IVOD_ID |
160077 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160077 |
日期 |
2025-04-10 |
會議資料.會議代碼 |
委員會-11-3-20-7 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第7次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
7 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第7次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-10T10:54:47+08:00 |
結束時間 |
2025-04-10T11:06:45+08:00 |
影片長度 |
00:11:58 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/127fafa562dc97127e5be5ec4dba066639fb4699fde532611a30f584bceeba99cc49edf8057848505ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鍾佳濱 |
委員發言時間 |
10:54:47 - 11:06:45 |
會議時間 |
2025-04-10T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第7次全體委員會議(事由:一、邀請中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、行政院主計總處陳主計長淑姿、財政部莊部長翠雲、經濟部郭部長智輝、農業部陳部長駿季就「川普對等關稅政策實施,對我國股匯市、經濟成長、物價、房市等項所造成之衝擊與因應措施」進行專題報告,並備質詢。
二、審查「納稅者權利保護法」4案:
(一)本院委員賴士葆等22人擬具「納稅者權利保護法部分條文修正草案」案。
(二)本院委員羅廷瑋等18人擬具「納稅者權利保護法第四條條文修正草案」案。
(三)本院委員林思銘等20人擬具「納稅者權利保護法第七條及第二十一條條文修正草案」案。
(四)本院委員林思銘等18人擬具「納稅者權利保護法第二十一條條文修正草案」案。
三、審查「加值型及非加值型營業稅法」9案:
(一) 本院委員鍾佳濱等18人、委員鍾佳濱等23人、委員郭國文等17人、委員吳沛憶等18人分別擬具「加值型及非加值型營業稅法部分條文修正草案」等4案。【本院委員吳沛憶等18人提案如經院會復議,則不予審查】
(二) 本院委員陳超明等18人、委員邱志偉等16人分別擬具「加值型及非加值型營業稅法第八條條文修正草案」等2案。
(三) 本院委員賴士葆等25人、委員顏寬恒等16人分別擬具「加值型及非加值型營業稅法第十三條條文修正草案」等2案。
(四) 本院委員賴士葆等22人擬具「加值型及非加值型營業稅法第五十八條條文修正草案」案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
6.44346875 |
transcript.pyannote[0].end |
11.08409375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
11.59034375 |
transcript.pyannote[1].end |
21.98534375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
14.89784375 |
transcript.pyannote[2].end |
15.62346875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
18.66096875 |
transcript.pyannote[3].end |
19.57221875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
20.36534375 |
transcript.pyannote[4].end |
21.15846875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
22.13721875 |
transcript.pyannote[5].end |
22.17096875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
22.17096875 |
transcript.pyannote[6].end |
22.18784375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
22.18784375 |
transcript.pyannote[7].end |
22.54221875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
22.54221875 |
transcript.pyannote[8].end |
22.81221875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
22.81221875 |
transcript.pyannote[9].end |
23.03159375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
23.03159375 |
transcript.pyannote[10].end |
25.02284375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
25.02284375 |
transcript.pyannote[11].end |
25.30971875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
25.30971875 |
transcript.pyannote[12].end |
25.32659375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
25.32659375 |
transcript.pyannote[13].end |
25.34346875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
25.91721875 |
transcript.pyannote[14].end |
26.37284375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
26.37284375 |
transcript.pyannote[15].end |
26.45721875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
31.23284375 |
transcript.pyannote[16].end |
31.94159375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
33.54471875 |
transcript.pyannote[17].end |
33.86534375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
36.04221875 |
transcript.pyannote[18].end |
37.22346875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
41.23971875 |
transcript.pyannote[19].end |
46.80846875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
47.06159375 |
transcript.pyannote[20].end |
52.14096875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
53.00159375 |
transcript.pyannote[21].end |
55.49909375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
56.03909375 |
transcript.pyannote[22].end |
58.24971875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
58.55346875 |
transcript.pyannote[23].end |
60.08909375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
60.22409375 |
transcript.pyannote[24].end |
60.81471875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
60.89909375 |
transcript.pyannote[25].end |
62.23221875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
62.36721875 |
transcript.pyannote[26].end |
64.81409375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
65.16846875 |
transcript.pyannote[27].end |
69.03284375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
69.03284375 |
transcript.pyannote[28].end |
74.04471875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
74.61846875 |
transcript.pyannote[29].end |
77.52096875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
77.84159375 |
transcript.pyannote[30].end |
78.68534375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
79.69784375 |
transcript.pyannote[31].end |
84.18659375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
81.26721875 |
transcript.pyannote[32].end |
81.84096875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
86.43096875 |
transcript.pyannote[33].end |
87.83159375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
87.83159375 |
transcript.pyannote[34].end |
90.31221875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
90.53159375 |
transcript.pyannote[35].end |
91.37534375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
91.45971875 |
transcript.pyannote[36].end |
92.67471875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
93.50159375 |
transcript.pyannote[37].end |
94.68284375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
95.23971875 |
transcript.pyannote[38].end |
98.74971875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
99.23909375 |
transcript.pyannote[39].end |
100.09971875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
100.42034375 |
transcript.pyannote[40].end |
103.77846875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
104.53784375 |
transcript.pyannote[41].end |
106.52909375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
106.81596875 |
transcript.pyannote[42].end |
120.50159375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
112.09784375 |
transcript.pyannote[43].end |
114.03846875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
121.15971875 |
transcript.pyannote[44].end |
124.50096875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
124.63596875 |
transcript.pyannote[45].end |
126.30659375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
126.69471875 |
transcript.pyannote[46].end |
127.35284375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
127.96034375 |
transcript.pyannote[47].end |
147.85596875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
148.61534375 |
transcript.pyannote[48].end |
151.60221875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
151.80471875 |
transcript.pyannote[49].end |
154.28534375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
155.12909375 |
transcript.pyannote[50].end |
155.55096875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
155.98971875 |
transcript.pyannote[51].end |
163.04346875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
161.74409375 |
transcript.pyannote[52].end |
163.00971875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
163.04346875 |
transcript.pyannote[53].end |
165.65909375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
164.25846875 |
transcript.pyannote[54].end |
164.32596875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
166.03034375 |
transcript.pyannote[55].end |
176.03721875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
176.29034375 |
transcript.pyannote[56].end |
177.58971875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
177.67409375 |
transcript.pyannote[57].end |
180.57659375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
180.88034375 |
transcript.pyannote[58].end |
183.95159375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
184.23846875 |
transcript.pyannote[59].end |
186.02721875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
186.34784375 |
transcript.pyannote[60].end |
186.90471875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
187.22534375 |
transcript.pyannote[61].end |
190.41471875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
190.49909375 |
transcript.pyannote[62].end |
196.77659375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
196.94534375 |
transcript.pyannote[63].end |
201.65346875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
201.77159375 |
transcript.pyannote[64].end |
208.38659375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
207.86346875 |
transcript.pyannote[65].end |
214.83284375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
212.09909375 |
transcript.pyannote[66].end |
214.98471875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
215.18721875 |
transcript.pyannote[67].end |
215.42346875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
216.38534375 |
transcript.pyannote[68].end |
224.13096875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
224.33346875 |
transcript.pyannote[69].end |
226.67909375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
227.16846875 |
transcript.pyannote[70].end |
233.36159375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
233.49659375 |
transcript.pyannote[71].end |
236.36534375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
237.00659375 |
transcript.pyannote[72].end |
244.38096875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
245.02221875 |
transcript.pyannote[73].end |
248.76846875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
248.85284375 |
transcript.pyannote[74].end |
250.45596875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
250.79346875 |
transcript.pyannote[75].end |
278.08034375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
278.16471875 |
transcript.pyannote[76].end |
280.27409375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
280.72971875 |
transcript.pyannote[77].end |
281.38784375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
282.53534375 |
transcript.pyannote[78].end |
285.35346875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
285.92721875 |
transcript.pyannote[79].end |
287.51346875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
287.78346875 |
transcript.pyannote[80].end |
289.70721875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
290.46659375 |
transcript.pyannote[81].end |
291.25971875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
291.73221875 |
transcript.pyannote[82].end |
292.44096875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
292.77846875 |
transcript.pyannote[83].end |
293.55471875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
293.94284375 |
transcript.pyannote[84].end |
294.80346875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
295.41096875 |
transcript.pyannote[85].end |
302.19471875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
302.56596875 |
transcript.pyannote[86].end |
304.48971875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
304.48971875 |
transcript.pyannote[87].end |
304.86096875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
304.86096875 |
transcript.pyannote[88].end |
309.51846875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
305.16471875 |
transcript.pyannote[89].end |
306.58221875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
309.94034375 |
transcript.pyannote[90].end |
311.76284375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
311.88096875 |
transcript.pyannote[91].end |
316.96034375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
317.31471875 |
transcript.pyannote[92].end |
325.92096875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
319.77846875 |
transcript.pyannote[93].end |
321.60096875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
326.32596875 |
transcript.pyannote[94].end |
339.35346875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
327.45659375 |
transcript.pyannote[95].end |
328.65471875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
328.68846875 |
transcript.pyannote[96].end |
328.70534375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
328.85721875 |
transcript.pyannote[97].end |
328.97534375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
329.38034375 |
transcript.pyannote[98].end |
330.29159375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
330.71346875 |
transcript.pyannote[99].end |
332.73846875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
336.77159375 |
transcript.pyannote[100].end |
338.08784375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
339.75846875 |
transcript.pyannote[101].end |
345.02346875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
341.15909375 |
transcript.pyannote[102].end |
342.03659375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
345.64784375 |
transcript.pyannote[103].end |
349.27596875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
349.52909375 |
transcript.pyannote[104].end |
351.41909375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
351.52034375 |
transcript.pyannote[105].end |
352.14471875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
352.63409375 |
transcript.pyannote[106].end |
355.41846875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
355.72221875 |
transcript.pyannote[107].end |
374.28471875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
374.38596875 |
transcript.pyannote[108].end |
375.76971875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
375.87096875 |
transcript.pyannote[109].end |
376.51221875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
377.08596875 |
transcript.pyannote[110].end |
377.60909375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
377.94659375 |
transcript.pyannote[111].end |
378.70596875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
378.92534375 |
transcript.pyannote[112].end |
380.74784375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
380.96721875 |
transcript.pyannote[113].end |
382.85721875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
383.17784375 |
transcript.pyannote[114].end |
384.71346875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
384.91596875 |
transcript.pyannote[115].end |
385.47284375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
385.60784375 |
transcript.pyannote[116].end |
392.56034375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
393.08346875 |
transcript.pyannote[117].end |
394.75409375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
396.39096875 |
transcript.pyannote[118].end |
397.79159375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
398.50034375 |
transcript.pyannote[119].end |
400.52534375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
401.16659375 |
transcript.pyannote[120].end |
403.00596875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
403.22534375 |
transcript.pyannote[121].end |
405.73971875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
405.97596875 |
transcript.pyannote[122].end |
409.09784375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
409.38471875 |
transcript.pyannote[123].end |
410.85284375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
411.40971875 |
transcript.pyannote[124].end |
412.28721875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
412.86096875 |
transcript.pyannote[125].end |
415.51034375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
415.96596875 |
transcript.pyannote[126].end |
416.82659375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
417.34971875 |
transcript.pyannote[127].end |
420.08346875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
420.33659375 |
transcript.pyannote[128].end |
423.22221875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
423.72846875 |
transcript.pyannote[129].end |
426.19221875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
426.79971875 |
transcript.pyannote[130].end |
429.36471875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
429.75284375 |
transcript.pyannote[131].end |
437.36346875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
437.66721875 |
transcript.pyannote[132].end |
441.37971875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
442.18971875 |
transcript.pyannote[133].end |
446.49284375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
447.28596875 |
transcript.pyannote[134].end |
449.34471875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
449.63159375 |
transcript.pyannote[135].end |
450.39096875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
450.84659375 |
transcript.pyannote[136].end |
452.75346875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
453.27659375 |
transcript.pyannote[137].end |
458.44034375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
457.74846875 |
transcript.pyannote[138].end |
465.64596875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
466.16909375 |
transcript.pyannote[139].end |
475.33221875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
467.26596875 |
transcript.pyannote[140].end |
471.45096875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
475.66971875 |
transcript.pyannote[141].end |
483.02721875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
478.31909375 |
transcript.pyannote[142].end |
480.10784375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
483.02721875 |
transcript.pyannote[143].end |
483.07784375 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
483.07784375 |
transcript.pyannote[144].end |
498.55221875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
488.15721875 |
transcript.pyannote[145].end |
489.64221875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
496.03784375 |
transcript.pyannote[146].end |
496.15596875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
497.01659375 |
transcript.pyannote[147].end |
517.11471875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
498.87284375 |
transcript.pyannote[148].end |
499.04159375 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
517.03034375 |
transcript.pyannote[149].end |
539.55846875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
534.41159375 |
transcript.pyannote[150].end |
535.03596875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
535.76159375 |
transcript.pyannote[151].end |
551.53971875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
540.01409375 |
transcript.pyannote[152].end |
546.83159375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
551.72534375 |
transcript.pyannote[153].end |
561.91784375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
562.05284375 |
transcript.pyannote[154].end |
569.07284375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
562.18784375 |
transcript.pyannote[155].end |
563.52096875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
569.07284375 |
transcript.pyannote[156].end |
569.32596875 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
569.39346875 |
transcript.pyannote[157].end |
570.62534375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
570.97971875 |
transcript.pyannote[158].end |
572.05971875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
572.19471875 |
transcript.pyannote[159].end |
573.78096875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
573.86534375 |
transcript.pyannote[160].end |
576.04221875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
576.27846875 |
transcript.pyannote[161].end |
581.52659375 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
581.56034375 |
transcript.pyannote[162].end |
581.84721875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
582.35346875 |
transcript.pyannote[163].end |
586.47096875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
586.79159375 |
transcript.pyannote[164].end |
590.74034375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
590.80784375 |
transcript.pyannote[165].end |
596.05596875 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
596.35971875 |
transcript.pyannote[166].end |
596.44409375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
596.51159375 |
transcript.pyannote[167].end |
597.23721875 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
598.73909375 |
transcript.pyannote[168].end |
599.71784375 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
600.51096875 |
transcript.pyannote[169].end |
610.31534375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
602.55284375 |
transcript.pyannote[170].end |
604.08846875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
606.85596875 |
transcript.pyannote[171].end |
618.14534375 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
618.14534375 |
transcript.pyannote[172].end |
618.65159375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
618.58409375 |
transcript.pyannote[173].end |
622.04346875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
622.19534375 |
transcript.pyannote[174].end |
628.96221875 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
629.26596875 |
transcript.pyannote[175].end |
642.44534375 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
642.78284375 |
transcript.pyannote[176].end |
643.81221875 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
644.41971875 |
transcript.pyannote[177].end |
647.47409375 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
647.71034375 |
transcript.pyannote[178].end |
651.18659375 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
651.70971875 |
transcript.pyannote[179].end |
654.66284375 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
654.66284375 |
transcript.pyannote[180].end |
654.74721875 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
654.74721875 |
transcript.pyannote[181].end |
655.70909375 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
656.13096875 |
transcript.pyannote[182].end |
660.41721875 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
660.67034375 |
transcript.pyannote[183].end |
662.99909375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
663.26909375 |
transcript.pyannote[184].end |
664.65284375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
664.93971875 |
transcript.pyannote[185].end |
666.55971875 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
666.77909375 |
transcript.pyannote[186].end |
668.34846875 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
668.66909375 |
transcript.pyannote[187].end |
669.58034375 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
670.15409375 |
transcript.pyannote[188].end |
678.52409375 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
677.83221875 |
transcript.pyannote[189].end |
681.08909375 |
transcript.pyannote[190].speaker |
SPEAKER_01 |
transcript.pyannote[190].start |
679.16534375 |
transcript.pyannote[190].end |
693.40784375 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
693.40784375 |
transcript.pyannote[191].end |
702.97596875 |
transcript.pyannote[192].speaker |
SPEAKER_01 |
transcript.pyannote[192].start |
693.42471875 |
transcript.pyannote[192].end |
694.06596875 |
transcript.pyannote[193].speaker |
SPEAKER_01 |
transcript.pyannote[193].start |
695.39909375 |
transcript.pyannote[193].end |
695.46659375 |
transcript.pyannote[194].speaker |
SPEAKER_01 |
transcript.pyannote[194].start |
695.56784375 |
transcript.pyannote[194].end |
695.60159375 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
703.38096875 |
transcript.pyannote[195].end |
704.73096875 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
704.98409375 |
transcript.pyannote[196].end |
708.34221875 |
transcript.pyannote[197].speaker |
SPEAKER_00 |
transcript.pyannote[197].start |
708.49409375 |
transcript.pyannote[197].end |
712.56096875 |
transcript.pyannote[198].speaker |
SPEAKER_01 |
transcript.pyannote[198].start |
711.75096875 |
transcript.pyannote[198].end |
713.30346875 |
transcript.pyannote[199].speaker |
SPEAKER_00 |
transcript.pyannote[199].start |
713.30346875 |
transcript.pyannote[199].end |
714.97409375 |
transcript.pyannote[200].speaker |
SPEAKER_01 |
transcript.pyannote[200].start |
714.97409375 |
transcript.pyannote[200].end |
716.96534375 |
transcript.whisperx[0].start |
6.482 |
transcript.whisperx[0].end |
21.176 |
transcript.whisperx[0].text |
主席 在場的委員先進 列席的政府計劃所長 官員 會長 共同國大媒體 記者 女士先生請來的比較多 有請楊總裁那麼請蔡局長協助那金管會請彭主委主席總裁請陳主席長陳主席長 陳主席長 再請莊部長莊部長 請會長關進莊委員好好委員好 |
transcript.whisperx[1].start |
36.087 |
transcript.whisperx[1].end |
64.394 |
transcript.whisperx[1].text |
等一下我們主席講抱歉齁 幾位首長好齁今天我的題目很清楚高關稅排中來建立自貿同盟台幣升值跟美債減息兩害取其輕來 我要分別請教幾位首長齁請問一下我們看到了美國的關稅清單也看到了中國堅決反制這裡面台灣也列明其中請問川普的關稅清單是目的還是手段總裁你認為 |
transcript.whisperx[2].start |
65.579 |
transcript.whisperx[2].end |
83.854 |
transcript.whisperx[2].text |
我覺得呢簡單講是目的還是手段是手段也是目的好很好來我們請今晚會主委彭主委你認為是手段還是目的我的看法跟總裁一樣好很好莊部長那您的看法呢我跟總裁和主委的意見一樣哇很好來那麼我們的那個主席長 |
transcript.whisperx[3].start |
86.482 |
transcript.whisperx[3].end |
102.81 |
transcript.whisperx[3].text |
我也是覺得是一樣的啦好那總裁再請你回來大家都聽你的OK來我看齁我認為啊下一頁對中國的目的是圍堵但是對其他國家是要求你跟我談判我們看得很清楚川普說你中國對我不公平貿易說要對你加徵關稅 |
transcript.whisperx[4].start |
104.551 |
transcript.whisperx[4].end |
125.15 |
transcript.whisperx[4].text |
但是他對其他的國家說什麼?說我對你加徵關稅,但是你要對等關稅的話,我們就可以談,是不是這樣子?順序不一樣,結果中國很生氣,馬上去提高到84,結果他好,我就給你提高到125,結果現在很多國家已經表示我要跟你零關稅了,是不是這樣?那這樣結果會變成什麼呢? |
transcript.whisperx[5].start |
128.372 |
transcript.whisperx[5].end |
154.078 |
transcript.whisperx[5].text |
可是當越南提出零關稅的時候美國說不是喔你的傾銷跟補貼貼補這個非關稅欺騙我要注意喔所以顯然的美國對有案零關稅是要建立一個零關稅的自由貿易同盟但是也要嚴防大家去跟中國要好所以要圍堵中國往下看那既然美國川普政府對中國的目的是圍堵那對其他國家要求談判的目的有哪些 |
transcript.whisperx[6].start |
155.311 |
transcript.whisperx[6].end |
183.764 |
transcript.whisperx[6].text |
總裁我覺得啦我覺得啦就是說我那個還是我來跟你解釋一下好來這樣審視喔川普他說兩個任務要減少赤字一個要增加就業其中赤字有一個是貿易逆差一個是財政支出這當中的貿易逆差部分中國的不公平貿易是主要原因所以他加徵關稅同時籌組了一個自由貿易同盟彼此之間零關稅因此呢在美國市場上 |
transcript.whisperx[7].start |
184.304 |
transcript.whisperx[7].end |
204.143 |
transcript.whisperx[7].text |
中國商品沒有競爭力了出去了讓出來的位置讓其他零關稅同盟進來遞補而且這些零關稅同盟也對美國開放了市場美國想要透過這方式解決貿易逆差但是他一方面要增加就業要投資減稅要改善他中西部的弱勢經濟選民還有一個很重要的財政支出他要減少負債 |
transcript.whisperx[8].start |
204.804 |
transcript.whisperx[8].end |
213.344 |
transcript.whisperx[8].text |
要怎麼解決美國公債的問題總裁你同不同意這次川普我覺得我非常佩服委員你的整個邏輯是謝謝你的佩服我繼續讓你佩服來往下看 |
transcript.whisperx[9].start |
216.448 |
transcript.whisperx[9].end |
243.76 |
transcript.whisperx[9].text |
我們目前呢 談判小組它有幾個任務第一個 談判關稅 這是減輕逆差貨到對美採購 也是縮減美國逆差貨到對美投資 這是改善它的就業排除非關稅障礙 這些改善逆差解決稀產業問題 要防堵中國但是有沒有注意到這個小組有一個任務 寫在這裡台灣大部分的外匯準備是購買美國公債也可納入作為關稅下降的郵遞條件 |
transcript.whisperx[10].start |
245.22 |
transcript.whisperx[10].end |
266.221 |
transcript.whisperx[10].text |
總裁你認不認同這個報導我們的談判小組有這樣的一個籌碼我覺得也是也是喔很好很坦白那因為我這就不再對數了目前因為你說本來說92%你的副總裁說92%現在說82%所以我合理估計我們的外匯存益目前是5780億大概有推估4800億是由美在來持有好我們來看一下 |
transcript.whisperx[11].start |
267.221 |
transcript.whisperx[11].end |
289.576 |
transcript.whisperx[11].text |
剛剛議員有提到 美國面臨債務到期他有9兆 36兆的有9兆 今年要到期相當於什麼 聯邦總收入的兩倍其中在6月到期的呢 有6.5兆 我們看一下川普怎麼做 他要減少負債 要政府讓他瘦身 找了馬斯克然後呢 他有可能加稅嗎 很困難 現在關稅都零啦 |
transcript.whisperx[12].start |
290.526 |
transcript.whisperx[12].end |
315.115 |
transcript.whisperx[12].text |
要還債沒有錢還所以只剩什麼降低債息總裁你同不同意如果你是今天你是美國的財政部長你是美國的財政部長你認為減輕負債是不是這個是很重要的一個目標是啊是喔很好那往下看那請問總裁如果對美談判川普政府要求一台幣對美元升值跟B中央銀行持有部分美債減息你覺得哪一個對台灣的經濟衝擊比較大 |
transcript.whisperx[13].start |
317.952 |
transcript.whisperx[13].end |
343.339 |
transcript.whisperx[13].text |
我覺得這個哪一個衝擊比較大 二則一我覺得這兩個都不是很好都不是很好 我知道當然不好這才問你 兩害相權取其輕不是 我的意思就是說台幣對美元升值我先問你 哪一個對台灣影響比較大我都一直覺得台幣 兩個都不好台幣是由市場來決定的 |
transcript.whisperx[14].start |
345.697 |
transcript.whisperx[14].end |
365.825 |
transcript.whisperx[14].text |
好了,我就直接幫你講了,其實你兩個都不要了,但是被迫選的話,來看看你要選哪一個,我們來看一下下一頁,米倫,這是美國白宮經濟貿易顧問委員會的主席米倫,現在米倫在去年的11月他出了一個用戶指南,重組全國貿易體系,他講到什麼,講到說關稅本身不是目的是手段, |
transcript.whisperx[15].start |
366.505 |
transcript.whisperx[15].end |
390.28 |
transcript.whisperx[15].text |
解答了是手段不是目的今天的報紙也寫到了根據米倫的用戶指南他說對等關稅有五種方式來協助ABCDE很清楚關稅不要報復打開市場就是解決逆差然後提高國防出資增加採購投資美國增加就業直接捐款給美國財政部這是有點戲謔的說法簡單講就是檢討美國財政部的什麼美債的負擔來往下看 |
transcript.whisperx[16].start |
396.445 |
transcript.whisperx[16].end |
422.925 |
transcript.whisperx[16].text |
美國的白宮經濟顧問委員會主席米倫的攝氧什麼他說接下來美國要有盟友來美債的部分手中的美債你們都有拿一部分來用超長期譬如說50到100年超低利譬如說2%來跟我買你們快到期的美債換買這個好不好可是這種影響會影響到我們外匯存備裡面的流動性這樣的美債沒有流動性等於是挖個坑把它買起來 |
transcript.whisperx[17].start |
423.786 |
transcript.whisperx[17].end |
440.365 |
transcript.whisperx[17].text |
第二個呢也會影響我們匯率風險的管理所以米倫不是不知道所以他提出一個方案快速換回美元現金的官方渠道他說如果你有一千億兩千億的美債換成了一百年五十年那你短期銷售怎麼辦我讓你短期回購機制 |
transcript.whisperx[18].start |
442.233 |
transcript.whisperx[18].end |
464.666 |
transcript.whisperx[18].text |
或者他說用一個類似SWAP SPOT的方式去互換協議總裁你認為這樣的米倫的建議有沒有可能當你要考慮被要求要買超長期低利的美債的時候你覺得這兩個有沒有幫助我們各種這樣我覺得米倫的這個建議是不合乎市場的運作 |
transcript.whisperx[19].start |
466.275 |
transcript.whisperx[19].end |
494.815 |
transcript.whisperx[19].text |
而且我覺得美國的公債它的殖利率是它美國金融市場的一個穩定的力量這個不是在金融上買的喔這個是恰特定客戶這是恰特定客戶對嘛所以也就是說如果說是這樣子的話你不要就是說是特定客戶就其他一般的投資人也會怕 |
transcript.whisperx[20].start |
495.612 |
transcript.whisperx[20].end |
498.233 |
transcript.whisperx[20].text |
今天如果說這個米倫說台灣來的談判小組我們現在談一下我這個建議你採論看看因為這隱含有什麼優勢當這兩個機制放進去的時候他形同是美國跟這些國家形成了一個沒有包括中國的準金融同盟啊 |
transcript.whisperx[21].start |
514.762 |
transcript.whisperx[21].end |
527.096 |
transcript.whisperx[21].text |
大家把美元的儲備跟美國綁在一起啊我跟委員報告啦我跟委員報告美國如果說就我的猜想啦我先來觀察美國呢是第一個他才會就是說就這個關稅的問題來解決這個問題 |
transcript.whisperx[22].start |
531.221 |
transcript.whisperx[22].end |
545.325 |
transcript.whisperx[22].text |
那講到這個的時候呢我還是覺得都不好都是言之貴早連講都不要講言之貴早我同意言之貴早因為現在還沒有到亮底牌的時候我也不是亂講我們就不要講了因為言之貴早就不要講了因為言之貴早還是亮底牌但是我們來看一下剛剛有位人問你啊合理的外匯儲備是多少彭淮南前副總裁提到說總裁說什麼 |
transcript.whisperx[23].start |
555.788 |
transcript.whisperx[23].end |
581.236 |
transcript.whisperx[23].text |
他說大概維持4千到4千5百美元這樣就很安全了你同意嗎?不你不同意?沒關係我知道你不同意就好總裁不見得意料一致往下看但是人家也當過總裁的人米倫方案的試算假如說台灣我們的外匯儲備是這麼多我們手上假設有4千8百億的美債其中我到期之後我拿1千億他說你有4千億就可以很安全了 |
transcript.whisperx[24].start |
582.401 |
transcript.whisperx[24].end |
597.084 |
transcript.whisperx[24].text |
到期之後我拿1000億來購買一個超低利的美債長期的結果呢美債利率現在4%假設協議的利率是2%結果我們在這50年當中或100年當中我們每年會損失這麼多有沒有很嚴重 |
transcript.whisperx[25].start |
598.755 |
transcript.whisperx[25].end |
605.461 |
transcript.whisperx[25].text |
我覺得很嚴重我想這個都是假設問題所以我就說這個假設的問題的時候呢很難回答假如說我們接受了這個提議我們的600億的利損小於目前現在的特別預算的880億 |
transcript.whisperx[26].start |
618.653 |
transcript.whisperx[26].end |
643.543 |
transcript.whisperx[26].text |
我們了解如果台灣可以換得美國相互零關稅我們有很多的好處也可以避免很多的損失我們880億要用來對付這個因為出口沒有辦法出口高關稅的報復之後我們要來紓困的跟我們剛剛談一個好的條件我們只是少損失了只是損失了600億的利損而且還是帳面上的好我們來看一下下一個所以我們來看一下 |
transcript.whisperx[27].start |
644.483 |
transcript.whisperx[27].end |
669.249 |
transcript.whisperx[27].text |
超長期低利的美債在米倫的方案當中如果現在以美國來講30年的國債他只要掉1%他的帳面30年的帳面就進賺20%對台灣來講當我跟美國談的那個交易我有短期的美元的流動性需求的時候他給我一個附帶美國央行免費的買權保證避開短期的利率風險你認為如果是這樣的交易台美有沒有雙贏 |
transcript.whisperx[28].start |
670.428 |
transcript.whisperx[28].end |
694.927 |
transcript.whisperx[28].text |
我跟委員報告啦 我總覺得米倫的這種推論是不確實際的好 米倫的推論不確實際第二點呢 我又說如果說這個是真正實施的時候呢我個人覺得 我個人判斷美國先發生金融危機然後造成整個全球的金融危機我了解 我了解我總裁的判斷 |
transcript.whisperx[29].start |
695.767 |
transcript.whisperx[29].end |
716.036 |
transcript.whisperx[29].text |
很可惜的自從剛剛那個之後就沒有得到你的肯定了後面你都否定最後我一個結論來請央行分別就台幣兌美元升值以及中央銀行持有部分美債降息分別提出經濟衝擊影響一個月內提出說明報告可以嗎好 謝謝好 謝謝宗教兵委員的質詢 |