisperx[23].start 555.788
transcript.whisperx[23].end 581.236
transcript.whisperx[23].text 他說大概維持4千到4千5百美元這樣就很安全了你同意嗎?不你不同意?沒關係我知道你不同意就好總裁不見得意料一致往下看但是人家也當過總裁的人米倫方案的試算假如說台灣我們的外匯儲備是這麼多我們手上假設有4千8百億的美債其中我到期之後我拿1千億他說你有4千億就可以很安全了
transcript.whisperx[24].start 582.401
transcript.whisperx[24].end 597.084
transcript.whisperx[24].text 到期之後我拿1000億來購買一個超低利的美債長期的結果呢美債利率現在4%假設協議的利率是2%結果我們在這50年當中或100年當中我們每年會損失這麼多有沒有很嚴重
transcript.whisperx[25].start 598.755
transcript.whisperx[25].end 605.461
transcript.whisperx[25].text 我覺得很嚴重我想這個都是假設問題所以我就說這個假設的問題的時候呢很難回答假如說我們接受了這個提議我們的600億的利損小於目前現在的特別預算的880億
transcript.whisperx[26].start 618.653
transcript.whisperx[26].end 643.543
transcript.whisperx[26].text 我們了解如果台灣可以換得美國相互零關稅我們有很多的好處也可以避免很多的損失我們880億要用來對付這個因為出口沒有辦法出口高關稅的報復之後我們要來紓困的跟我們剛剛談一個好的條件我們只是少損失了只是損失了600億的利損而且還是帳面上的好我們來看一下下一個所以我們來看一下
transcript.whisperx[27].start 644.483
transcript.whisperx[27].end 669.249
transcript.whisperx[27].text 超長期低利的美債在米倫的方案當中如果現在以美國來講30年的國債他只要掉1%他的帳面30年的帳面就進賺20%對台灣來講當我跟美國談的那個交易我有短期的美元的流動性需求的時候他給我一個附帶美國央行免費的買權保證避開短期的利率風險你認為如果是這樣的交易台美有沒有雙贏
transcript.whisperx[28].start 670.428
transcript.whisperx[28].end 694.927
transcript.whisperx[28].text 我跟委員報告啦 我總覺得米倫的這種推論是不確實際的好 米倫的推論不確實際第二點呢 我又說如果說這個是真正實施的時候呢我個人覺得 我個人判斷美國先發生金融危機然後造成整個全球的金融危機我了解 我了解我總裁的判斷
transcript.whisperx[29].start 695.767
transcript.whisperx[29].end 716.036
transcript.whisperx[29].text 很可惜的自從剛剛那個之後就沒有得到你的肯定了後面你都否定最後我一個結論來請央行分別就台幣兌美元升值以及中央銀行持有部分美債降息分別提出經濟衝擊影響一個月內提出說明報告可以嗎好 謝謝好 謝謝宗教兵委員的質詢
gazette.lineno 795
gazette.blocks[0][0] 鍾委員佳濱:(10時54分)主席、在場的委員先進、列席的政府機關首長官員、會場工作夥伴、媒體記者女士先生。有請楊總裁,請蔡局長協助;金管會請彭主委;主計總處請陳主計長;財政部請莊部長。
gazette.blocks[1][0] 主席:請楊總裁、彭主委、陳市長、莊部長。
gazette.blocks[2][0] 楊總裁金龍:鍾委員好。
gazette.blocks[3][0] 莊部長翠雲:委員好。
gazette.blocks[4][0] 鍾委員佳濱:幾位首長好。今天我的題目很清楚,高關稅排中以建立自貿同盟,臺幣升值跟美債減息兩害取其輕。我要分別請教幾位首長,請問一下,我們看到了美國的關稅清單,也看到了中國堅決反制,這裡面臺灣也列名其中,請問川普的關稅清單是目的還是手段?總裁,你認為呢?
gazette.blocks[5][0] 楊總裁金龍:我覺得……
gazette.blocks[6][0] 鍾委員佳濱:簡單講,是目的還是手段?
gazette.blocks[7][0] 楊總裁金龍:是手段也是目的。
gazette.blocks[8][0] 鍾委員佳濱:好,很好。接著請教金管會彭主委,你認為是手段還是目的?
gazette.blocks[9][0] 彭主任委員金隆:我的看法跟總裁一樣。
gazette.blocks[10][0] 鍾委員佳濱:好,很好。莊部長,您的看法呢?
gazette.blocks[11][0] 莊部長翠雲:我跟總裁和主委的意見一樣。
gazette.blocks[12][0] 鍾委員佳濱:很好。主計長的看法呢?
gazette.blocks[13][0] 陳主計長淑姿:我也覺得是一樣的。
gazette.blocks[14][0] 鍾委員佳濱:總裁,大家都聽你的。我認為,對中國的目的是圍堵,但是對其他國家是要求你跟我談判,我們看得很清楚,川普說:中國對我不公平貿易,所以要對中國加徵關稅。但是他對其他的國家說什麼?他說:我對你加徵關稅,但是你要對等關稅的話,我們是可以談的。是不是這樣子?
gazette.blocks[15][0] 楊總裁金龍:是,沒有錯。
gazette.blocks[16][0] 鍾委員佳濱:順序不一樣。結果中國很生氣,馬上提高到84%,而美國說:好,我就給你提高到125%。結果現在很多國家已經表示要跟它零關稅了,是不是這樣?
gazette.blocks[17][0] 楊總裁金龍:是。
gazette.blocks[18][0] 鍾委員佳濱:這樣的結果會變成什麼呢?可是當越南提出零關稅的時候,美國說:不是喔!你的傾銷跟出口補貼是「非關稅欺騙」,要注意喔!所以,顯然的,美國對友岸零關稅是要建立一個零關稅的自由貿易同盟,但是也要嚴防大家去跟中國要好,所以要圍堵中國。既然美國川普政府對中國的目的是圍堵,那對其他國家要求談判的目的有哪些?請總裁說明。
gazette.blocks[19][0] 楊總裁金龍:我覺得……
gazette.blocks[20][0] 鍾委員佳濱:還是我來跟你解釋一下,這樣比較省事!
gazette.blocks[21][0] 楊總裁金龍:好,請說。
gazette.blocks[22][0] 鍾委員佳濱:川普要做兩個任務,一個是減少赤字,一個是要增加就業,其中赤字有一個是貿易逆差,一個是財政支出,這當中的貿易逆差部分,中國的不公平貿易是主要原因,所以他加徵關稅,同時籌組了一個自由貿易同盟,彼此之間零關稅。因此,在美國市場上,中國商品沒有競爭力了,出去了,讓出來的位置,讓其他零關稅同盟進來遞補,而且這些零關稅同盟也對美國開放了市場,美國想要透過這方式解決貿易逆差。但是他一方面要增加就業、要投資減稅、要改善他中西部的弱勢經濟選民,還有一個很重要的財政支出,他要減少負債,即要解決美國公債的問題。總裁同不同意這樣的說法?
gazette.blocks[23][0] 楊總裁金龍:我非常佩服委員的整個邏輯。
gazette.blocks[24][0] 鍾委員佳濱:謝謝你的佩服,我繼續讓你佩服。我們目前的談判小組有幾個任務,第一個,談判關稅,要減輕逆差,包括擴大對美採購,也是縮減美國逆差;擴大對美投資,這是改善他的就業;排除非關稅障礙,這些也是改善逆差;解決洗產地問題,要防堵中國。但是有沒有注意到這個小組有一個任務?臺灣大部分的外匯準備是購買美國公債,也可納入作為關稅下降的有利條件,總裁,你認不認同這個報導?就是我們談判小組有這樣的一個籌碼。
gazette.blocks[25][0] 楊總裁金龍:我覺得也是。
gazette.blocks[26][0] 鍾委員佳濱:很好、很坦白。那我就不再贅述了,因為你的副總裁說92%,現在改說是82%,所以我合理估計我們的外匯存底目前是5,780億,推估大概持有美債4,800億。剛剛李委員提到美國面臨債務到期,36兆當中有9兆今年要到期,相當於聯邦總收入的兩倍,其中在6月到期的有6.5兆,對此,我們看一下川普怎麼做,他要減少負債,要讓政府瘦身,所以找了馬斯克;然後他有可能加稅嗎?很困難,現在關稅都零了;要還債沒有錢還,所以只剩什麼?降低債期。總裁同不同意,如果今天你是美國的財政部長,你認為減輕負債是不是一個很重要的目標?
gazette.blocks[27][0] 楊總裁金龍:是,沒有錯。
gazette.blocks[28][0] 鍾委員佳濱:很好。請問總裁如果對美談判,川普政府要求A.臺幣兌美元升值,B.中央銀行持有部分美債減息,你覺得哪一個對臺灣的經濟衝擊比較大?
gazette.blocks[29][0] 楊總裁金龍:我覺得這個……
gazette.blocks[30][0] 鍾委員佳濱:哪一個衝擊比較大?二擇一。
gazette.blocks[31][0] 楊總裁金龍:我覺得這兩個都不是很好。
gazette.blocks[32][0] 鍾委員佳濱:都不是很好,我知道當然不好啊!所以才會問你,兩害相權取其輕,你認為哪一個比較嚴重?
gazette.blocks[33][0] 楊總裁金龍:不是,我的意思是,臺幣兌美元升值……
gazette.blocks[34][0] 鍾委員佳濱:我先問你,哪一個對臺灣影響比較大?
gazette.blocks[35][0] 楊總裁金龍:我一直覺得臺幣……
gazette.blocks[36][0] 鍾委員佳濱:兩個都不好?
gazette.blocks[37][0] 楊總裁金龍:臺幣是由市場來決定的。
gazette.blocks[38][0] 鍾委員佳濱:好,我就直接幫你講,其實你兩個都不要,但是被迫要選的話,看看你要選哪一個?米倫是美國白宮經濟貿易顧問委員會的主席,米倫在去年11月出了一個用戶指南:重組全國貿易體系,他講到關稅本身不是目的而是手段,解答了,是手段不是目的。今天的報紙也寫到了,根據米倫的用戶指南,他說對等關稅有五種方式來協助,A、B、C、D、E很清楚,關稅不要報復,打開市場、解決逆差,提高國防支出、增加採購,投資美國、增加就業,還有直接捐款給美國財政部,這是有點戲謔的說法,簡單來講,就是減少美國財政部的美債負擔。
gazette.blocks[38][1] 美國的白宮經濟顧問委員會主席米倫的設想是什麼?他說接下來美國要求盟友,對於美債的部分,你們手中都有美債,拿一部分來用超長期,譬如50年到100年的超低利息,假設用2%來跟他買,你們快到期的美債換買這個,好不好?可是這種會影響到我們外匯儲備的流動性,這樣的美債沒有流動性,等於是挖個坑把它埋起來;第二個,也會影響我們匯率風險的管理,所以米倫不是不知道,因此他提出一個方案,快速換回美元現金的官方渠道,他說:如果你有1,000億、2,000億的美債,換成了100年、50年,那短期要怎麼辦?讓你有短期回購機制(repo),或者用一個類似SWAP的方式做互換協議。總裁,你認為米倫這樣的建議有沒有可能?當你被要求買超長期低利美債時,你覺得這兩個方式有沒有幫助我們?
gazette.blocks[39][0] 楊總裁金龍:我覺得米倫這個建議不合乎市場的運作,而且……
gazette.blocks[40][0] 鍾委員佳濱:剛才就問你,如果要買超長期低利的美債,你同不同意?
gazette.blocks[41][0] 楊總裁金龍:我覺得美國公債殖利率是美國金融市場的一個穩定力量。
gazette.blocks[42][0] 鍾委員佳濱:沒有,這個不是在金融市場買的,這個是洽特定客戶。如果是給特定客戶,同不同意?
gazette.blocks[43][0] 楊總裁金龍:對,也就是特定客戶……如果是這樣子,不要說是特定客戶,其他一般的投資人也會怕,不是只有特定客戶認為不合理……
gazette.blocks[44][0] 鍾委員佳濱:我不曉得其他投資人會不會怕,今天如果米倫說:臺灣來的談判小組,我們現在談一下,我這個建議你想看看。因為這對銀行有什麼優勢?當這兩個機制放進去之後,他們形同是跟美國這些國家形成了一個沒有包括中國的準金融同盟,把美元的儲備跟美國綁在一起。
gazette.blocks[45][0] 楊總裁金龍:跟委員報告,就我的猜想和我現在的觀察,第一個,美國會就關稅問題來解決這個問題,講到這個的時候,我還是覺得……
gazette.blocks[46][0] 鍾委員佳濱:都不好?
gazette.blocks[47][0] 楊總裁金龍:都是言之過早……
gazette.blocks[48][0] 鍾委員佳濱:連講都不要講?言之過早,我同意,因為現在還沒有到亮底牌的時候,我也不希望你現在講……
gazette.blocks[49][0] 楊總裁金龍:但是關稅的問題都還沒有解決……
gazette.blocks[50][0] 鍾委員佳濱:不要講了,言之過早就不要講了,因為講了就亮底牌。我們來看一下,剛剛有委員問你合理的外匯儲備是多少?彭淮南副總裁說了什麼?他說大概維持4,000到4,500美元,這樣就很安全了,你同意嗎?
gazette.blocks[51][0] 楊總裁金龍:不……
gazette.blocks[52][0] 鍾委員佳濱:你不同意?沒關係,我知道你不同意就好,總裁不見得意見一定要一致,但是人家也是當過總裁的人。米倫方案的試算,假如臺灣的外匯儲備是這麼多,我們手上假設有4,800億的美債,到期之後我拿1,000億,他說:你有4,000億就可以很安全了。到期之後,我拿1,000億來購買一個超低利的長期美債,結果美債利率現在4%,假設協議的利率是2%,在這50年或100年當中,我們每年會損失這麼多,有沒有很嚴重?我覺得很嚴重。
gazette.blocks[53][0] 楊總裁金龍:我想這都是假設問題。
gazette.blocks[54][0] 鍾委員佳濱:這是假設,所以才我問你嘛!
gazette.blocks[55][0] 楊總裁金龍:我就說這個假設問題的時候,我總覺得……
gazette.blocks[56][0] 鍾委員佳濱:很難回答。但是我們讓社會來看一看,假如我們接受了這個提議,我們600億的利損小於目前現在特別預算的880億。我們了解,如果臺灣可以換得美國相互零關稅,我們有很多的好處,也可以避免很多的損失,我們的880億要用來對付這個,因為沒有辦法出口,高關稅的報復之後,我們要來紓困,我們跟他們談一個好的條件,我們只是損失了600億的利損,而且還是帳面上的。超長期低利的美債在米倫的方案當中,如果現在以美國來講,以30年的國債為例,只要掉1%,他們30年的帳面就淨賺20%,對臺灣來講,當我們跟美國談交易,我們有短期美元的流動性需求時,他們給我們一個附帶美國央行免費的買權保證,避開短期的利率風險,如果是這樣的交易,你認為臺美有沒有雙贏?
gazette.blocks[57][0] 楊總裁金龍:跟委員報告,我總覺得米倫的這種推論是不切實際的。
gazette.blocks[58][0] 鍾委員佳濱:好,米倫的推論不切實際,請我們的談判代表跟他講。
gazette.blocks[59][0] 楊總裁金龍:第二點,如果這個真正實施,我個人覺得、我個人判斷,美國先發生金融危機……
gazette.blocks[60][0] 鍾委員佳濱:很好……
gazette.blocks[61][0] 楊總裁金龍:然後造成全球的金融危機。
gazette.blocks[62][0] 鍾委員佳濱:我了解總裁的判斷,很可惜的,自從剛剛那個之後就沒有得到你的肯定,後面你都否定。
gazette.blocks[62][1] 最後我做一個結論,請央行分別就臺幣兌美元升值,以及中央銀行持有部分美債降息分別提出經濟衝擊影響,一個月內提出書面報告,可以嗎?
gazette.blocks[63][0] 楊總裁金龍:好,沒問題,可以。
gazette.blocks[64][0] 鍾委員佳濱:好,謝謝。
gazette.blocks[65][0] 主席:謝謝鍾佳濱委員質詢。
gazette.blocks[65][1] 我們休息10分鐘。
gazette.blocks[65][2] 休息(11時6分)
gazette.blocks[65][3] 繼續開會(11時17分)
gazette.blocks[66][0] 主席:報告委員會,我們繼續開會。
gazette.blocks[66][1] 請大家幫忙維持會場秩序,如果需要講話請到室外講話,因為我們在裡面開會。
gazette.blocks[66][2] 下一位請李坤城委員質詢。
gazette.agenda.page_end 414
gazette.agenda.meet_id 委員會-11-3-20-7
gazette.agenda.speakers[0] 賴士葆
gazette.agenda.speakers[1] 林思銘
gazette.agenda.speakers[2] 鍾佳濱
gazette.agenda.speakers[3] 林德福
gazette.agenda.speakers[4] 吳秉叡
gazette.agenda.speakers[5] 郭國文
gazette.agenda.speakers[6] 賴惠員
gazette.agenda.speakers[7] 李彥秀
gazette.agenda.speakers[8] 李坤城
gazette.agenda.speakers[9] 陳玉珍
gazette.agenda.speakers[10] 楊瓊瓔
gazette.agenda.speakers[11] 黃珊珊
gazette.agenda.speakers[12] 羅明才
gazette.agenda.speakers[13] 廖先翔
gazette.agenda.speakers[14] 葉元之
gazette.agenda.speakers[15] 顏寬恒
gazette.agenda.speakers[16] 徐欣瑩
gazette.agenda.speakers[17] 林楚茵
gazette.agenda.speakers[18] 陳冠廷
gazette.agenda.speakers[19] 王世堅
gazette.agenda.page_start 271
gazette.agenda.meetingDate[0] 2025-04-10
gazette.agenda.gazette_id 1143601
gazette.agenda.agenda_lcidc_ids[0] 1143601_00007
gazette.agenda.meet_name 立法院第11屆第3會期財政委員會第7次全體委員會議紀錄
gazette.agenda.content 一、邀請中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、行政院主計總處陳主計長 淑姿、財政部莊部長翠雲、經濟部郭部長智輝、農業部陳部長駿季就「川普對等關稅政策實施, 對我國股匯市、經濟成長、物價、房市等項所造成之衝擊與因應措施」進行專題報告,並備質 詢;二、審查「納稅者權利保護法」4案:(一)本院委員賴士葆等22人擬具「納稅者權利保護法 部分條文修正草案」案、(二)本院委員羅廷瑋等18人擬具「納稅者權利保護法第四條條文修正草 案」案、( 三) 本院委員林思銘等20 人擬具「納稅者權利保護法第七條及第二十一條條文修正草 案」案、( 四) 本院委員林思銘等18 人擬具「納稅者權利保護法第二十一條條文修正草案」案; 三、審查「加值型及非加值型營業稅法」 8 案: ( 一 ) 本院委員鍾佳濱等 18 人、委員鍾佳濱等 23 人、委員郭國文等17人分別擬具「加值型及非加值型營業稅法部分條文修正草案」等 3案、(二) 本院委員陳超明等18人、委員邱志偉等16人分別擬具「加值型及非加值型營業稅法第八條條文修 正草案」等2案、(三)本院委員賴士葆等25人、委員顏寬恒等16人分別擬具「加值型及非加值型 營業稅法第十三條條文修正草案」等2案、(四)本院委員賴士葆等22人擬具「加值型及非加值型 營業稅法第五十八條條文修正草案」案
gazette.agenda.agenda_id 1143601_00006