iVOD / 160000

Field Value
IVOD_ID 160000
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/160000
日期 2025-04-09
會議資料.會議代碼 委員會-11-3-26-5
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-04-09T12:38:51+08:00
結束時間 2025-04-09T12:53:58+08:00
影片長度 00:15:07
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdce02c659a0daff2a3fa9dd72f8e909e2232eb6e21b32d8c6be462de921938ebd285ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 12:38:51 - 12:53:58
會議時間 2025-04-09T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議(事由:邀請勞動部部長對於「勞動部所屬基金違規使用如何追回及究責」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 5.24534375
transcript.pyannote[0].end 6.07221875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 6.39284375
transcript.pyannote[1].end 7.82721875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 8.58659375
transcript.pyannote[2].end 10.54409375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 18.01971875
transcript.pyannote[3].end 18.72846875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 19.04909375
transcript.pyannote[4].end 20.12909375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 21.10784375
transcript.pyannote[5].end 22.60971875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 23.60534375
transcript.pyannote[6].end 23.77409375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 23.77409375
transcript.pyannote[7].end 24.97221875
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 24.75284375
transcript.pyannote[8].end 31.14846875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 31.78971875
transcript.pyannote[9].end 41.71221875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 35.06346875
transcript.pyannote[10].end 36.14346875
transcript.pyannote[11].speaker SPEAKER_04
transcript.pyannote[11].start 36.14346875
transcript.pyannote[11].end 36.24471875
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 38.64096875
transcript.pyannote[12].end 38.65784375
transcript.pyannote[13].speaker SPEAKER_04
transcript.pyannote[13].start 38.65784375
transcript.pyannote[13].end 39.11346875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 42.13409375
transcript.pyannote[14].end 78.87096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 68.32409375
transcript.pyannote[15].end 68.40846875
transcript.pyannote[16].speaker SPEAKER_04
transcript.pyannote[16].start 68.40846875
transcript.pyannote[16].end 68.50971875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 68.50971875
transcript.pyannote[17].end 68.52659375
transcript.pyannote[18].speaker SPEAKER_04
transcript.pyannote[18].start 68.52659375
transcript.pyannote[18].end 68.56034375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 68.56034375
transcript.pyannote[19].end 68.64471875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 80.03534375
transcript.pyannote[20].end 81.21659375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 81.31784375
transcript.pyannote[21].end 108.87471875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 109.22909375
transcript.pyannote[22].end 143.02971875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 143.02971875
transcript.pyannote[23].end 152.98596875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 145.61159375
transcript.pyannote[24].end 145.86471875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 154.15034375
transcript.pyannote[25].end 154.80846875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 155.78721875
transcript.pyannote[26].end 158.53784375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 158.43659375
transcript.pyannote[27].end 160.98471875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 161.10284375
transcript.pyannote[28].end 162.82409375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 162.79034375
transcript.pyannote[29].end 170.41784375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 169.82721875
transcript.pyannote[30].end 189.45284375
transcript.pyannote[31].speaker SPEAKER_04
transcript.pyannote[31].start 189.53721875
transcript.pyannote[31].end 190.00971875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 189.95909375
transcript.pyannote[32].end 196.67534375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 197.43471875
transcript.pyannote[33].end 198.75096875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 199.15596875
transcript.pyannote[34].end 200.32034375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 200.84346875
transcript.pyannote[35].end 217.93784375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 213.66846875
transcript.pyannote[36].end 214.24221875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 217.93784375
transcript.pyannote[37].end 229.81784375
transcript.pyannote[38].speaker SPEAKER_04
transcript.pyannote[38].start 226.61159375
transcript.pyannote[38].end 226.62846875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 230.35784375
transcript.pyannote[39].end 244.60034375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 244.46534375
transcript.pyannote[40].end 259.02846875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 244.65096875
transcript.pyannote[41].end 245.96721875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 247.63784375
transcript.pyannote[42].end 249.56159375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 255.31596875
transcript.pyannote[43].end 255.72096875
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 258.15096875
transcript.pyannote[44].end 258.55596875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 259.16346875
transcript.pyannote[45].end 261.25596875
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 263.06159375
transcript.pyannote[46].end 264.78284375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 264.78284375
transcript.pyannote[47].end 266.33534375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 266.65596875
transcript.pyannote[48].end 266.95971875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 268.32659375
transcript.pyannote[49].end 269.32221875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 270.35159375
transcript.pyannote[50].end 270.38534375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 270.38534375
transcript.pyannote[51].end 279.09284375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 272.12346875
transcript.pyannote[52].end 273.81096875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 279.63284375
transcript.pyannote[53].end 280.12221875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 280.96596875
transcript.pyannote[54].end 288.61034375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 289.11659375
transcript.pyannote[55].end 293.28471875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 293.41971875
transcript.pyannote[56].end 299.19096875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 299.44409375
transcript.pyannote[57].end 306.54846875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 306.81846875
transcript.pyannote[58].end 312.18471875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 312.70784375
transcript.pyannote[59].end 313.23096875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 313.46721875
transcript.pyannote[60].end 315.89721875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 316.72409375
transcript.pyannote[61].end 320.68971875
transcript.pyannote[62].speaker SPEAKER_04
transcript.pyannote[62].start 319.28909375
transcript.pyannote[62].end 319.30596875
transcript.pyannote[63].speaker SPEAKER_04
transcript.pyannote[63].start 319.33971875
transcript.pyannote[63].end 319.44096875
transcript.pyannote[64].speaker SPEAKER_04
transcript.pyannote[64].start 320.33534375
transcript.pyannote[64].end 320.89221875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 320.89221875
transcript.pyannote[65].end 325.24596875
transcript.pyannote[66].speaker SPEAKER_04
transcript.pyannote[66].start 325.21221875
transcript.pyannote[66].end 325.85346875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 325.53284375
transcript.pyannote[67].end 327.18659375
transcript.pyannote[68].speaker SPEAKER_04
transcript.pyannote[68].start 326.56221875
transcript.pyannote[68].end 326.96721875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 327.74346875
transcript.pyannote[69].end 334.42596875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 334.78034375
transcript.pyannote[70].end 337.12596875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 337.61534375
transcript.pyannote[71].end 337.91909375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 338.56034375
transcript.pyannote[72].end 339.37034375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 340.09596875
transcript.pyannote[73].end 340.77096875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 341.29409375
transcript.pyannote[74].end 342.03659375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 342.13784375
transcript.pyannote[75].end 347.14971875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 347.55471875
transcript.pyannote[76].end 347.99346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 348.31409375
transcript.pyannote[77].end 349.81596875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 350.20409375
transcript.pyannote[78].end 352.90409375
transcript.pyannote[79].speaker SPEAKER_04
transcript.pyannote[79].start 352.90409375
transcript.pyannote[79].end 353.25846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 353.15721875
transcript.pyannote[80].end 356.12721875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 356.51534375
transcript.pyannote[81].end 358.11846875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 358.81034375
transcript.pyannote[82].end 363.65346875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 363.80534375
transcript.pyannote[83].end 365.13846875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 365.45909375
transcript.pyannote[84].end 366.08346875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 366.21846875
transcript.pyannote[85].end 367.70346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 368.10846875
transcript.pyannote[86].end 369.54284375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 369.67784375
transcript.pyannote[87].end 371.93909375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 372.25971875
transcript.pyannote[88].end 376.63034375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 376.78221875
transcript.pyannote[89].end 380.30909375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 381.54096875
transcript.pyannote[90].end 383.29596875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 383.43096875
transcript.pyannote[91].end 384.19034375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 384.39284375
transcript.pyannote[92].end 385.89471875
transcript.pyannote[93].speaker SPEAKER_04
transcript.pyannote[93].start 385.89471875
transcript.pyannote[93].end 386.24909375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 386.43471875
transcript.pyannote[94].end 387.34596875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 387.61596875
transcript.pyannote[95].end 392.47596875
transcript.pyannote[96].speaker SPEAKER_04
transcript.pyannote[96].start 392.47596875
transcript.pyannote[96].end 392.86409375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 392.83034375
transcript.pyannote[97].end 411.96659375
transcript.pyannote[98].speaker SPEAKER_04
transcript.pyannote[98].start 411.79784375
transcript.pyannote[98].end 411.83159375
transcript.pyannote[99].speaker SPEAKER_04
transcript.pyannote[99].start 411.96659375
transcript.pyannote[99].end 412.03409375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 412.03409375
transcript.pyannote[100].end 417.92346875
transcript.pyannote[101].speaker SPEAKER_04
transcript.pyannote[101].start 416.94471875
transcript.pyannote[101].end 416.96159375
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 416.96159375
transcript.pyannote[102].end 417.58596875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 418.22721875
transcript.pyannote[103].end 419.34096875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 420.96096875
transcript.pyannote[104].end 421.28159375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 421.73721875
transcript.pyannote[105].end 423.76221875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 424.04909375
transcript.pyannote[106].end 426.20909375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 426.71534375
transcript.pyannote[107].end 428.13284375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 429.31409375
transcript.pyannote[108].end 436.48596875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 437.46471875
transcript.pyannote[109].end 438.94971875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 439.35471875
transcript.pyannote[110].end 450.18846875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 451.01534375
transcript.pyannote[111].end 452.80409375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 454.03596875
transcript.pyannote[112].end 462.82784375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 463.92471875
transcript.pyannote[113].end 496.83096875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 497.18534375
transcript.pyannote[114].end 498.75471875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 499.36221875
transcript.pyannote[115].end 507.32721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 507.56346875
transcript.pyannote[116].end 511.98471875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 511.98471875
transcript.pyannote[117].end 512.01846875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 512.01846875
transcript.pyannote[118].end 512.06909375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 512.06909375
transcript.pyannote[119].end 517.35096875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 517.35096875
transcript.pyannote[120].end 517.36784375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 517.95846875
transcript.pyannote[121].end 517.97534375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 517.97534375
transcript.pyannote[122].end 551.55659375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 546.30846875
transcript.pyannote[123].end 547.92846875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 547.97909375
transcript.pyannote[124].end 547.99596875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 551.65784375
transcript.pyannote[125].end 556.51784375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 552.61971875
transcript.pyannote[126].end 552.80534375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 556.73721875
transcript.pyannote[127].end 557.96909375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 557.96909375
transcript.pyannote[128].end 558.50909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 558.72846875
transcript.pyannote[129].end 560.41596875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 562.45784375
transcript.pyannote[130].end 566.72721875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 566.91284375
transcript.pyannote[131].end 581.12159375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 574.64159375
transcript.pyannote[132].end 574.74284375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 580.91909375
transcript.pyannote[133].end 583.97346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 583.97346875
transcript.pyannote[134].end 591.56721875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 591.98909375
transcript.pyannote[135].end 605.89409375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 606.38346875
transcript.pyannote[136].end 620.60909375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 620.87909375
transcript.pyannote[137].end 627.24096875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 621.89159375
transcript.pyannote[138].end 621.97596875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 625.14846875
transcript.pyannote[139].end 632.38784375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 633.06284375
transcript.pyannote[140].end 636.60659375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 636.60659375
transcript.pyannote[141].end 636.64034375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 636.97784375
transcript.pyannote[142].end 636.99471875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 636.99471875
transcript.pyannote[143].end 637.02846875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 637.02846875
transcript.pyannote[144].end 646.84971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 643.59284375
transcript.pyannote[145].end 643.82909375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 647.17034375
transcript.pyannote[146].end 659.89409375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 649.19534375
transcript.pyannote[147].end 649.46534375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 650.95034375
transcript.pyannote[148].end 651.03471875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 651.50721875
transcript.pyannote[149].end 651.69284375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 660.23159375
transcript.pyannote[150].end 662.57721875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 662.88096875
transcript.pyannote[151].end 670.72784375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 670.91346875
transcript.pyannote[152].end 685.56096875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 685.67909375
transcript.pyannote[153].end 695.12909375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 695.26409375
transcript.pyannote[154].end 719.93534375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 720.57659375
transcript.pyannote[155].end 724.10346875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 724.18784375
transcript.pyannote[156].end 724.99784375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 725.50409375
transcript.pyannote[157].end 726.07784375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 727.76534375
transcript.pyannote[158].end 730.66784375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 730.87034375
transcript.pyannote[159].end 731.95034375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 732.30471875
transcript.pyannote[160].end 733.68846875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 734.39721875
transcript.pyannote[161].end 735.86534375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 736.18596875
transcript.pyannote[162].end 738.56534375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 738.56534375
transcript.pyannote[163].end 745.97346875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 746.44596875
transcript.pyannote[164].end 747.37409375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 748.13346875
transcript.pyannote[165].end 749.73659375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 750.41159375
transcript.pyannote[166].end 751.30596875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 751.67721875
transcript.pyannote[167].end 752.75721875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 753.75284375
transcript.pyannote[168].end 754.90034375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 755.45721875
transcript.pyannote[169].end 757.06034375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 757.92096875
transcript.pyannote[170].end 758.66346875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 758.74784375
transcript.pyannote[171].end 759.50721875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 760.87409375
transcript.pyannote[172].end 763.30409375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 763.70909375
transcript.pyannote[173].end 764.68784375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 765.16034375
transcript.pyannote[174].end 765.43034375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 766.83096875
transcript.pyannote[175].end 768.26534375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 770.12159375
transcript.pyannote[176].end 771.87659375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 772.29846875
transcript.pyannote[177].end 772.92284375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 772.58534375
transcript.pyannote[178].end 781.69784375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 778.25534375
transcript.pyannote[179].end 778.71096875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 781.91721875
transcript.pyannote[180].end 784.14471875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 784.14471875
transcript.pyannote[181].end 787.87409375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 785.81534375
transcript.pyannote[182].end 786.27096875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 787.45221875
transcript.pyannote[183].end 787.80659375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 788.66721875
transcript.pyannote[184].end 796.32846875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 796.88534375
transcript.pyannote[185].end 810.25034375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 802.36971875
transcript.pyannote[186].end 802.89284375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 810.99284375
transcript.pyannote[187].end 814.24971875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 814.24971875
transcript.pyannote[188].end 814.53659375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 814.78971875
transcript.pyannote[189].end 819.51471875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 819.58221875
transcript.pyannote[190].end 820.66221875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 821.53971875
transcript.pyannote[191].end 821.96159375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 822.28221875
transcript.pyannote[192].end 822.70409375
transcript.pyannote[193].speaker SPEAKER_04
transcript.pyannote[193].start 822.99096875
transcript.pyannote[193].end 823.80096875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 823.80096875
transcript.pyannote[194].end 831.66471875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 832.10346875
transcript.pyannote[195].end 833.26784375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 833.89221875
transcript.pyannote[196].end 834.41534375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 834.75284375
transcript.pyannote[197].end 837.11534375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 837.25034375
transcript.pyannote[198].end 838.22909375
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 837.46971875
transcript.pyannote[199].end 838.14471875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 838.16159375
transcript.pyannote[200].end 838.19534375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 838.22909375
transcript.pyannote[201].end 863.77784375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 864.35159375
transcript.pyannote[202].end 880.29846875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 880.97346875
transcript.pyannote[203].end 885.24284375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 885.69846875
transcript.pyannote[204].end 890.91284375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 891.35159375
transcript.pyannote[205].end 893.05596875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 891.48659375
transcript.pyannote[206].end 893.83221875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 893.83221875
transcript.pyannote[207].end 904.24409375
transcript.pyannote[208].speaker SPEAKER_04
transcript.pyannote[208].start 903.83909375
transcript.pyannote[208].end 905.77971875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 904.41284375
transcript.pyannote[209].end 906.26909375
transcript.pyannote[210].speaker SPEAKER_04
transcript.pyannote[210].start 906.13409375
transcript.pyannote[210].end 906.97784375
transcript.whisperx[0].start 5.236
transcript.whisperx[0].end 10.52
transcript.whisperx[0].text 好 謝謝主席 有請審計部理副審計長審計部最主要的詞權
transcript.whisperx[1].start 23.669
transcript.whisperx[1].end 41.625
transcript.whisperx[1].text 簡單說明好不好主要是監督預算執行還有考核財務效能跟核定財務責任核定財務責任嘛是也有稽查財務上的缺失嘛違失嘛對不對核定相關財務的這個責任嘛是所以基本上你們是在監督各級政府
transcript.whisperx[2].start 43.146
transcript.whisperx[2].end 56.885
transcript.whisperx[2].text 機關的整個這個財政上的這個收支的情況然後也要這個審定這個決算等等最主要最主要還是有個財務上的這樣的一個維持都是你們在做這個稽查沒有錯嘛是
transcript.whisperx[3].start 57.225
transcript.whisperx[3].end 78.742
transcript.whisperx[3].text 所以基本上我們要監督人家的這個機關那要對外整個調查整個集合整個審查的報告要非常非常的精準不為過嘛對不對好所以今天今天你能不能就蘇昭偉排的這個勞動部所屬基金違規使用如何追悔及究責這個題目表達你簡單的看法
transcript.whisperx[4].start 83.465
transcript.whisperx[4].end 108.4
transcript.whisperx[4].text 這個議題剛剛前面已經報告就是各界其實都非常關注那關注我想分為兩個部分一個部分是過去發現那些疏失以審計部的立場必須針對過去發生的原因還有根據我們查核發現的相關事證那我們會做一些財務上的監督上要做的處理
transcript.whisperx[5].start 109.321
transcript.whisperx[5].end 136.502
transcript.whisperx[5].text 那另外就是後續後續就是這個事情既然已經發生後續怎麼樣就那個救安定基金這樣救安定基金本身是一個獨立的財務個體他本身基金設置有他的目的我們希望能夠從跟這個行政機關一起來努力讓這個從我們查核發現外部的角度觀察到還有各界的意見
transcript.whisperx[6].start 137.182
transcript.whisperx[6].end 152.179
transcript.whisperx[6].text 我們把它中整提供給勞動部來參考希望能夠在制度面能夠做一些改善好 謝謝副省長我的時間有限了那我們就從第一個面先來談你剛剛討論到了嘛那你看今天張偉白這個主題到底是違規還是違法
transcript.whisperx[7].start 156.579
transcript.whisperx[7].end 164.682
transcript.whisperx[7].text 以目前看上去有違法的也有違規的違法部分因為檢調都已經有一部分已經處理了另外一部分我們也申報有違法亦有違規就是副執行長對這事情的
transcript.whisperx[8].start 175.746
transcript.whisperx[8].end 194.958
transcript.whisperx[8].text 今天主題的這樣一個看法嘛對不對好那我再請教一下你們給勞動部的含糊是民國109年到113年總共有7000多萬都接受安利基金在使用上與基金業務用途關聯性不高是沒有錯嘛這是你們所寫出來的報告嘛對不對屬公務預算資應換籌也沒有錯嘛屬公務預算資應換籌
transcript.whisperx[9].start 201.125
transcript.whisperx[9].end 229.626
transcript.whisperx[9].text 這個文字我們其實是其實後面有其他文字啦因為我們覺得說那個部分我們尊重勞動部是勞動業務的主管機關他認為這個跟我整個勞動業務有關我們不能有其他的不同意見這個我們尊重所以關聯性並不高就是說不能使用在這個救援基金上面跟基金的用途是關聯性不高嘛對不對但是他應該可以屬於用在公務預算裡面
transcript.whisperx[10].start 231.047
transcript.whisperx[10].end 249.52
transcript.whisperx[10].text 這個必須勞動部他們根據自己個案因為裡面個案非常多我們列舉出來包括演唱會或者是宣導部分那個部分我想有一部分應該都是跟勞動業務有直接相關是嘛有相關嘛對不對但是跟救援基金的關聯性不高不高應該是這麼講嘛我應該對你這個報告裡面的這樣的一個解釋應該是理解的嘛跟你要表達的應該是看完一致嘛好
transcript.whisperx[11].start 259.206
transcript.whisperx[11].end 261.228
transcript.whisperx[11].text 那如果這樣有沒有所謂的違規違法因為這裡面我們現在就針對這個範疇就好有違規跟違法嗎違法部分其他違法部分就不談嘛可以在公務預算去動之但是不能在居安基金這邊動之那基本上有違規違法的問題嗎
transcript.whisperx[12].start 281.712
transcript.whisperx[12].end 304.352
transcript.whisperx[12].text 如果從預算法25條來看因為預算法25條規定是不能在預算外動之經費所以這個部分是需要審酌相關規定審酌相關規定 對但是如果說陳磊所講的他們拍影片做相關的宣導然後在各部會其實原本的預算裡面也都有編列這樣的一個計畫
transcript.whisperx[13].start 306.954
transcript.whisperx[13].end 315.6
transcript.whisperx[13].text 那在這個救援基金基本上不應該來編這樣的一個經費所以就回歸到公務預算去做支應
transcript.whisperx[14].start 316.755
transcript.whisperx[14].end 337.712
transcript.whisperx[14].text 才屬於合情合理合法嘛對不對應該是這麼講嘛所以就是簡單講就是矯正回歸到公務預算來做這個指引嘛逐級上是這樣嘛對不對好我是必須要這麼講啊如果他如果以這個困獲裡面他並沒有違規違法的問題只不過他動這情況確實有違反到相關的法令那簡單講
transcript.whisperx[15].start 340.137
transcript.whisperx[15].end 357.951
transcript.whisperx[15].text 再比較從第二個角度去思考它還是有違規之前啦但是是否涉及到違法我覺得那倒不至於啦是這個幻蟲這我個人的簡單看法你看到各部位都拍了這麼多片
transcript.whisperx[16].start 358.832
transcript.whisperx[16].end 368.436
transcript.whisperx[16].text 我倒要幫這個勞動部講幾句話這麼多部位拍了這麼多片勞動部到2023年還拍到這個勞動萬歲為勞工拍的影片勞動萬歲還入圍到2024的坎城創意獎然後也得到這個國內的32屆的4A創意獎最佳長秒數的廣告也得到這個金獎其他部位我看還沒有得到這麼多獎項
transcript.whisperx[17].start 386.499
transcript.whisperx[17].end 403.639
transcript.whisperx[17].text 那總而言之 業務總之反正他不應該編載救援基金就是不應該編載救援基金啦是他就是要回歸到這個公務預算區之一嘛 對不對所以我今天要表達這樣的一個論述基本上以審計部在審查在查額在
transcript.whisperx[18].start 404.379
transcript.whisperx[18].end 419.168
transcript.whisperx[18].text 整個處理這個相關的預算支應過程裡面是我有為師也是你的義務範圍那我們就要把他校正嘛對不對好那謝謝副審計長的答覆請副審計長可以回座位謝謝委員來有請部長部長我跟副審計長的對話很清楚嘛那為什麼這些錢一定要在居安基金不在勞動部裡面去做支應
transcript.whisperx[19].start 429.643
transcript.whisperx[19].end 451.959
transcript.whisperx[19].text 一個很大的原因是因為長期以來其實勞動部的這個部本部的預算的編列真的都不足工預算都不足所以後來其實有很多的支出就開始好像就會越來越依賴專基金那這也是很多我們現在看到的一個問題的根源系統性的根源的來源所以你們有做怎樣的矯正嗎
transcript.whisperx[20].start 454.076
transcript.whisperx[20].end 462.312
transcript.whisperx[20].text 第一個是我們其實那時候在提出救安基金的改革做法的時候我們第一個步驟就是先跟行政院跟主計來表達我們未來
transcript.whisperx[21].start 463.973
transcript.whisperx[21].end 489.814
transcript.whisperx[21].text 在其他部會如果他們照理來說應該是用公務預算的我們要爭取我們也要用公務預算比方說有很多的宣傳這些宣傳就像剛剛劉燕說的其實我們有很多宣傳這些績效他甚至上了國際的舞台他其實是好的可是因為我們的公務預算邊內不足變成他要去用救安基金這時候就會被判定跟救安基金關聯不高或不該用救安基金的問題接下來這些我們都希望能夠回到公務預算這是第一個第二個事情是我覺得有確實有一些部分
transcript.whisperx[22].start 490.214
transcript.whisperx[22].end 517.131
transcript.whisperx[22].text 我認為我們在這個執行上面是可以在做效益上面的檢討的那包括這些相關的規範也包括這次在審計裡面有講到開口契約的問題我是覺得我們的開口契約也該做更嚴格的規範不用像 不該像過去這樣這麼這個所謂開口契約的彈性這麼大也很容易引起爭議你開口契約怎麼去做一個改善你能不能簡單在委員會說明清楚好
transcript.whisperx[23].start 518.722
transcript.whisperx[23].end 535.983
transcript.whisperx[23].text 過去其實在開口企業裡面你會看到很多影片或者是活動他都放在開口企業裡面其實容易出爭議的就會是這些拍攝影片或者是活動的辦理未來我們會把這些影片跟活動的辦理都從開口企業裡面拿出來也就是他該依照採購法
transcript.whisperx[24].start 536.984
transcript.whisperx[24].end 560.045
transcript.whisperx[24].text 來去做相關的採購招標的就走這個路而不用只是把它放在開口契約裡面這個部分的改革已經從12月我們就開始去年12月就已經開始了所以我們把那時候開口契約的標案是直接給停下來的OK 好那另外另外一點你特別提到預算如果不足的情況之下要怎麼辦我們當然現在是要跟你爭取不到又要怎麼辦
transcript.whisperx[25].start 562.506
transcript.whisperx[25].end 590.807
transcript.whisperx[25].text 我們會就是不能再從這個不相關聯性的資應裡面去中救安基金去動之嘛你做得到嗎對你當部長你做得到嗎當然對不對對不應該把這個事情再發生嗎對如果我們做出多少的成績反正關聯性跟救安基金沒有相關的你就不能從那邊動之嗎對未來就是不能做因為我們就是在用途面直接做出了限定了好了所以請南東部要自行檢討清楚了避免未來的這個誤用跟錯用好不好好那最後一點
transcript.whisperx[26].start 592.088
transcript.whisperx[26].end 619.93
transcript.whisperx[26].text 救援基金回歸到本題救援基金其實它最主要目的就是促進國民就業提升勞工扶植但是它在疫情的時間它也扮演著救火隊當時兩年是變了多少錢你記得吧要應付整個勞動市場這樣的大變動要應付所謂的自營作業者還有無一定的雇主的生活補助以及勞工紓困貸款的利息補貼
transcript.whisperx[27].start 621.913
transcript.whisperx[27].end 626.081
transcript.whisperx[27].text 我們算了一下3年多應該是有400億左右嘛對不對3年多那我們這次要應變這個關稅大戰的情況之下
transcript.whisperx[28].start 633.14
transcript.whisperx[28].end 659.493
transcript.whisperx[28].text 行政院在勞動部的換手裡面變了多少錢 同意變了多少錢現在我們因為這次關稅的因應的時間長短還不一定我們目前是先框151但如果需要的話也可以再增加如果需要的話也可以再增加絕對需要也一定要增加所以你可能部長要積極的爭取未雨綢繆因為到底要打多久的關稅站不清楚而且像
transcript.whisperx[29].start 660.513
transcript.whisperx[29].end 675.93
transcript.whisperx[29].text 川普這樣的一個政治狂人你跟他講零關稅他要請你要再多拿一些錢來談甚至於他從這個領域裡面他又會跑到另外一個領域現在又講到我們下個禮拜或許我要特別跟蘇貞偉來討論要不要請武漢委員會來針對
transcript.whisperx[30].start 679.514
transcript.whisperx[30].end 698.286
transcript.whisperx[30].text 這個相關藥品的進出口的問題因為他又點到這一項了所以全世界皆因川普而要趕快做相關的機器的應用跟佈局跟還有一些跟長治久安的規劃尤其勞工的這樣的一個市場裡面這樣的環境裡面可能會衝擊到更多
transcript.whisperx[31].start 701.348
transcript.whisperx[31].end 725.708
transcript.whisperx[31].text 我想這邊列舉的應該部長都很清楚嘛是對不對出國最深的產業是電子資訊、鋼鐵、金屬機械、汽車零組件、建材、家電農業部門還有蝴蝶籃、毛豆、茶葉以及烏龜魚、鬼頭豆、鱸魚等等等這全部都是勞力密集的中小企業及傳統製造業還有農業是所以可能會很快的遇到很多的無薪假很多的被裁員
transcript.whisperx[32].start 728.753
transcript.whisperx[32].end 754.24
transcript.whisperx[32].text 這個絕對不會亞於疫情的時間所受到的衝擊而且他來的速度會更快多久的時間不清楚我們會把財源都做好準備對OK你們之前有一個10萬的這個這個這個滴滴滴的貸款對不對那利息你知道那次10萬塊而已沒這個但是要還只不過免利息推這個案的時候總共幾個案幾個件數
transcript.whisperx[33].start 758.211
transcript.whisperx[33].end 767.468
transcript.whisperx[33].text 幾個眷屬你們還記得吧這十萬塊賺到的工資跟家庭是很好用的沒理想的
transcript.whisperx[34].start 770.228
transcript.whisperx[34].end 785.493
transcript.whisperx[34].text 生態的件數總共幾案?你記得嗎?國務委員報告一下在109年跟110年有辦了勞工紓困貸款總共核定的件數有159萬多件159萬多件嗎?159萬就對了齁?對只有受理的這個過程裡面其實就耗過很多時間嘛對不對?好那我們要去補貼這些利息,勞動部花多少錢?
transcript.whisperx[35].start 797.586
transcript.whisperx[35].end 819.28
transcript.whisperx[35].text 這兩年我們勞動部是補貼他一年勞工貸款第一年的利息那包括後來央行升息那我們大概總共花費了兩次的貸款總共花費了30億所以補貼利息這兩年我們就貼了30億了對不對等於佔現在關稅的這一個因應的措施150億的五分之一了
transcript.whisperx[36].start 821.57
transcript.whisperx[36].end 825.052
transcript.whisperx[36].text 對不對 歷史補貼就歷史補貼而已歷史補貼就佔了你這一次應對關稅大戰的151的50%的額度了嘛 對不對那你什麼時候要啟動
transcript.whisperx[37].start 834.079
transcript.whisperx[37].end 863.078
transcript.whisperx[37].text 這一次什麼時候要啟動什麼時機有評估過了嗎目前看起來因為其實我們現在其實把相關的政策工具準備那有些部分會先實施有些這邊後實施那比方說就像大家現在比較關心的可能減班休息的部分我們會優先的來先做實施所以剛才在講說保護要向勞工的紓困貸款這是當時在疫情的時候可能比較中斷的時候會來推出的做法所以我們目前其實也是在盤點不同的政策工具它上路的工具上路的時機點
transcript.whisperx[38].start 864.92
transcript.whisperx[38].end 879.841
transcript.whisperx[38].text 我只是提醒部長這一次的換酬裡面很多都是屬於密集勞工的相關的一些產業跟農業跟傳統製造業對不對這次來的速度可能會更快150億真的會不夠用所以我要請部長是不是很快速度一週內吧
transcript.whisperx[39].start 881.581
transcript.whisperx[39].end 901.356
transcript.whisperx[39].text 因為你看川普不用一週內他就變化萬千要變大家要一起跟著來應變不然會到時候連變都來不及變我們會再盤點一下經費的可能好是請整個盤整勞工的衝擊的影響評估還有可能所需要的實際經費同時也能啟動勞工紓困貸款利息補貼的時機好不好好謝謝謝謝