iVOD / 160052

Field Value
IVOD_ID 160052
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160052
日期 2025-04-10
會議資料.會議代碼 委員會-11-3-19-8
會議資料.會議代碼:str 第11屆第3會期經濟委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第8次全體委員會議
影片種類 Clip
開始時間 2025-04-10T09:55:08+08:00
結束時間 2025-04-10T10:10:07+08:00
影片長度 00:14:59
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/127fafa562dc9712c557a97cd25f9eabf11452c3877738ca72c2a43b2ce79c5076aa520af6b9da4e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳亭妃
委員發言時間 09:55:08 - 10:10:07
會議時間 2025-04-10T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第8次全體委員會議(事由:邀請經濟部部長、農業部部長及財政部首長就「因應美國關税政策以維持我國農漁畜業及關鍵產業競爭力之協助措施」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 4.08096875
transcript.pyannote[0].end 7.10159375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 7.42221875
transcript.pyannote[1].end 8.85659375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 13.56471875
transcript.pyannote[2].end 13.71659375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 14.37471875
transcript.pyannote[3].end 24.14534375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 15.96096875
transcript.pyannote[4].end 15.97784375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 15.97784375
transcript.pyannote[5].end 16.02846875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 16.02846875
transcript.pyannote[6].end 16.24784375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 24.29721875
transcript.pyannote[7].end 40.05846875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 40.75034375
transcript.pyannote[8].end 59.07659375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 59.44784375
transcript.pyannote[9].end 62.19846875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 62.45159375
transcript.pyannote[10].end 63.41346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 64.00409375
transcript.pyannote[11].end 65.50596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 65.89409375
transcript.pyannote[12].end 67.39596875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 67.88534375
transcript.pyannote[13].end 69.96096875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 70.78784375
transcript.pyannote[14].end 88.45596875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 89.41784375
transcript.pyannote[15].end 114.57846875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 114.83159375
transcript.pyannote[16].end 119.13471875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 120.01221875
transcript.pyannote[17].end 122.30721875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 122.50971875
transcript.pyannote[18].end 125.68221875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 126.18846875
transcript.pyannote[19].end 127.96034375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 128.16284375
transcript.pyannote[20].end 132.88784375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 133.47846875
transcript.pyannote[21].end 134.67659375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 135.01409375
transcript.pyannote[22].end 139.72221875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 140.24534375
transcript.pyannote[23].end 143.24909375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 143.87346875
transcript.pyannote[24].end 147.46784375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 148.04159375
transcript.pyannote[25].end 149.00346875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 149.39159375
transcript.pyannote[26].end 151.80471875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 152.04096875
transcript.pyannote[27].end 161.00159375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 161.33909375
transcript.pyannote[28].end 166.89096875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 167.24534375
transcript.pyannote[29].end 170.65409375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 170.85659375
transcript.pyannote[30].end 171.70034375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 172.27409375
transcript.pyannote[31].end 176.08784375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 176.27346875
transcript.pyannote[32].end 179.12534375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 179.47971875
transcript.pyannote[33].end 180.76221875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 181.08284375
transcript.pyannote[34].end 182.60159375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 182.83784375
transcript.pyannote[35].end 183.86721875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 184.69409375
transcript.pyannote[36].end 186.78659375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 186.97221875
transcript.pyannote[37].end 187.49534375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 188.06909375
transcript.pyannote[38].end 197.04659375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 197.90721875
transcript.pyannote[39].end 200.35409375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 202.75034375
transcript.pyannote[40].end 204.01596875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 206.42909375
transcript.pyannote[41].end 207.00284375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 207.30659375
transcript.pyannote[42].end 209.11221875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 209.85471875
transcript.pyannote[43].end 222.08909375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 215.62596875
transcript.pyannote[44].end 215.96346875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 215.96346875
transcript.pyannote[45].end 216.03096875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 218.71409375
transcript.pyannote[46].end 219.05159375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 222.94971875
transcript.pyannote[47].end 226.52721875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 226.89846875
transcript.pyannote[48].end 227.47221875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 228.01221875
transcript.pyannote[49].end 230.32409375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 231.06659375
transcript.pyannote[50].end 231.87659375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 232.36596875
transcript.pyannote[51].end 234.12096875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 234.44159375
transcript.pyannote[52].end 237.15846875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 237.69846875
transcript.pyannote[53].end 239.95971875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 241.09034375
transcript.pyannote[54].end 250.74284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 251.08034375
transcript.pyannote[55].end 259.02846875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 259.29846875
transcript.pyannote[56].end 260.44596875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 260.91846875
transcript.pyannote[57].end 263.23034375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 263.56784375
transcript.pyannote[58].end 264.78284375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 264.93471875
transcript.pyannote[59].end 267.39846875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 268.09034375
transcript.pyannote[60].end 270.23346875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 270.82409375
transcript.pyannote[61].end 276.62909375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 277.77659375
transcript.pyannote[62].end 288.17159375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 285.96096875
transcript.pyannote[63].end 285.97784375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 285.97784375
transcript.pyannote[64].end 287.98596875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 288.82971875
transcript.pyannote[65].end 313.92284375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 289.67346875
transcript.pyannote[66].end 290.80409375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 311.02034375
transcript.pyannote[67].end 311.22284375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 311.83034375
transcript.pyannote[68].end 323.59221875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 324.04784375
transcript.pyannote[69].end 330.37596875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 326.35971875
transcript.pyannote[70].end 326.79846875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 330.93284375
transcript.pyannote[71].end 334.72971875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 335.06721875
transcript.pyannote[72].end 338.22284375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 339.03284375
transcript.pyannote[73].end 353.19096875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 353.32596875
transcript.pyannote[74].end 354.70971875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 354.94596875
transcript.pyannote[75].end 356.85284375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 355.24971875
transcript.pyannote[76].end 356.88659375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 356.88659375
transcript.pyannote[77].end 356.97096875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 356.97096875
transcript.pyannote[78].end 369.62721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 356.98784375
transcript.pyannote[79].end 361.69596875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 362.08409375
transcript.pyannote[80].end 362.43846875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 367.80471875
transcript.pyannote[81].end 377.10284375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 377.37284375
transcript.pyannote[82].end 382.97534375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 382.97534375
transcript.pyannote[83].end 397.74096875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 394.77096875
transcript.pyannote[84].end 395.47971875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 396.08721875
transcript.pyannote[85].end 421.97346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 398.12909375
transcript.pyannote[86].end 398.24721875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 402.48284375
transcript.pyannote[87].end 403.07346875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 417.43409375
transcript.pyannote[88].end 417.51846875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 417.51846875
transcript.pyannote[89].end 418.04159375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 421.97346875
transcript.pyannote[90].end 431.37284375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 431.18721875
transcript.pyannote[91].end 431.45721875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 431.45721875
transcript.pyannote[92].end 431.54159375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 431.54159375
transcript.pyannote[93].end 432.53721875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 432.77346875
transcript.pyannote[94].end 453.98534375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 441.81846875
transcript.pyannote[95].end 443.70846875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 443.96159375
transcript.pyannote[96].end 444.65346875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 445.53096875
transcript.pyannote[97].end 445.58159375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 445.58159375
transcript.pyannote[98].end 446.89784375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 446.89784375
transcript.pyannote[99].end 446.96534375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 451.23471875
transcript.pyannote[100].end 451.25159375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 451.25159375
transcript.pyannote[101].end 452.33159375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 452.33159375
transcript.pyannote[102].end 452.43284375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 452.43284375
transcript.pyannote[103].end 452.53409375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 452.53409375
transcript.pyannote[104].end 452.77034375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 457.66409375
transcript.pyannote[105].end 463.04721875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 457.86659375
transcript.pyannote[106].end 458.64284375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 463.14846875
transcript.pyannote[107].end 476.04096875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 469.24034375
transcript.pyannote[108].end 469.29096875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 476.04096875
transcript.pyannote[109].end 476.41221875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 476.41221875
transcript.pyannote[110].end 478.79159375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 479.55096875
transcript.pyannote[111].end 489.25409375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 483.39846875
transcript.pyannote[112].end 483.90471875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 486.84096875
transcript.pyannote[113].end 487.11096875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 489.60846875
transcript.pyannote[114].end 504.28971875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 503.19284375
transcript.pyannote[115].end 503.64846875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 505.38659375
transcript.pyannote[116].end 506.31471875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 506.70284375
transcript.pyannote[117].end 515.76471875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 513.50346875
transcript.pyannote[118].end 513.99284375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 516.10221875
transcript.pyannote[119].end 518.36346875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 518.98784375
transcript.pyannote[120].end 529.87221875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 519.79784375
transcript.pyannote[121].end 519.98346875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 521.72159375
transcript.pyannote[122].end 522.24471875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 525.04596875
transcript.pyannote[123].end 525.43409375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 525.43409375
transcript.pyannote[124].end 525.45096875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 527.30721875
transcript.pyannote[125].end 527.66159375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 530.10846875
transcript.pyannote[126].end 531.37409375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 531.74534375
transcript.pyannote[127].end 532.92659375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 532.96034375
transcript.pyannote[128].end 536.75721875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 536.87534375
transcript.pyannote[129].end 537.17909375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 537.49971875
transcript.pyannote[130].end 544.36784375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 544.85721875
transcript.pyannote[131].end 557.63159375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 546.88221875
transcript.pyannote[132].end 547.16909375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 547.16909375
transcript.pyannote[133].end 547.18596875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 558.34034375
transcript.pyannote[134].end 560.85471875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 560.93909375
transcript.pyannote[135].end 561.22596875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 561.36096875
transcript.pyannote[136].end 565.00596875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 565.61346875
transcript.pyannote[137].end 575.58659375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 571.26659375
transcript.pyannote[138].end 573.37596875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 573.37596875
transcript.pyannote[139].end 575.08034375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 576.32909375
transcript.pyannote[140].end 611.20971875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 611.02409375
transcript.pyannote[141].end 611.15909375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 611.20971875
transcript.pyannote[142].end 611.54721875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 611.54721875
transcript.pyannote[143].end 611.56409375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 611.56409375
transcript.pyannote[144].end 611.58096875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 612.01971875
transcript.pyannote[145].end 612.05346875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 612.05346875
transcript.pyannote[146].end 612.23909375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 612.23909375
transcript.pyannote[147].end 614.73659375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 614.34846875
transcript.pyannote[148].end 614.70284375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 614.73659375
transcript.pyannote[149].end 618.24659375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 617.84159375
transcript.pyannote[150].end 622.14471875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 622.43159375
transcript.pyannote[151].end 628.59096875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 628.00034375
transcript.pyannote[152].end 630.14346875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 629.33346875
transcript.pyannote[153].end 629.77221875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 630.10971875
transcript.pyannote[154].end 641.88846875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 640.52159375
transcript.pyannote[155].end 640.92659375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 641.50034375
transcript.pyannote[156].end 643.08659375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 643.55909375
transcript.pyannote[157].end 647.89596875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 645.02721875
transcript.pyannote[158].end 646.12409375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 647.87909375
transcript.pyannote[159].end 648.35159375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 648.31784375
transcript.pyannote[160].end 649.46534375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 649.46534375
transcript.pyannote[161].end 653.29596875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 650.62971875
transcript.pyannote[162].end 662.93159375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 654.57846875
transcript.pyannote[163].end 655.08471875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 656.77221875
transcript.pyannote[164].end 657.14346875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 663.50534375
transcript.pyannote[165].end 668.02784375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 666.93096875
transcript.pyannote[166].end 672.33096875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 669.98534375
transcript.pyannote[167].end 670.32284375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 671.60534375
transcript.pyannote[168].end 672.83721875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 673.37721875
transcript.pyannote[169].end 738.59909375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 674.28846875
transcript.pyannote[170].end 675.13221875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 720.30659375
transcript.pyannote[171].end 720.69471875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 726.58409375
transcript.pyannote[172].end 726.68534375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 727.10721875
transcript.pyannote[173].end 727.15784375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 733.80659375
transcript.pyannote[174].end 734.09346875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 738.88596875
transcript.pyannote[175].end 744.79221875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 745.02846875
transcript.pyannote[176].end 756.19971875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 751.30596875
transcript.pyannote[177].end 751.40721875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 751.49159375
transcript.pyannote[178].end 751.62659375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 756.46971875
transcript.pyannote[179].end 762.34221875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 761.43096875
transcript.pyannote[180].end 763.18596875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 762.83159375
transcript.pyannote[181].end 763.74284375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 763.97909375
transcript.pyannote[182].end 779.41971875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 768.83909375
transcript.pyannote[183].end 769.69971875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 769.83471875
transcript.pyannote[184].end 769.91909375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 779.77409375
transcript.pyannote[185].end 781.78221875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 782.25471875
transcript.pyannote[186].end 783.73971875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 783.79034375
transcript.pyannote[187].end 787.14846875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 788.12721875
transcript.pyannote[188].end 823.15971875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 806.38596875
transcript.pyannote[189].end 806.74034375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 809.35596875
transcript.pyannote[190].end 809.44034375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 809.47409375
transcript.pyannote[191].end 809.54159375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 809.59221875
transcript.pyannote[192].end 809.67659375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 810.65534375
transcript.pyannote[193].end 810.99284375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 812.73096875
transcript.pyannote[194].end 813.20346875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 818.78909375
transcript.pyannote[195].end 819.16034375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 822.58596875
transcript.pyannote[196].end 824.62784375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 824.30721875
transcript.pyannote[197].end 827.37846875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 827.96909375
transcript.pyannote[198].end 844.20284375
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 844.48971875
transcript.pyannote[199].end 897.17346875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 845.02971875
transcript.pyannote[200].end 845.97471875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 860.50409375
transcript.pyannote[201].end 860.55471875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 860.55471875
transcript.pyannote[202].end 860.90909375
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 897.46034375
transcript.pyannote[203].end 897.74721875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 898.70909375
transcript.pyannote[204].end 898.96221875
transcript.whisperx[0].start 4.732
transcript.whisperx[0].end 6.579
transcript.whisperx[0].text 謝謝主席 我們是先請經濟部部長來 請郭部長
transcript.whisperx[1].start 15.905
transcript.whisperx[1].end 33.616
transcript.whisperx[1].text 我想昨天已經就一些題目跟你討論了但是我想今天的一個新的狀況就是川普發文說對於我們有75個國家其實已經有做了比較善意的一些談判的需求所以針對這75個國家我們就是這個關稅10%那這10%我相信
transcript.whisperx[2].start 41.14
transcript.whisperx[2].end 69.386
transcript.whisperx[2].text 對於台灣稍稍有緩了一下可是這久時間就像我說講的我們在這談判期這當中還是會有一些衝擊面就像我們說的這衝擊面我們的馬上辦可以給予多少的協助就像剛剛講的不裁員不減薪不能趁火打劫這才是重要不能說明明沒有影響然後因為
transcript.whisperx[3].start 71.114
transcript.whisperx[3].end 88.402
transcript.whisperx[3].text 這樣的一個理由而造成我們另外一個傷害我們自己企業體的傷害所以我覺得這個部分我們自己要把持住然後呢在我們針對這個談判當中我們很清楚從川普的發文大概他的目標就是中國啦
transcript.whisperx[4].start 89.468
transcript.whisperx[4].end 118.968
transcript.whisperx[4].text 包括我們過去一直在揣測的說他就是要把中國的一個真面目把它挑出來也就是當在選舉的時候他不斷的就已經在談到關稅然後呢很多這個中國的企業就是用一個所謂的不同的一個角度去做了息產地的一個調整所以跑到東南亞跑到一些他們比較友好的國家而造成了
transcript.whisperx[5].start 120.048
transcript.whisperx[5].end 146.938
transcript.whisperx[5].text 美國川普做了一些要做中國制裁的動作包括針對周邊的稀產地那台灣是沒有的所以我真的希望我們台灣反而可以在這個所謂的一個經濟狀況的一個改變我們如何讓我們的廠商可以回流讓我們的一個製造可以在這裡
transcript.whisperx[6].start 148.258
transcript.whisperx[6].end 166.673
transcript.whisperx[6].text 這才是重點所以我們現在有兩個區塊喔部長除了我們要面對美國的這個關稅另外一個部分是我們要怎麼讓我們自己的體制更好讓我們在中國的一些廠商可以回流台商回流
transcript.whisperx[7].start 167.493
transcript.whisperx[7].end 178.66
transcript.whisperx[7].text 這也是最重要的關鍵所以部長麻煩你這個部分再拜託把一些策略政策要做好比較詳細的討論兩個方向一個是怎麼應付未來的談判
transcript.whisperx[8].start 184.761
transcript.whisperx[8].end 199.572
transcript.whisperx[8].text 我們的關稅要怎麼處理第二就是我們要怎麼讓在美國對於中國產業制裁的當中我們要怎麼讓台商回流拜託那我們請財政部好 請理事長
transcript.whisperx[9].start 207.609
transcript.whisperx[9].end 229.721
transcript.whisperx[9].text 市長現在我想你也知道每次我們說我們要紓困我們的公股銀行要來協助可是你知道嗎每一次這個帽子開得很高可是做出來的並不是如此因為很重要的一個關節就是訂單
transcript.whisperx[10].start 231.169
transcript.whisperx[10].end 238.004
transcript.whisperx[10].text 是了解很多我們的銀行端他都會說你有訂單我才要給你廢話這個狀態完全不同
transcript.whisperx[11].start 242.516
transcript.whisperx[11].end 267.157
transcript.whisperx[11].text 這個狀態現在我們所面臨的是因為我們可能美國關稅的調整而造成訂單的縮減雖然我們現在積極努力要去做一些協調溝通可是當我們銀行端在做一些他的核准條件他都會先看你的背後未來的體制
transcript.whisperx[12].start 268.178
transcript.whisperx[12].end 272.782
transcript.whisperx[12].text 那跟我們這一次就完全不同啊市長有沒有什麼樣在針對這一波的狀態當中有做什麼調整
transcript.whisperx[13].start 278.142
transcript.whisperx[13].end 298.135
transcript.whisperx[13].text 報告委員 因為銀行在做融資貸款的時候 他們還是會有風險考量風險考量才是現在壓死大家的重點但是目前有我們中好企業銀行跟八大公關一起協助合作
transcript.whisperx[14].start 298.815
transcript.whisperx[14].end 323.258
transcript.whisperx[14].text 以自由資金來做的這個融資貸款他其實他主要就是希望能夠提供給這個企業做這個營運所需的周轉性的支出或者是說他要擴建廠房機器設備我都知道這些可是我們來自基層我們聽到很多企業跟我們投訴說每次我們去申請總是第一個條件是你的訂單在哪裡
transcript.whisperx[15].start 324.139
transcript.whisperx[15].end 336.76
transcript.whisperx[15].text 你的背後體制在哪裡那今天面對這一波就是因為我們有可能要協助的關鍵就是訂單萎縮是那你如果還要在他拿訂單我就跟他說
transcript.whisperx[16].start 339.116
transcript.whisperx[16].end 354.436
transcript.whisperx[16].text 所以市長我只是要跟你提醒你們要重新盤整也就是說當我們公股銀行在這一波要加入整個協助的體制當中你如果再要求訂單是第一條件那就是白搭了
transcript.whisperx[17].start 355.277
transcript.whisperx[17].end 376.26
transcript.whisperx[17].text 那就是白搭了應該利用其他的條件這個再拜託次長我們會在那個跟公股事業這些融資座談的時候金融座談時我們會提醒這個要快因為每次你們都說有啊我們有請公股銀行來協助可是每一次公股銀行要求各企業
transcript.whisperx[18].start 377.501
transcript.whisperx[18].end 393.714
transcript.whisperx[18].text 要去提出的就是他的訂單也就是他未來的發展我知道了解委員的意思就是因為受到這一波關稅政策影響有這個衝擊我們是不是在這個盤點這些貸款條件的時候把這個條件納入考量不要只是唯一一個訂單
transcript.whisperx[19].start 396.135
transcript.whisperx[19].end 403.877
transcript.whisperx[19].text 因為如果你要求訂單 那根本就不符合我們這一次紓困的一個重點嘛我們這一次是因為關稅 美國關稅的調漲而造成有可能訂單的萎縮這種短期緊急的狀況 人家說的現在是急進性嘛那我們在急診室我們就是要用一個急救的方式嘛
transcript.whisperx[20].start 417.6
transcript.whisperx[20].end 431.001
transcript.whisperx[20].text 那你如果再要求像過去的條件那就白搭了啊其實各位報告我們這次在那個金融知識方面我們也有提到就是說如果是中小企業或主管機關認定受到這次衝擊較大的其實我們就會做利率的減少
transcript.whisperx[21].start 432.944
transcript.whisperx[21].end 446.471
transcript.whisperx[21].text 次長這個很重要請你要跟大家講而且不是只有跟我們講也不是跟社會大眾講你要跟公股銀行講省核端是他們啊他們的關鍵他們要願意放才有效啊這個次長再麻煩再來我們請我們農業部部長
transcript.whisperx[22].start 457.691
transcript.whisperx[22].end 477.984
transcript.whisperx[22].text 部長我一樣在用這個圖啦昨天我有用這個圖跟我們經濟部做過討論這個圖今天增加了一個叫延後90天實行這個當時候也就是我昨天一直在講的我們有一個談判期這個談判期多久不知道談判期越長當然
transcript.whisperx[23].start 479.625
transcript.whisperx[23].end 502.876
transcript.whisperx[23].text 如果我們在關稅豁免可以更長的話那更好嘛也就是說不用用這個所謂32%那可是重點來了我們還是要因應啊因為包括蝴蝶蘭、茶葉、毛豆五國魚、鬼頭刀跟鱸魚這個我們台灣這個出口到美國的還是有它一定的數額嘛雖然
transcript.whisperx[24].start 505.461
transcript.whisperx[24].end 529.454
transcript.whisperx[24].text 最大的這個競爭對手都是中國這一次他們被要求了125%的一個關稅所以我們現在是要怎麼把這些市場能夠吸收這也是我們另外一個取款除了我們來協助這些廠商不要受到影響訂單不受到影響另外一個部分是我們要
transcript.whisperx[25].start 530.194
transcript.whisperx[25].end 557.113
transcript.whisperx[25].text 把中國的一個區塊他們原本佔有的市場這個競爭力把它拿回來對不對因為我相信我們的條件還有我們的品質各方面絕對是好太多比起其他國家所以我們更利用也就是我們的一個轉型在整個國際間這個市場的一個大盤整的時候我們要怎麼去搶
transcript.whisperx[26].start 558.534
transcript.whisperx[26].end 573.409
transcript.whisperx[26].text 這也是另外一個轉機啊怎麼去搶部長你有沒有好的方向怎麼去搶我就舉齁就是委員也非常關心在台南非常重要的一個產業就是蝴蝶燃產業你昨天有下去做交流
transcript.whisperx[27].start 576.414
transcript.whisperx[27].end 599.228
transcript.whisperx[27].text 其實中國關稅提高雖然說我們的競爭對手國是荷蘭但是我們有非常好的供應鏈接力生產的系統他們提出來一個就是要擴大在美國的接力廠的一個投資讓我們的產業能夠更有機會去搶食其他中國沒辦法進來的這些產品所以這個部分我想我已經成立了一個蝴蝶蘭的應變小組
transcript.whisperx[28].start 600.709
transcript.whisperx[28].end 609.717
transcript.whisperx[28].text 去針對比較中期的我們必須要去協助廠商去做在美國投資或是在台灣更紮根的這些計畫我想我們已經在做盤點希望能夠去多久這個盤點多久這個盤點我想欸時機咧我知道部長你知道時機比什麼都重要我們已經請業者針對你在美國的這些
transcript.whisperx[29].start 623.129
transcript.whisperx[29].end 642.629
transcript.whisperx[29].text 藍園本身有沒有機會跟台塘合作這個在一個月之內他們就會有一個整理因為有台塘基地在那裡啊對所以我們後續當有了以後我們就會協助說他在國外的資金怎麼取得後續我們會跟財政部這邊還有其他的銀行的部分看有沒有辦法去協助部長我希望因為
transcript.whisperx[30].start 643.63
transcript.whisperx[30].end 672.322
transcript.whisperx[30].text 我們是趕時間在曬炮我知道我們一定要搶得先機一個月好不好我們盡快把這個東西把它完成一個月把這個部分怎麼去協助他們因為我們台廠剛好有基地在那裡那如果是這樣子的話其實是最適當的只是差在我們的廠商有沒有能力這個能力誰要來協助這個部分我們在一個月之內包括怎麼樣組成一個聯盟這個東西是要打聯盟的一個團體戰一定要打聯盟
transcript.whisperx[31].start 673.422
transcript.whisperx[31].end 687.581
transcript.whisperx[31].text 打個人沒有用一定要打聯盟啊因為你台糖基地我們聯盟進去才有辦法去撐起讓大家看到整個我們蝴蝶蘭的市場我們的蘭花市場是可以有另外一個基地在美國
transcript.whisperx[32].start 688.482
transcript.whisperx[32].end 703.627
transcript.whisperx[32].text 那這個基地剛好我們台糖跟我們的聯盟結合我相信兩邊美國我們台南的這個花卉未來的花卉產業基地那我要拜託部長因為這個4月7號你沒辦法下去嗎因為你在處理這個關稅的問題那跟你報告讓你可以接上就是說花卉產業園區對我們台南太重要那
transcript.whisperx[33].start 714.651
transcript.whisperx[33].end 738.067
transcript.whisperx[33].text 我們當時候從過去111年的掛牌一直到現在我一直追掛牌我也去到現場那當時候因為這個是集中過去因為集中是竹尾所以我們一直希望說他不只掛牌他還有量能所謂量能就是預算跟人力好不容易我們原本預計說農業部升格之後那麼
transcript.whisperx[34].start 738.968
transcript.whisperx[34].end 760.314
transcript.whisperx[34].text 他的整個組織變質就可以加進去變成三級可是沒有辦法他容納不進去所以最後我們用花卉試驗所去做結合變成四級那一個月因為那天邀請人事人事處去處理一個月一個月希望能夠把這個事情行政院都何總會會追
transcript.whisperx[35].start 761.474
transcript.whisperx[35].end 786.876
transcript.whisperx[35].text 一個月因為委員的支持因為你如果沒有先把編制處理好你的整個計畫是沒辦法核定的你計畫核定之後所以我們當下也說了5月份我們希望能夠做所謂的環評的預先委託的招標案還有我們的開發計畫同步當我們編制過了之後那麼
transcript.whisperx[36].start 788.154
transcript.whisperx[36].end 815.686
transcript.whisperx[36].text 整個計畫核准他們就可以處理了無縫接軌所以部長這個部分很重要因為當天你沒有去所以我把這個結論跟您報告那麼還有另外一個部分就是說在我們芒果的部分本來4月9號他已經有召開專家會議但是呢因為還有一些細節那我也尊重啦所以4月15號還要再召開一次其實我告訴你整個都收回去了啦
transcript.whisperx[37].start 816.606
transcript.whisperx[37].end 825.934
transcript.whisperx[37].text 而且每一個果都是空泡蛋那一看其實都知道了這一次的天氣實在是太恐怖了我有現場我也去看過因為我告訴你那個冷熱沒這麼久的啦兩米高兩米弱拖這麼久的時間那個冷就受不了更何況是天氣所有的在第一線種植的農民都說將來不要看過這個情形那我們也看過酪梨所以其實酪梨因為有炸
transcript.whisperx[38].start 846.809
transcript.whisperx[38].end 863.676
transcript.whisperx[38].text 早出早生還有中生跟晚生所以你們說可能要拉一點時間這個我接受因為每一個狀態不一樣可是芒果真的不同這一次是完全全軍覆沒所以4月15號拜託不要再拖了這個部分再拜託那還有18間農會的部分我們當年已經都配對好了
transcript.whisperx[39].start 867.778
transcript.whisperx[39].end 872.68
transcript.whisperx[39].text 誰處理誰 誰處理誰都配對好了我們經濟委員會謝謝我們蔡義渝召委給我們這個機會然後由立法院的經濟委員會去給18家農會都做了配對就是說什麼農會找哪一個單位哪一個農會找哪一個單位都配對好了
transcript.whisperx[40].start 884.005
transcript.whisperx[40].end 895.736
transcript.whisperx[40].text 我們希望可以大家照這樣的程序下去進行那把農業不論是現在面對的國際競爭或是我們國內我們都可以給農民有安心謝謝部長