iVOD / 160014

Field Value
IVOD_ID 160014
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160014
日期 2025-04-09
會議資料.會議代碼 委員會-11-3-19-7
會議資料.會議代碼:str 第11屆第3會期經濟委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-04-09T13:22:16+08:00
結束時間 2025-04-09T13:28:51+08:00
影片長度 00:06:35
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdce8fbc53fe30abffb4a0ce932bdb5123485ac7c33fa4103456b0ca6921d57b82b45ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 葉元之
委員發言時間 13:22:16 - 13:28:51
會議時間 2025-04-09T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第7次全體委員會議(事由:邀請經濟部部長及國家發展委員會主任委員就「國際經貿情勢變化,提出協助國內傳統產業及中小企業因應之對策」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 11.64096875
transcript.pyannote[0].end 11.92784375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 12.07971875
transcript.pyannote[1].end 12.58596875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 13.39596875
transcript.pyannote[2].end 14.72909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 15.20159375
transcript.pyannote[3].end 15.72471875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 22.96409375
transcript.pyannote[4].end 27.40221875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 27.97596875
transcript.pyannote[5].end 30.22034375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 30.82784375
transcript.pyannote[6].end 32.51534375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 32.70096875
transcript.pyannote[7].end 35.43471875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 35.99159375
transcript.pyannote[8].end 38.21909375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 36.12659375
transcript.pyannote[9].end 36.68346875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 38.60721875
transcript.pyannote[10].end 42.62346875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 42.62346875
transcript.pyannote[11].end 42.70784375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 42.70784375
transcript.pyannote[12].end 52.36034375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 46.23471875
transcript.pyannote[13].end 46.67346875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 51.76971875
transcript.pyannote[14].end 55.31346875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 55.81971875
transcript.pyannote[15].end 73.11659375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 63.24471875
transcript.pyannote[16].end 63.41346875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 63.66659375
transcript.pyannote[17].end 63.78471875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 68.47596875
transcript.pyannote[18].end 70.43346875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 73.58909375
transcript.pyannote[19].end 80.76096875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 80.82846875
transcript.pyannote[20].end 92.91096875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 91.57784375
transcript.pyannote[21].end 100.03221875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 100.03221875
transcript.pyannote[22].end 108.77346875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 101.80409375
transcript.pyannote[23].end 101.85471875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 101.95596875
transcript.pyannote[24].end 102.07409375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 109.17846875
transcript.pyannote[25].end 110.89971875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 111.37221875
transcript.pyannote[26].end 112.04721875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 112.16534375
transcript.pyannote[27].end 114.86534375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 115.57409375
transcript.pyannote[28].end 126.59346875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 123.15096875
transcript.pyannote[29].end 123.31971875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 126.91409375
transcript.pyannote[30].end 132.11159375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 132.48284375
transcript.pyannote[31].end 134.32221875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 134.71034375
transcript.pyannote[32].end 144.59909375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 144.75096875
transcript.pyannote[33].end 150.75846875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 151.21409375
transcript.pyannote[34].end 160.05659375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 157.08659375
transcript.pyannote[35].end 157.57596875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 158.13284375
transcript.pyannote[36].end 158.36909375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 159.76971875
transcript.pyannote[37].end 183.73221875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 173.10096875
transcript.pyannote[38].end 174.68721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 176.45909375
transcript.pyannote[39].end 176.57721875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 184.39034375
transcript.pyannote[40].end 189.03096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 189.03096875
transcript.pyannote[41].end 196.06784375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 196.50659375
transcript.pyannote[42].end 210.68159375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 196.67534375
transcript.pyannote[43].end 196.96221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 197.33346875
transcript.pyannote[44].end 198.41346875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 203.23971875
transcript.pyannote[45].end 203.40846875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 210.49596875
transcript.pyannote[46].end 226.03784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 211.50846875
transcript.pyannote[47].end 214.32659375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 223.60784375
transcript.pyannote[48].end 224.58659375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 226.03784375
transcript.pyannote[49].end 230.20596875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 230.69534375
transcript.pyannote[50].end 237.73221875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 234.07034375
transcript.pyannote[51].end 238.25534375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 238.37346875
transcript.pyannote[52].end 238.40721875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 238.40721875
transcript.pyannote[53].end 246.15284375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 238.44096875
transcript.pyannote[54].end 238.98096875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 239.47034375
transcript.pyannote[55].end 240.02721875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 246.15284375
transcript.pyannote[56].end 251.82284375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 246.67596875
transcript.pyannote[57].end 255.67034375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 256.19346875
transcript.pyannote[58].end 259.46721875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 259.78784375
transcript.pyannote[59].end 264.85034375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 263.98971875
transcript.pyannote[60].end 268.47846875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 268.66409375
transcript.pyannote[61].end 276.84846875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 277.08471875
transcript.pyannote[62].end 285.38721875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 285.65721875
transcript.pyannote[63].end 292.42409375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 291.61409375
transcript.pyannote[64].end 292.05284375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 292.82909375
transcript.pyannote[65].end 294.02721875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 294.02721875
transcript.pyannote[66].end 294.04409375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 294.04409375
transcript.pyannote[67].end 294.09471875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 294.09471875
transcript.pyannote[68].end 295.52909375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 295.52909375
transcript.pyannote[69].end 295.56284375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 295.73159375
transcript.pyannote[70].end 306.83534375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 307.39221875
transcript.pyannote[71].end 314.14221875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 314.32784375
transcript.pyannote[72].end 331.21971875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 331.48971875
transcript.pyannote[73].end 331.52346875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 331.52346875
transcript.pyannote[74].end 333.41346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 333.97034375
transcript.pyannote[75].end 338.67846875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 339.16784375
transcript.pyannote[76].end 340.24784375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 340.88909375
transcript.pyannote[77].end 344.60159375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 345.05721875
transcript.pyannote[78].end 348.31409375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 348.75284375
transcript.pyannote[79].end 351.38534375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 351.62159375
transcript.pyannote[80].end 353.12346875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 351.77346875
transcript.pyannote[81].end 352.53284375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 352.92096875
transcript.pyannote[82].end 353.10659375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 353.12346875
transcript.pyannote[83].end 355.03034375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 355.03034375
transcript.pyannote[84].end 355.13159375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 355.13159375
transcript.pyannote[85].end 355.23284375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 355.46909375
transcript.pyannote[86].end 355.48596875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 355.48596875
transcript.pyannote[87].end 357.00471875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 357.56159375
transcript.pyannote[88].end 357.96659375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 357.96659375
transcript.pyannote[89].end 361.71284375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 359.48534375
transcript.pyannote[90].end 361.74659375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 361.74659375
transcript.pyannote[91].end 363.56909375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 362.53971875
transcript.pyannote[92].end 364.96971875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 364.96971875
transcript.pyannote[93].end 367.63596875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 365.18909375
transcript.pyannote[94].end 365.96534375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 367.80471875
transcript.pyannote[95].end 371.17971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 367.82159375
transcript.pyannote[96].end 368.44596875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 371.36534375
transcript.pyannote[97].end 377.74409375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 377.74409375
transcript.pyannote[98].end 381.69284375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 381.99659375
transcript.pyannote[99].end 388.30784375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 387.27846875
transcript.pyannote[100].end 392.34096875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 390.50159375
transcript.pyannote[101].end 390.90659375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 392.34096875
transcript.pyannote[102].end 392.96534375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 393.03284375
transcript.pyannote[103].end 393.75846875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 394.18034375
transcript.pyannote[104].end 394.60221875
transcript.whisperx[0].start 12.13
transcript.whisperx[0].end 37.159
transcript.whisperx[0].text 麻煩請經濟部長郭部長委員好部長好請問一下我們現在經濟部或行政院有沒有盤點出目前因為川普關稅政策導致受影響的產值全國的產值跟勞工的人數目前有盤點出這個數字出來嗎
transcript.whisperx[1].start 38.786
transcript.whisperx[1].end 54.838
transcript.whisperx[1].text 報告委員我們現在因為今天12點以後才是開始適用32%的稅率那我們現在不斷的在update這些data因為這個事情其實也不是一個突發事件
transcript.whisperx[2].start 55.859
transcript.whisperx[2].end 72.337
transcript.whisperx[2].text 就從去年11月我們之前在經濟委員會也都問過類似話題那時候經濟部的回應都是說都有在盤點了啦都開過座談會了啦都是說有做了很多事情那目前你掌握可能受到影響的產值跟高空我可以跟委員報告大概影響是9千億啦12萬人
transcript.whisperx[3].start 73.658
transcript.whisperx[3].end 92.583
transcript.whisperx[3].text 影響9000億跟12萬人那因為現在週五以後這個關稅就要實施了嘛那現在目前之前很多廠商說他們的貨櫃都已經在路上了啦還有一些廠商在想說那接下來是不是要繼續生產所以其實政府明確的政策對他們來說非常重要那目前
transcript.whisperx[4].start 93.343
transcript.whisperx[4].end 114.597
transcript.whisperx[4].text 委員剛才在講的這個說在路上的部分其實他5月27號以前進到美國他的稅率跟過去是一樣的那因為我們現在行政院所提出來是880億的一個補助的方案那這個方案大概會持續多久那因為主要就是說我覺得很多廠商想要知道
transcript.whisperx[5].start 115.598
transcript.whisperx[5].end 131.726
transcript.whisperx[5].text 廠商知道說第一個他們可以得到相關的比如說補助啊或者優惠嘛那政府會利用這個期間會均跟美國談判嘛那預計來說大概期限是到什麼時候要讓廠商做一點準備啦因為像比如說我是來自於新北市我們新北市兩萬家工廠
transcript.whisperx[6].start 132.546
transcript.whisperx[6].end 151.587
transcript.whisperx[6].text 大概佔了全國的五分之一啦那新北市政府他也有盤點出相關的產業出來嘛比如說在新北市金屬跟製品就佔了25%機械12%所以其實對新北市的廠商來說影響很大我覺得現在政府的政策越明確對他們來說他們的規劃
transcript.whisperx[7].start 153.689
transcript.whisperx[7].end 170.019
transcript.whisperx[7].text 可以更精準就不會在這過程當中不知道怎麼辦所以部長可不可以很明確的來做一個說明謝謝委員我想我們輸出到美國的或造成影響的產業其實是只有侷限於在一些比較小的部分
transcript.whisperx[8].start 170.979
transcript.whisperx[8].end 195.854
transcript.whisperx[8].text 那我們輸出美國就是一個小的部分是什麼意思?出差的比較有優勢的產品,譬如說伺服器,譬如說半導體這個是美國需要的產品,它沒有替代性的那這個部分他不擔心32%的稅對他有什麼影響怎麼會不擔心?因為他們是做,譬如說你剛剛講的部分嘛我的了解是有一些很多是做代工的嘛
transcript.whisperx[9].start 196.99
transcript.whisperx[9].end 214.802
transcript.whisperx[9].text 那代工的話現在衍生出一個問題就是因為代工就品牌商委託他們代工嘛那32%應該是品牌商吸收還是代工廠吸收品牌商可是實際上我的了解啦很多廠商其實很擔心沒有那回事品牌商會壓縮代工廠的利潤我們都盤點過盤點每一個伺服器做代工的廠商我們都一一盤點對他們來講他們當然每一廠在討論啦
transcript.whisperx[10].start 226.89
transcript.whisperx[10].end 235.395
transcript.whisperx[10].text 我聽到就是說有的原廠就會去跟代工廠去談嘛現在就加了32%的成本啊代工廠的利潤只有10%代工廠的利潤只有10%
transcript.whisperx[11].start 256.349
transcript.whisperx[11].end 269.019
transcript.whisperx[11].text 這些廠商現在要做什麼然後政府的比如補助公開透明的步驟或期限很明確告訴大家都有我們的方法就是從這個從簡從速從寬這三個原則啊來給他們舒緩給他們補助這是第一點第二點呢
transcript.whisperx[12].start 277.225
transcript.whisperx[12].end 293.685
transcript.whisperx[12].text 我們對這些廠商他原有的貸款我們也不會雨天收傘我們讓他延後最起碼6個月那我們現在推出的這些措施大概原則上是4年有效4年有效對你那個80還81是怎麼預估出來的
transcript.whisperx[13].start 296.609
transcript.whisperx[13].end 305.594
transcript.whisperx[13].text 880億是根據過去我們在第一個時間裡面所推論的可能會影響說我們現在的談判不是去談32%接受
transcript.whisperx[14].start 307.515
transcript.whisperx[14].end 330.633
transcript.whisperx[14].text 是談說30%以下美國會對我們課多少實際課多少所以那個X是我們用那個X來假設說如果在那個階段我們假設我可以談到10%的話大概這個881是夠的如果高於這個談到高於10%那我當然就要再加碼反正你會盡量加碼到夠啦
transcript.whisperx[15].start 335.643
transcript.whisperx[15].end 354.861
transcript.whisperx[15].text 對最後一個問題因為現在其實各縣市政府都有盤點出在各縣市裡面可能會影響影響到的中小企業而且中小企業都有一些回饋給縣市政府我不知道我們經營部有沒有去跟這些各縣市政府對接去了解一下他們需求我們會跟各縣市的工業會市政府
transcript.whisperx[16].start 357.603
transcript.whisperx[16].end 386.912
transcript.whisperx[16].text 跟縣市政府縣市政府的工業會有嗎 什麼已經對接了嗎有對接已經對接了嗎那會召開一個比較擴大會做談會我們從過去的一直在做了所以經濟部本身有66個工業區我們都透過我們自己的這個單位跟在我們區外的單位整合來談好 我就說之前啦我說因為他們這兩天也都很密集在跟中小企業在開會啦希望部長中央的角度也去了解一下各縣市政府的需求
transcript.whisperx[17].start 387.472
transcript.whisperx[17].end 391.561
transcript.whisperx[17].text 我們都是中央合作啦中央與地方合作啦全力來度過這個難關好 謝謝謝謝委員好