iVOD / 160051

Field Value
IVOD_ID 160051
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160051
日期 2025-04-10
會議資料.會議代碼 委員會-11-3-20-7
會議資料.會議代碼:str 第11屆第3會期財政委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-04-10T09:54:06+08:00
結束時間 2025-04-10T10:07:34+08:00
影片長度 00:13:28
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/127fafa562dc97124e00caa42d581c0639fb4699fde5326172c2a43b2ce79c50f699acf6b854a81e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 09:54:06 - 10:07:34
會議時間 2025-04-10T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第7次全體委員會議(事由:一、邀請中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、行政院主計總處陳主計長淑姿、財政部莊部長翠雲、經濟部郭部長智輝、農業部陳部長駿季就「川普對等關稅政策實施,對我國股匯市、經濟成長、物價、房市等項所造成之衝擊與因應措施」進行專題報告,並備質詢。 二、審查「納稅者權利保護法」4案: (一)本院委員賴士葆等22人擬具「納稅者權利保護法部分條文修正草案」案。 (二)本院委員羅廷瑋等18人擬具「納稅者權利保護法第四條條文修正草案」案。 (三)本院委員林思銘等20人擬具「納稅者權利保護法第七條及第二十一條條文修正草案」案。 (四)本院委員林思銘等18人擬具「納稅者權利保護法第二十一條條文修正草案」案。 三、審查「加值型及非加值型營業稅法」9案: (一) 本院委員鍾佳濱等18人、委員鍾佳濱等23人、委員郭國文等17人、委員吳沛憶等18人分別擬具「加值型及非加值型營業稅法部分條文修正草案」等4案。【本院委員吳沛憶等18人提案如經院會復議,則不予審查】 (二) 本院委員陳超明等18人、委員邱志偉等16人分別擬具「加值型及非加值型營業稅法第八條條文修正草案」等2案。 (三) 本院委員賴士葆等25人、委員顏寬恒等16人分別擬具「加值型及非加值型營業稅法第十三條條文修正草案」等2案。 (四) 本院委員賴士葆等22人擬具「加值型及非加值型營業稅法第五十八條條文修正草案」案。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.43596875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.73534375
transcript.pyannote[1].end 10.54409375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 3.32159375
transcript.pyannote[2].end 4.35096875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 6.08909375
transcript.pyannote[3].end 7.03409375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 9.43034375
transcript.pyannote[4].end 10.25721875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 14.29034375
transcript.pyannote[5].end 14.96534375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 15.84284375
transcript.pyannote[6].end 17.05784375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 18.39096875
transcript.pyannote[7].end 18.86346875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 19.48784375
transcript.pyannote[8].end 20.07846875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 20.41596875
transcript.pyannote[9].end 23.31846875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 23.89221875
transcript.pyannote[10].end 24.44909375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 25.07346875
transcript.pyannote[11].end 27.38534375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 27.92534375
transcript.pyannote[12].end 28.70159375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 29.10659375
transcript.pyannote[13].end 30.38909375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 30.67596875
transcript.pyannote[14].end 38.48909375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 39.63659375
transcript.pyannote[15].end 40.69971875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 41.02034375
transcript.pyannote[16].end 41.77971875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 42.60659375
transcript.pyannote[17].end 43.56846875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 44.22659375
transcript.pyannote[18].end 45.54284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 46.16721875
transcript.pyannote[19].end 46.75784375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 47.63534375
transcript.pyannote[20].end 49.05284375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 49.60971875
transcript.pyannote[21].end 50.84159375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 51.29721875
transcript.pyannote[22].end 52.59659375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 53.91284375
transcript.pyannote[23].end 54.38534375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 54.73971875
transcript.pyannote[24].end 57.01784375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 58.46909375
transcript.pyannote[25].end 60.40971875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 60.66284375
transcript.pyannote[26].end 62.08034375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 62.63721875
transcript.pyannote[27].end 64.74659375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 65.25284375
transcript.pyannote[28].end 70.26471875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 70.31534375
transcript.pyannote[29].end 71.81721875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 72.89721875
transcript.pyannote[30].end 74.41596875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 74.70284375
transcript.pyannote[31].end 76.01909375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 76.87971875
transcript.pyannote[32].end 77.82471875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 77.99346875
transcript.pyannote[33].end 91.15596875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 92.84346875
transcript.pyannote[34].end 95.03721875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 93.88971875
transcript.pyannote[35].end 94.17659375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 94.21034375
transcript.pyannote[36].end 94.95284375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 95.17221875
transcript.pyannote[37].end 95.64471875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 96.96096875
transcript.pyannote[38].end 101.28096875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 101.75346875
transcript.pyannote[39].end 105.46596875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 106.03971875
transcript.pyannote[40].end 112.78971875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 112.97534375
transcript.pyannote[41].end 118.64534375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 118.64534375
transcript.pyannote[42].end 119.64096875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 118.94909375
transcript.pyannote[43].end 134.81159375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 120.13034375
transcript.pyannote[44].end 122.50971875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 132.31409375
transcript.pyannote[45].end 134.87909375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 135.28409375
transcript.pyannote[46].end 148.15971875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 144.93659375
transcript.pyannote[47].end 145.15596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 148.53096875
transcript.pyannote[48].end 158.68971875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 154.15034375
transcript.pyannote[49].end 154.16721875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 154.16721875
transcript.pyannote[50].end 154.55534375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 156.41159375
transcript.pyannote[51].end 156.73221875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 158.92596875
transcript.pyannote[52].end 161.87909375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 162.26721875
transcript.pyannote[53].end 162.77346875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 162.99284375
transcript.pyannote[54].end 165.00096875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 165.82784375
transcript.pyannote[55].end 168.51096875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 168.74721875
transcript.pyannote[56].end 175.04159375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 175.34534375
transcript.pyannote[57].end 176.89784375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 178.36596875
transcript.pyannote[58].end 189.35159375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 189.72284375
transcript.pyannote[59].end 212.74034375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 190.14471875
transcript.pyannote[60].end 190.85346875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 192.28784375
transcript.pyannote[61].end 193.23284375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 211.37346875
transcript.pyannote[62].end 215.67659375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 215.67659375
transcript.pyannote[63].end 224.36721875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 215.69346875
transcript.pyannote[64].end 216.06471875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 216.82409375
transcript.pyannote[65].end 217.63409375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 220.35096875
transcript.pyannote[66].end 227.08409375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 224.83971875
transcript.pyannote[67].end 225.97034375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 226.59471875
transcript.pyannote[68].end 227.06721875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 227.08409375
transcript.pyannote[69].end 227.42159375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 227.42159375
transcript.pyannote[70].end 231.75846875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 232.16346875
transcript.pyannote[71].end 232.18034375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 232.18034375
transcript.pyannote[72].end 232.23096875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 232.23096875
transcript.pyannote[73].end 236.28096875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 235.79159375
transcript.pyannote[74].end 236.46659375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 236.46659375
transcript.pyannote[75].end 239.97659375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 239.97659375
transcript.pyannote[76].end 240.70221875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 240.70221875
transcript.pyannote[77].end 240.90471875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 240.90471875
transcript.pyannote[78].end 241.02284375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 241.02284375
transcript.pyannote[79].end 242.49096875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 243.06471875
transcript.pyannote[80].end 243.60471875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 244.04346875
transcript.pyannote[81].end 265.20471875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 248.39721875
transcript.pyannote[82].end 248.41409375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 248.43096875
transcript.pyannote[83].end 248.48159375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 265.06971875
transcript.pyannote[84].end 271.11096875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 266.06534375
transcript.pyannote[85].end 266.26784375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 271.66784375
transcript.pyannote[86].end 273.03471875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 273.22034375
transcript.pyannote[87].end 276.71346875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 275.22846875
transcript.pyannote[88].end 294.06096875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 279.61596875
transcript.pyannote[89].end 280.96596875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 280.96596875
transcript.pyannote[90].end 281.23596875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 292.57596875
transcript.pyannote[91].end 293.11596875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 293.41971875
transcript.pyannote[92].end 293.70659375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 294.51659375
transcript.pyannote[93].end 303.40971875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 304.27034375
transcript.pyannote[94].end 306.85221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 307.59471875
transcript.pyannote[95].end 307.62846875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 307.62846875
transcript.pyannote[96].end 311.27346875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 311.50971875
transcript.pyannote[97].end 311.96534375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 313.58534375
transcript.pyannote[98].end 315.71159375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 313.85534375
transcript.pyannote[99].end 327.38909375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 323.91284375
transcript.pyannote[100].end 325.14471875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 327.60846875
transcript.pyannote[101].end 331.23659375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 329.49846875
transcript.pyannote[102].end 332.28284375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 332.33346875
transcript.pyannote[103].end 332.77221875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 333.27846875
transcript.pyannote[104].end 339.30284375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 340.26471875
transcript.pyannote[105].end 341.56409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 343.25159375
transcript.pyannote[106].end 343.75784375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 344.19659375
transcript.pyannote[107].end 359.41784375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 359.85659375
transcript.pyannote[108].end 375.07784375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 367.72034375
transcript.pyannote[109].end 369.89721875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 371.16284375
transcript.pyannote[110].end 371.53409375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 375.82034375
transcript.pyannote[111].end 380.64659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 377.44034375
transcript.pyannote[112].end 379.48221875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 380.56221875
transcript.pyannote[113].end 380.57909375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 380.64659375
transcript.pyannote[114].end 386.02971875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 386.02971875
transcript.pyannote[115].end 386.62034375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 386.62034375
transcript.pyannote[116].end 386.63721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 386.63721875
transcript.pyannote[117].end 390.04596875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 389.06721875
transcript.pyannote[118].end 389.13471875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 390.50159375
transcript.pyannote[119].end 390.51846875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 390.51846875
transcript.pyannote[120].end 391.83471875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 391.96971875
transcript.pyannote[121].end 392.03721875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 392.05409375
transcript.pyannote[122].end 392.56034375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 393.18471875
transcript.pyannote[123].end 394.72034375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 395.00721875
transcript.pyannote[124].end 395.86784375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 396.52596875
transcript.pyannote[125].end 398.23034375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 399.96846875
transcript.pyannote[126].end 400.66034375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 401.26784375
transcript.pyannote[127].end 403.90034375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 404.27159375
transcript.pyannote[128].end 408.28784375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 408.45659375
transcript.pyannote[129].end 410.34659375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 411.12284375
transcript.pyannote[130].end 411.79784375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 411.93284375
transcript.pyannote[131].end 416.26971875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 413.56971875
transcript.pyannote[132].end 413.85659375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 416.80971875
transcript.pyannote[133].end 419.79659375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 420.60659375
transcript.pyannote[134].end 421.07909375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 421.29846875
transcript.pyannote[135].end 421.34909375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 421.34909375
transcript.pyannote[136].end 450.23909375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 430.19159375
transcript.pyannote[137].end 431.55846875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 433.75221875
transcript.pyannote[138].end 434.95034375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 450.23909375
transcript.pyannote[139].end 464.44784375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 453.22596875
transcript.pyannote[140].end 453.31034375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 465.51096875
transcript.pyannote[141].end 466.62471875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 466.97909375
transcript.pyannote[142].end 469.71284375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 470.15159375
transcript.pyannote[143].end 475.21409375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 474.87659375
transcript.pyannote[144].end 474.94409375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 475.01159375
transcript.pyannote[145].end 475.11284375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 475.21409375
transcript.pyannote[146].end 475.26471875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 475.26471875
transcript.pyannote[147].end 475.28159375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 475.28159375
transcript.pyannote[148].end 475.36596875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 475.36596875
transcript.pyannote[149].end 476.78346875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 477.10409375
transcript.pyannote[150].end 480.64784375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 479.68596875
transcript.pyannote[151].end 481.13721875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 481.30596875
transcript.pyannote[152].end 491.46471875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 491.56596875
transcript.pyannote[153].end 492.62909375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 493.42221875
transcript.pyannote[154].end 494.43471875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 496.47659375
transcript.pyannote[155].end 500.44221875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 500.66159375
transcript.pyannote[156].end 502.87221875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 503.46284375
transcript.pyannote[157].end 506.36534375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 507.05721875
transcript.pyannote[158].end 508.87971875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 509.50409375
transcript.pyannote[159].end 511.15784375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 511.30971875
transcript.pyannote[160].end 511.42784375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 511.84971875
transcript.pyannote[161].end 517.62096875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 518.38034375
transcript.pyannote[162].end 520.48971875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 520.55721875
transcript.pyannote[163].end 523.02096875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 522.46409375
transcript.pyannote[164].end 523.35846875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 523.39221875
transcript.pyannote[165].end 539.01846875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 528.31971875
transcript.pyannote[166].end 529.24784375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 539.65971875
transcript.pyannote[167].end 541.54971875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 541.73534375
transcript.pyannote[168].end 543.79409375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 543.96284375
transcript.pyannote[169].end 547.86096875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 547.25346875
transcript.pyannote[170].end 548.58659375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 548.58659375
transcript.pyannote[171].end 548.63721875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 548.63721875
transcript.pyannote[172].end 548.65409375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 548.65409375
transcript.pyannote[173].end 548.78909375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 548.78909375
transcript.pyannote[174].end 548.80596875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 548.80596875
transcript.pyannote[175].end 548.82284375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 548.82284375
transcript.pyannote[176].end 548.90721875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 548.90721875
transcript.pyannote[177].end 548.97471875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 548.97471875
transcript.pyannote[178].end 552.78846875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 555.15096875
transcript.pyannote[179].end 556.39971875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 557.26034375
transcript.pyannote[180].end 558.27284375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 558.77909375
transcript.pyannote[181].end 564.36471875
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 564.36471875
transcript.pyannote[182].end 565.71471875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 566.49096875
transcript.pyannote[183].end 566.50784375
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 566.50784375
transcript.pyannote[184].end 574.74284375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 571.04721875
transcript.pyannote[185].end 572.12721875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 576.41346875
transcript.pyannote[186].end 577.98284375
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 576.58221875
transcript.pyannote[187].end 577.96596875
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 577.98284375
transcript.pyannote[188].end 586.09971875
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 586.25159375
transcript.pyannote[189].end 589.93034375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 587.70284375
transcript.pyannote[190].end 588.17534375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 588.20909375
transcript.pyannote[191].end 589.06971875
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 590.14971875
transcript.pyannote[192].end 603.53159375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 601.23659375
transcript.pyannote[193].end 603.41346875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 603.53159375
transcript.pyannote[194].end 603.61596875
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 603.61596875
transcript.pyannote[195].end 603.63284375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 603.63284375
transcript.pyannote[196].end 603.68346875
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 603.68346875
transcript.pyannote[197].end 603.83534375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 604.74659375
transcript.pyannote[198].end 604.76346875
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 604.76346875
transcript.pyannote[199].end 604.96596875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 604.96596875
transcript.pyannote[200].end 605.10096875
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 605.10096875
transcript.pyannote[201].end 605.11784375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 605.11784375
transcript.pyannote[202].end 605.16846875
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 605.16846875
transcript.pyannote[203].end 605.21909375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 605.21909375
transcript.pyannote[204].end 606.85596875
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 606.85596875
transcript.pyannote[205].end 607.24409375
transcript.pyannote[206].speaker SPEAKER_03
transcript.pyannote[206].start 608.10471875
transcript.pyannote[206].end 619.59659375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 614.53409375
transcript.pyannote[207].end 614.97284375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 619.59659375
transcript.pyannote[208].end 625.21596875
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 619.66409375
transcript.pyannote[209].end 620.42346875
transcript.pyannote[210].speaker SPEAKER_03
transcript.pyannote[210].start 621.03096875
transcript.pyannote[210].end 621.57096875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 625.85721875
transcript.pyannote[211].end 634.24409375
transcript.pyannote[212].speaker SPEAKER_03
transcript.pyannote[212].start 627.30846875
transcript.pyannote[212].end 627.83159375
transcript.pyannote[213].speaker SPEAKER_03
transcript.pyannote[213].start 634.24409375
transcript.pyannote[213].end 634.86846875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 634.86846875
transcript.pyannote[214].end 635.27346875
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 635.27346875
transcript.pyannote[215].end 636.08346875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 635.34096875
transcript.pyannote[216].end 636.10034375
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 636.10034375
transcript.pyannote[217].end 636.40409375
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 637.19721875
transcript.pyannote[218].end 659.47221875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 654.25784375
transcript.pyannote[219].end 656.50221875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 657.02534375
transcript.pyannote[220].end 657.49784375
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 657.64971875
transcript.pyannote[221].end 664.16346875
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 660.50159375
transcript.pyannote[222].end 661.26096875
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 664.16346875
transcript.pyannote[223].end 664.53471875
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 664.97346875
transcript.pyannote[224].end 667.50471875
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 667.60596875
transcript.pyannote[225].end 667.96034375
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 668.07846875
transcript.pyannote[226].end 669.91784375
transcript.pyannote[227].speaker SPEAKER_03
transcript.pyannote[227].start 670.12034375
transcript.pyannote[227].end 670.37346875
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 670.76159375
transcript.pyannote[228].end 671.50409375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 672.01034375
transcript.pyannote[229].end 673.68096875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 673.83284375
transcript.pyannote[230].end 676.06034375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 676.38096875
transcript.pyannote[231].end 682.21971875
transcript.pyannote[232].speaker SPEAKER_03
transcript.pyannote[232].start 682.37159375
transcript.pyannote[232].end 682.60784375
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 682.60784375
transcript.pyannote[233].end 689.03721875
transcript.pyannote[234].speaker SPEAKER_03
transcript.pyannote[234].start 688.27784375
transcript.pyannote[234].end 689.00346875
transcript.pyannote[235].speaker SPEAKER_03
transcript.pyannote[235].start 689.03721875
transcript.pyannote[235].end 689.72909375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 689.72909375
transcript.pyannote[236].end 689.77971875
transcript.pyannote[237].speaker SPEAKER_03
transcript.pyannote[237].start 689.77971875
transcript.pyannote[237].end 703.26284375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 702.41909375
transcript.pyannote[238].end 703.21221875
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 703.26284375
transcript.pyannote[239].end 703.27971875
transcript.pyannote[240].speaker SPEAKER_03
transcript.pyannote[240].start 703.27971875
transcript.pyannote[240].end 703.34721875
transcript.pyannote[241].speaker SPEAKER_03
transcript.pyannote[241].start 703.61721875
transcript.pyannote[241].end 706.01346875
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 703.81971875
transcript.pyannote[242].end 705.10221875
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 706.01346875
transcript.pyannote[243].end 706.36784375
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 706.57034375
transcript.pyannote[244].end 707.76846875
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 707.90346875
transcript.pyannote[245].end 710.24909375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 711.49784375
transcript.pyannote[246].end 711.75096875
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 714.99096875
transcript.pyannote[247].end 718.06221875
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 719.15909375
transcript.pyannote[248].end 721.09971875
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 721.99409375
transcript.pyannote[249].end 723.05721875
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 723.27659375
transcript.pyannote[250].end 723.47909375
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 723.79971875
transcript.pyannote[251].end 726.41534375
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 726.98909375
transcript.pyannote[252].end 728.74409375
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 729.35159375
transcript.pyannote[253].end 731.51159375
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 732.03471875
transcript.pyannote[254].end 736.70909375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 737.24909375
transcript.pyannote[255].end 739.71284375
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 739.91534375
transcript.pyannote[256].end 743.52659375
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 742.04159375
transcript.pyannote[257].end 742.32846875
transcript.pyannote[258].speaker SPEAKER_01
transcript.pyannote[258].start 742.37909375
transcript.pyannote[258].end 742.95284375
transcript.pyannote[259].speaker SPEAKER_01
transcript.pyannote[259].start 743.52659375
transcript.pyannote[259].end 743.56034375
transcript.pyannote[260].speaker SPEAKER_01
transcript.pyannote[260].start 743.79659375
transcript.pyannote[260].end 757.92096875
transcript.pyannote[261].speaker SPEAKER_01
transcript.pyannote[261].start 757.97159375
transcript.pyannote[261].end 772.68659375
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 768.99096875
transcript.pyannote[262].end 770.12159375
transcript.pyannote[263].speaker SPEAKER_00
transcript.pyannote[263].start 770.12159375
transcript.pyannote[263].end 770.20596875
transcript.pyannote[264].speaker SPEAKER_01
transcript.pyannote[264].start 772.83846875
transcript.pyannote[264].end 797.76284375
transcript.pyannote[265].speaker SPEAKER_02
transcript.pyannote[265].start 791.85659375
transcript.pyannote[265].end 794.20221875
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 797.23971875
transcript.pyannote[266].end 798.38721875
transcript.pyannote[267].speaker SPEAKER_01
transcript.pyannote[267].start 798.38721875
transcript.pyannote[267].end 799.97346875
transcript.pyannote[268].speaker SPEAKER_01
transcript.pyannote[268].start 801.13784375
transcript.pyannote[268].end 808.14096875
transcript.whisperx[0].start 0.503
transcript.whisperx[0].end 9.892
transcript.whisperx[0].text 有請央行的楊總裁以及財政部的莊部長以及經管會的彭主委三位長官集合三位長官好
transcript.whisperx[1].start 20.498
transcript.whisperx[1].end 32.424
transcript.whisperx[1].text 最近這個禮拜都是川普週大家大街小巷談著川普他現在本來大家看起來一副1930年代1929、1930年那時候的美國總統那時候也是做兩件事情
transcript.whisperx[2].start 42.645
transcript.whisperx[2].end 71.368
transcript.whisperx[2].text 一屆關稅引起關稅的大戰第二個呢他要做一個升息這點川普比較聰明川普比較準備降息所以那時候開始就來一個大蕭條這個美國的股市花25年才讓它回到原來那個水準所以這個東西很慘烈啊看起來很慘烈那現在這個好不容易川普啊這個時候暫停90天
transcript.whisperx[3].start 72.992
transcript.whisperx[3].end 89.824
transcript.whisperx[3].text 止課十趴老 美股大漲我就請教 你剛才已經說了但是我還是請教 再說一遍好了是不是從此我們台灣的股市從此過上幸福美滿的日子一路往上攀升會這樣說嗎
transcript.whisperx[4].start 93.181
transcript.whisperx[4].end 118.198
transcript.whisperx[4].text 要我回答嗎我剛剛也在講就是說金融市場他很顧忌的就是不確定性那所以也就是說這三個月給他緩衝因為這三個月他的結果是什麼還不曉得所以基本上整個的市場還是會籠罩在不確定性
transcript.whisperx[5].start 119.038
transcript.whisperx[5].end 135.89
transcript.whisperx[5].text 所以不確定就不會一路往上衝因為他可能會做某些就也許有些時候會上去但是也許有些時候風吹草動的時候他又會下來所以不會就說現在美國要的資源不都滿足了啊他現在要的就是他這個財政部長講說640幾億的貿易逆差其實也從美國的資料算是739億那我算這個來講的話來講的話
transcript.whisperx[6].start 148.619
transcript.whisperx[6].end 166.973
transcript.whisperx[6].text 台灣雖然現在90天裡面暫時豁免但是還是要課10%喔但是原來是1.7%中間就差8.3%8.3%是什麼概念我們去美國多少一年的輸出多少去年1100多億1100多億我們乘以8.3%大概90幾億美金折合台幣3000億所以從現在開始
transcript.whisperx[7].start 178.39
transcript.whisperx[7].end 182.274
transcript.whisperx[7].text 他雖然把我們說要暫時90天 暫時WAVE掉暫時免除32%可是我們關稅仍然多付3000多億給美國
transcript.whisperx[8].start 190.015
transcript.whisperx[8].end 193.297
transcript.whisperx[8].text 我跟委員報告就是說我們出口出去的產品他進口台灣的產品那這個要分大類可以分三種產品一種產品他就是他剛需他比較需要的
transcript.whisperx[9].start 210.109
transcript.whisperx[9].end 224.142
transcript.whisperx[9].text 那需要的話 那這個就是說我沒有時間 只能聽你分析喔你現在就跟我講這個數字對不對啦對 這個呢 這個就是說你講的就是說是最嚴重的時候沒有 最嚴重就是這個數字在這裡喔好 來來來這個再確定一下喔他講說75國戰死後面 有沒有報告台灣 確定
transcript.whisperx[10].start 233.051
transcript.whisperx[10].end 260.252
transcript.whisperx[10].text 他這個七十五國就應該是有包含了沒有應該還是確定這個我不曉得莊部長要不要確定一下七十五國有沒有包含台灣確定沒有他是講七十五國有去表達跟美國去協商那至於後來我們剛剛有講那個白宮的秘書有華爾街日報有他有表達他有直接就說除了中國以外
transcript.whisperx[11].start 260.852
transcript.whisperx[11].end 275.926
transcript.whisperx[11].text 其他的國家 可增基本的關稅就加增10%的基本關稅可是他這次靠的是全國全世界是一百八十幾個國家欸不是只有只有只有七七七只有八十個國家不是欸他靠的是一百八十幾個國家
transcript.whisperx[12].start 276.707
transcript.whisperx[12].end 296.777
transcript.whisperx[12].text 就全部的國家它是加徵10%的關稅另外有其他大概57個國家是加徵到另外有加一個4月9號以後是高於10的11到50%的一個對等關稅這個部分還有加25%的還有加25%的25%的那個是232的貿易條款裡面所以它也有一些暫時豁免的一些部分是
transcript.whisperx[13].start 304.315
transcript.whisperx[13].end 310.272
transcript.whisperx[13].text 沒有 所以我就問你 你還沒有給我答案嘛台灣是不是確定在這75個豁免國家裡面 有沒有
transcript.whisperx[14].start 313.955
transcript.whisperx[14].end 335.323
transcript.whisperx[14].text 美國新聞歷史所發布的就是它有證實這個部分確實是所有國家徵收百分之十的九十天的期間所有國家加徵百分之十的關稅那當然中國不在裡面啦是就是確定嘛就中國大陸不在裡面我們在裡面根據它這樣的證實好那現在我們現在來講說我們的進口從美國進口我們要零關稅這樣子稅損多少
transcript.whisperx[15].start 344.271
transcript.whisperx[15].end 364.799
transcript.whisperx[15].text 至於零關稅這個部分根據總統也提到說從零關稅開始去跟他們去做談判那至於最後是不是所有的貨品是不是零關稅我想我們的貿易談判的工作小組他會去做模擬各種方式所以他不知道這個部分我們先跟報告的就是說我們知道去年的我們從美國進口的一個
transcript.whisperx[16].start 367.02
transcript.whisperx[16].end 368.183
transcript.whisperx[16].text 4百多億美金客徵對美國徵收的關稅是7.5億美金
transcript.whisperx[17].start 376.657
transcript.whisperx[17].end 397.772
transcript.whisperx[17].text 7.5億美金美國的計算7.5億美金但是裡面很多農產品對農民的損失對農民的壓力非常大的這個部分當然產業主管機關會去衡量第三個部分各縣市政府都希望財政部給他降稅
transcript.whisperx[18].start 401.535
transcript.whisperx[18].end 419.768
transcript.whisperx[18].text 這個時間總裁也講了現在不穩定喔還不穩定喔沒有因此走上一個幸福快樂的日子還沒有喔還沒有到not ready yet你這個怎麼回應各地方政府希望能夠降稅降你的營所稅或降什麼稅whatever
transcript.whisperx[19].start 420.706
transcript.whisperx[19].end 443.48
transcript.whisperx[19].text 有沒有可能這個部分對於有關的產業供應鏈的一個支持方案行政院已經提出了那支持方案裡面的一些項目或有沒有減稅這一項沒有減稅這一項沒有減稅這一項租稅的部分第一個租稅部分產創條例裡面有相關的一些減稅的優惠以及我們今天也我們也同時提到在我們的報告也提到
transcript.whisperx[20].start 443.94
transcript.whisperx[20].end 469.558
transcript.whisperx[20].text 如果廠商受到或者民眾受到這個衝擊的話那稅可以申請延分期繳納分期繳納或者延後繳納沒有減稅這個所以沒有減稅這個選項啦所以地方政府是白搭的啦白講的啦好不好那我再請教這個彭主委啊台灣的股市過去幾天是不是已經進入休市了是不是
transcript.whisperx[21].start 470.763
transcript.whisperx[21].end 494.285
transcript.whisperx[21].text 當然沒有,我們過去其實兩天交易量其實非常正常熊市是看你的跌幅啊不是那個當然是比如說剛才像今天就反映的跌幅超過120了對,當然比如說學理上有一個所謂的熊市的定義不過熊市還是要看它實際上的狀況我們看今天的情況如果說回復以外說按照那個定義其實上可能還不到那個程度
transcript.whisperx[22].start 496.499
transcript.whisperx[22].end 517.276
transcript.whisperx[22].text 其實從去年的七月中到今年的一月初啊就已經跌了22.9%那時候老實講 從去年中到今年初如果按照20%的一個講法就是熊死了所以好 那今天這樣子活著暫時豁免90%要讓有他人立場 你有你立場
transcript.whisperx[23].start 518.69
transcript.whisperx[23].end 534.117
transcript.whisperx[23].text 從此台灣的股市是不是一路順利往上走當然金管會不會去預測未來的走勢那我想說因為他是充分的反應我想各位如果有比較過過去這個台灣的產業結構還跟國際股市的發展台灣在這三天確實是
transcript.whisperx[24].start 539.999
transcript.whisperx[24].end 551.665
transcript.whisperx[24].text 應該是有疊的比較多那實際上我覺得應該製作事實的回覆我想這個部分應該是好請兩位長官先回座我再請那個楊總裁楊總裁啊是你在這裡回覆一個立委講說外匯存底92%馬美債這是確定嗎對不對這個沒有確定
transcript.whisperx[25].start 566.493
transcript.whisperx[25].end 574.095
transcript.whisperx[25].text 那你都公開回答了不是我公開我是我們的副總裁副總裁講錯了但是是確實他是說錯了
transcript.whisperx[26].start 576.374
transcript.whisperx[26].end 580.836
transcript.whisperx[26].text 還是多少我們應該又說是8以前我就講過啦我們的美債大概有八成以上八成 八十二八十一 八十二 八十九八成 八成以上因為我也不能就是說跟你講是一個確定的數據為什麼呢因為匯率呢匯率都時常在變動所以這個比例也都會時常在變動那大概85左右可以這樣講嗎
transcript.whisperx[27].start 604.775
transcript.whisperx[27].end 607.096
transcript.whisperx[27].text 我只能說是80%以上現在有一種講法說川普為什麼把這次跟世界這樣子
transcript.whisperx[28].start 626.343
transcript.whisperx[28].end 632.752
transcript.whisperx[28].text 開這個手術大刀就是希望能夠解決他的美債的問題因為美債超過36兆美金這個傢伙對吧
transcript.whisperx[29].start 638.974
transcript.whisperx[29].end 657.322
transcript.whisperx[29].text 對啦 也可以這麼說但是我覺得比較準確的說法是說他要把美國的政府的deficit就是他的budget deficit要能夠下降下來對嘛 就是介紹他的美債嘛那以現在來講的話日本或者大陸都在拋售美債
transcript.whisperx[30].start 665.846
transcript.whisperx[30].end 687.577
transcript.whisperx[30].text 500億最近有一個數字跑出來了雖然還沒有到最後Final這樣子因為他今年6月美國6.5兆的美金6.5兆國庫券再到期了被要求轉入長債長債高達30年50年那利率更低有的甚至要0
transcript.whisperx[31].start 688.437
transcript.whisperx[31].end 708.857
transcript.whisperx[31].text 一百年常債常債三十年期的多現在比十年期的多還高啊怎麼有可能就是說要那個把它到一百年那然後呢是零利率這個是不可能的不可能那不可能外面有媒體這樣報導我覺得這是不可能的好最後一點我們就請潘主委上來請那個楊總裁下去請
transcript.whisperx[32].start 715.171
transcript.whisperx[32].end 742.926
transcript.whisperx[32].text 本身有一個小問題問我就可以下去了不少出入股市者怕被斷頭用保單 用信貸來支應萬一股市再跌要像這樣 stable 完全穩定會不會產生系統性的風暴儘管會怎麼來對這些人這些人很多是剛加入股市的特別是年輕的剛大學畢業或者在學生 在校學生
transcript.whisperx[33].start 743.886
transcript.whisperx[33].end 761.623
transcript.whisperx[33].text 其實跟委員報告其實我們非常關注這個問題我們也隨時請交易所關注這個比如說他們這些的profile長什麼樣我們發現這個段頭的大概是七成大概就是40到69歲的族群是占最多數那其實這個部分當然人數最近比較多
transcript.whisperx[34].start 762.444
transcript.whisperx[34].end 791.479
transcript.whisperx[34].text 但是我覺得我們這個部分呢還在一個可控我們是會提供一些盡量提供一些協助什麼協助什麼協助像我們第一波的方案裡面也提到就是說再來就是我們希望可以比如說這個補這個擔保品的部分呢能夠更多元我們市場上反映很多問題我們立刻去解決當然有些系統上的問題不是一下就能解決不過我們這部分呢我們就盡量去協助這些因為這個不確定因素而遭受一時之間沒辦法融通的這些
transcript.whisperx[35].start 792.379
transcript.whisperx[35].end 802.61
transcript.whisperx[35].text 現在目前看起來還不至於我們還是真的非常非常的關心這個問題我們持續的就請教育所這邊會關注 謝謝