IVOD_ID |
160000 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/160000 |
日期 |
2025-04-09 |
會議資料.會議代碼 |
委員會-11-3-26-5 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
5 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-09T12:38:51+08:00 |
結束時間 |
2025-04-09T12:53:58+08:00 |
影片長度 |
00:15:07 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdce02c659a0daff2a3fa9dd72f8e909e2232eb6e21b32d8c6be462de921938ebd285ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
劉建國 |
委員發言時間 |
12:38:51 - 12:53:58 |
會議時間 |
2025-04-09T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第5次全體委員會議(事由:邀請勞動部部長對於「勞動部所屬基金違規使用如何追回及究責」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
5.24534375 |
transcript.pyannote[0].end |
6.07221875 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
6.39284375 |
transcript.pyannote[1].end |
7.82721875 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
8.58659375 |
transcript.pyannote[2].end |
10.54409375 |
transcript.pyannote[3].speaker |
SPEAKER_03 |
transcript.pyannote[3].start |
18.01971875 |
transcript.pyannote[3].end |
18.72846875 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
19.04909375 |
transcript.pyannote[4].end |
20.12909375 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
21.10784375 |
transcript.pyannote[5].end |
22.60971875 |
transcript.pyannote[6].speaker |
SPEAKER_03 |
transcript.pyannote[6].start |
23.60534375 |
transcript.pyannote[6].end |
23.77409375 |
transcript.pyannote[7].speaker |
SPEAKER_02 |
transcript.pyannote[7].start |
23.77409375 |
transcript.pyannote[7].end |
24.97221875 |
transcript.pyannote[8].speaker |
SPEAKER_03 |
transcript.pyannote[8].start |
24.75284375 |
transcript.pyannote[8].end |
31.14846875 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
31.78971875 |
transcript.pyannote[9].end |
41.71221875 |
transcript.pyannote[10].speaker |
SPEAKER_03 |
transcript.pyannote[10].start |
35.06346875 |
transcript.pyannote[10].end |
36.14346875 |
transcript.pyannote[11].speaker |
SPEAKER_04 |
transcript.pyannote[11].start |
36.14346875 |
transcript.pyannote[11].end |
36.24471875 |
transcript.pyannote[12].speaker |
SPEAKER_03 |
transcript.pyannote[12].start |
38.64096875 |
transcript.pyannote[12].end |
38.65784375 |
transcript.pyannote[13].speaker |
SPEAKER_04 |
transcript.pyannote[13].start |
38.65784375 |
transcript.pyannote[13].end |
39.11346875 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
42.13409375 |
transcript.pyannote[14].end |
78.87096875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
68.32409375 |
transcript.pyannote[15].end |
68.40846875 |
transcript.pyannote[16].speaker |
SPEAKER_04 |
transcript.pyannote[16].start |
68.40846875 |
transcript.pyannote[16].end |
68.50971875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
68.50971875 |
transcript.pyannote[17].end |
68.52659375 |
transcript.pyannote[18].speaker |
SPEAKER_04 |
transcript.pyannote[18].start |
68.52659375 |
transcript.pyannote[18].end |
68.56034375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
68.56034375 |
transcript.pyannote[19].end |
68.64471875 |
transcript.pyannote[20].speaker |
SPEAKER_03 |
transcript.pyannote[20].start |
80.03534375 |
transcript.pyannote[20].end |
81.21659375 |
transcript.pyannote[21].speaker |
SPEAKER_03 |
transcript.pyannote[21].start |
81.31784375 |
transcript.pyannote[21].end |
108.87471875 |
transcript.pyannote[22].speaker |
SPEAKER_03 |
transcript.pyannote[22].start |
109.22909375 |
transcript.pyannote[22].end |
143.02971875 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
143.02971875 |
transcript.pyannote[23].end |
152.98596875 |
transcript.pyannote[24].speaker |
SPEAKER_03 |
transcript.pyannote[24].start |
145.61159375 |
transcript.pyannote[24].end |
145.86471875 |
transcript.pyannote[25].speaker |
SPEAKER_03 |
transcript.pyannote[25].start |
154.15034375 |
transcript.pyannote[25].end |
154.80846875 |
transcript.pyannote[26].speaker |
SPEAKER_02 |
transcript.pyannote[26].start |
155.78721875 |
transcript.pyannote[26].end |
158.53784375 |
transcript.pyannote[27].speaker |
SPEAKER_03 |
transcript.pyannote[27].start |
158.43659375 |
transcript.pyannote[27].end |
160.98471875 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
161.10284375 |
transcript.pyannote[28].end |
162.82409375 |
transcript.pyannote[29].speaker |
SPEAKER_03 |
transcript.pyannote[29].start |
162.79034375 |
transcript.pyannote[29].end |
170.41784375 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
169.82721875 |
transcript.pyannote[30].end |
189.45284375 |
transcript.pyannote[31].speaker |
SPEAKER_04 |
transcript.pyannote[31].start |
189.53721875 |
transcript.pyannote[31].end |
190.00971875 |
transcript.pyannote[32].speaker |
SPEAKER_02 |
transcript.pyannote[32].start |
189.95909375 |
transcript.pyannote[32].end |
196.67534375 |
transcript.pyannote[33].speaker |
SPEAKER_03 |
transcript.pyannote[33].start |
197.43471875 |
transcript.pyannote[33].end |
198.75096875 |
transcript.pyannote[34].speaker |
SPEAKER_02 |
transcript.pyannote[34].start |
199.15596875 |
transcript.pyannote[34].end |
200.32034375 |
transcript.pyannote[35].speaker |
SPEAKER_03 |
transcript.pyannote[35].start |
200.84346875 |
transcript.pyannote[35].end |
217.93784375 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
213.66846875 |
transcript.pyannote[36].end |
214.24221875 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
217.93784375 |
transcript.pyannote[37].end |
229.81784375 |
transcript.pyannote[38].speaker |
SPEAKER_04 |
transcript.pyannote[38].start |
226.61159375 |
transcript.pyannote[38].end |
226.62846875 |
transcript.pyannote[39].speaker |
SPEAKER_03 |
transcript.pyannote[39].start |
230.35784375 |
transcript.pyannote[39].end |
244.60034375 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
244.46534375 |
transcript.pyannote[40].end |
259.02846875 |
transcript.pyannote[41].speaker |
SPEAKER_03 |
transcript.pyannote[41].start |
244.65096875 |
transcript.pyannote[41].end |
245.96721875 |
transcript.pyannote[42].speaker |
SPEAKER_03 |
transcript.pyannote[42].start |
247.63784375 |
transcript.pyannote[42].end |
249.56159375 |
transcript.pyannote[43].speaker |
SPEAKER_03 |
transcript.pyannote[43].start |
255.31596875 |
transcript.pyannote[43].end |
255.72096875 |
transcript.pyannote[44].speaker |
SPEAKER_03 |
transcript.pyannote[44].start |
258.15096875 |
transcript.pyannote[44].end |
258.55596875 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
259.16346875 |
transcript.pyannote[45].end |
261.25596875 |
transcript.pyannote[46].speaker |
SPEAKER_03 |
transcript.pyannote[46].start |
263.06159375 |
transcript.pyannote[46].end |
264.78284375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
264.78284375 |
transcript.pyannote[47].end |
266.33534375 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
266.65596875 |
transcript.pyannote[48].end |
266.95971875 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
268.32659375 |
transcript.pyannote[49].end |
269.32221875 |
transcript.pyannote[50].speaker |
SPEAKER_03 |
transcript.pyannote[50].start |
270.35159375 |
transcript.pyannote[50].end |
270.38534375 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
270.38534375 |
transcript.pyannote[51].end |
279.09284375 |
transcript.pyannote[52].speaker |
SPEAKER_03 |
transcript.pyannote[52].start |
272.12346875 |
transcript.pyannote[52].end |
273.81096875 |
transcript.pyannote[53].speaker |
SPEAKER_03 |
transcript.pyannote[53].start |
279.63284375 |
transcript.pyannote[53].end |
280.12221875 |
transcript.pyannote[54].speaker |
SPEAKER_03 |
transcript.pyannote[54].start |
280.96596875 |
transcript.pyannote[54].end |
288.61034375 |
transcript.pyannote[55].speaker |
SPEAKER_03 |
transcript.pyannote[55].start |
289.11659375 |
transcript.pyannote[55].end |
293.28471875 |
transcript.pyannote[56].speaker |
SPEAKER_02 |
transcript.pyannote[56].start |
293.41971875 |
transcript.pyannote[56].end |
299.19096875 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
299.44409375 |
transcript.pyannote[57].end |
306.54846875 |
transcript.pyannote[58].speaker |
SPEAKER_02 |
transcript.pyannote[58].start |
306.81846875 |
transcript.pyannote[58].end |
312.18471875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
312.70784375 |
transcript.pyannote[59].end |
313.23096875 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
313.46721875 |
transcript.pyannote[60].end |
315.89721875 |
transcript.pyannote[61].speaker |
SPEAKER_02 |
transcript.pyannote[61].start |
316.72409375 |
transcript.pyannote[61].end |
320.68971875 |
transcript.pyannote[62].speaker |
SPEAKER_04 |
transcript.pyannote[62].start |
319.28909375 |
transcript.pyannote[62].end |
319.30596875 |
transcript.pyannote[63].speaker |
SPEAKER_04 |
transcript.pyannote[63].start |
319.33971875 |
transcript.pyannote[63].end |
319.44096875 |
transcript.pyannote[64].speaker |
SPEAKER_04 |
transcript.pyannote[64].start |
320.33534375 |
transcript.pyannote[64].end |
320.89221875 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
320.89221875 |
transcript.pyannote[65].end |
325.24596875 |
transcript.pyannote[66].speaker |
SPEAKER_04 |
transcript.pyannote[66].start |
325.21221875 |
transcript.pyannote[66].end |
325.85346875 |
transcript.pyannote[67].speaker |
SPEAKER_02 |
transcript.pyannote[67].start |
325.53284375 |
transcript.pyannote[67].end |
327.18659375 |
transcript.pyannote[68].speaker |
SPEAKER_04 |
transcript.pyannote[68].start |
326.56221875 |
transcript.pyannote[68].end |
326.96721875 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
327.74346875 |
transcript.pyannote[69].end |
334.42596875 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
334.78034375 |
transcript.pyannote[70].end |
337.12596875 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
337.61534375 |
transcript.pyannote[71].end |
337.91909375 |
transcript.pyannote[72].speaker |
SPEAKER_02 |
transcript.pyannote[72].start |
338.56034375 |
transcript.pyannote[72].end |
339.37034375 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
340.09596875 |
transcript.pyannote[73].end |
340.77096875 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
341.29409375 |
transcript.pyannote[74].end |
342.03659375 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
342.13784375 |
transcript.pyannote[75].end |
347.14971875 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
347.55471875 |
transcript.pyannote[76].end |
347.99346875 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
348.31409375 |
transcript.pyannote[77].end |
349.81596875 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
350.20409375 |
transcript.pyannote[78].end |
352.90409375 |
transcript.pyannote[79].speaker |
SPEAKER_04 |
transcript.pyannote[79].start |
352.90409375 |
transcript.pyannote[79].end |
353.25846875 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
353.15721875 |
transcript.pyannote[80].end |
356.12721875 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
356.51534375 |
transcript.pyannote[81].end |
358.11846875 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
358.81034375 |
transcript.pyannote[82].end |
363.65346875 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
363.80534375 |
transcript.pyannote[83].end |
365.13846875 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
365.45909375 |
transcript.pyannote[84].end |
366.08346875 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
366.21846875 |
transcript.pyannote[85].end |
367.70346875 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
368.10846875 |
transcript.pyannote[86].end |
369.54284375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
369.67784375 |
transcript.pyannote[87].end |
371.93909375 |
transcript.pyannote[88].speaker |
SPEAKER_02 |
transcript.pyannote[88].start |
372.25971875 |
transcript.pyannote[88].end |
376.63034375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
376.78221875 |
transcript.pyannote[89].end |
380.30909375 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
381.54096875 |
transcript.pyannote[90].end |
383.29596875 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
383.43096875 |
transcript.pyannote[91].end |
384.19034375 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
384.39284375 |
transcript.pyannote[92].end |
385.89471875 |
transcript.pyannote[93].speaker |
SPEAKER_04 |
transcript.pyannote[93].start |
385.89471875 |
transcript.pyannote[93].end |
386.24909375 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
386.43471875 |
transcript.pyannote[94].end |
387.34596875 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
387.61596875 |
transcript.pyannote[95].end |
392.47596875 |
transcript.pyannote[96].speaker |
SPEAKER_04 |
transcript.pyannote[96].start |
392.47596875 |
transcript.pyannote[96].end |
392.86409375 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
392.83034375 |
transcript.pyannote[97].end |
411.96659375 |
transcript.pyannote[98].speaker |
SPEAKER_04 |
transcript.pyannote[98].start |
411.79784375 |
transcript.pyannote[98].end |
411.83159375 |
transcript.pyannote[99].speaker |
SPEAKER_04 |
transcript.pyannote[99].start |
411.96659375 |
transcript.pyannote[99].end |
412.03409375 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
412.03409375 |
transcript.pyannote[100].end |
417.92346875 |
transcript.pyannote[101].speaker |
SPEAKER_04 |
transcript.pyannote[101].start |
416.94471875 |
transcript.pyannote[101].end |
416.96159375 |
transcript.pyannote[102].speaker |
SPEAKER_03 |
transcript.pyannote[102].start |
416.96159375 |
transcript.pyannote[102].end |
417.58596875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
418.22721875 |
transcript.pyannote[103].end |
419.34096875 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
420.96096875 |
transcript.pyannote[104].end |
421.28159375 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
421.73721875 |
transcript.pyannote[105].end |
423.76221875 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
424.04909375 |
transcript.pyannote[106].end |
426.20909375 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
426.71534375 |
transcript.pyannote[107].end |
428.13284375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
429.31409375 |
transcript.pyannote[108].end |
436.48596875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
437.46471875 |
transcript.pyannote[109].end |
438.94971875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
439.35471875 |
transcript.pyannote[110].end |
450.18846875 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
451.01534375 |
transcript.pyannote[111].end |
452.80409375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
454.03596875 |
transcript.pyannote[112].end |
462.82784375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
463.92471875 |
transcript.pyannote[113].end |
496.83096875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
497.18534375 |
transcript.pyannote[114].end |
498.75471875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
499.36221875 |
transcript.pyannote[115].end |
507.32721875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
507.56346875 |
transcript.pyannote[116].end |
511.98471875 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
511.98471875 |
transcript.pyannote[117].end |
512.01846875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
512.01846875 |
transcript.pyannote[118].end |
512.06909375 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
512.06909375 |
transcript.pyannote[119].end |
517.35096875 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
517.35096875 |
transcript.pyannote[120].end |
517.36784375 |
transcript.pyannote[121].speaker |
SPEAKER_02 |
transcript.pyannote[121].start |
517.95846875 |
transcript.pyannote[121].end |
517.97534375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
517.97534375 |
transcript.pyannote[122].end |
551.55659375 |
transcript.pyannote[123].speaker |
SPEAKER_02 |
transcript.pyannote[123].start |
546.30846875 |
transcript.pyannote[123].end |
547.92846875 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
547.97909375 |
transcript.pyannote[124].end |
547.99596875 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
551.65784375 |
transcript.pyannote[125].end |
556.51784375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
552.61971875 |
transcript.pyannote[126].end |
552.80534375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
556.73721875 |
transcript.pyannote[127].end |
557.96909375 |
transcript.pyannote[128].speaker |
SPEAKER_02 |
transcript.pyannote[128].start |
557.96909375 |
transcript.pyannote[128].end |
558.50909375 |
transcript.pyannote[129].speaker |
SPEAKER_02 |
transcript.pyannote[129].start |
558.72846875 |
transcript.pyannote[129].end |
560.41596875 |
transcript.pyannote[130].speaker |
SPEAKER_02 |
transcript.pyannote[130].start |
562.45784375 |
transcript.pyannote[130].end |
566.72721875 |
transcript.pyannote[131].speaker |
SPEAKER_02 |
transcript.pyannote[131].start |
566.91284375 |
transcript.pyannote[131].end |
581.12159375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
574.64159375 |
transcript.pyannote[132].end |
574.74284375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
580.91909375 |
transcript.pyannote[133].end |
583.97346875 |
transcript.pyannote[134].speaker |
SPEAKER_02 |
transcript.pyannote[134].start |
583.97346875 |
transcript.pyannote[134].end |
591.56721875 |
transcript.pyannote[135].speaker |
SPEAKER_02 |
transcript.pyannote[135].start |
591.98909375 |
transcript.pyannote[135].end |
605.89409375 |
transcript.pyannote[136].speaker |
SPEAKER_02 |
transcript.pyannote[136].start |
606.38346875 |
transcript.pyannote[136].end |
620.60909375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
620.87909375 |
transcript.pyannote[137].end |
627.24096875 |
transcript.pyannote[138].speaker |
SPEAKER_02 |
transcript.pyannote[138].start |
621.89159375 |
transcript.pyannote[138].end |
621.97596875 |
transcript.pyannote[139].speaker |
SPEAKER_02 |
transcript.pyannote[139].start |
625.14846875 |
transcript.pyannote[139].end |
632.38784375 |
transcript.pyannote[140].speaker |
SPEAKER_02 |
transcript.pyannote[140].start |
633.06284375 |
transcript.pyannote[140].end |
636.60659375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
636.60659375 |
transcript.pyannote[141].end |
636.64034375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
636.97784375 |
transcript.pyannote[142].end |
636.99471875 |
transcript.pyannote[143].speaker |
SPEAKER_02 |
transcript.pyannote[143].start |
636.99471875 |
transcript.pyannote[143].end |
637.02846875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
637.02846875 |
transcript.pyannote[144].end |
646.84971875 |
transcript.pyannote[145].speaker |
SPEAKER_02 |
transcript.pyannote[145].start |
643.59284375 |
transcript.pyannote[145].end |
643.82909375 |
transcript.pyannote[146].speaker |
SPEAKER_02 |
transcript.pyannote[146].start |
647.17034375 |
transcript.pyannote[146].end |
659.89409375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
649.19534375 |
transcript.pyannote[147].end |
649.46534375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
650.95034375 |
transcript.pyannote[148].end |
651.03471875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
651.50721875 |
transcript.pyannote[149].end |
651.69284375 |
transcript.pyannote[150].speaker |
SPEAKER_02 |
transcript.pyannote[150].start |
660.23159375 |
transcript.pyannote[150].end |
662.57721875 |
transcript.pyannote[151].speaker |
SPEAKER_02 |
transcript.pyannote[151].start |
662.88096875 |
transcript.pyannote[151].end |
670.72784375 |
transcript.pyannote[152].speaker |
SPEAKER_02 |
transcript.pyannote[152].start |
670.91346875 |
transcript.pyannote[152].end |
685.56096875 |
transcript.pyannote[153].speaker |
SPEAKER_02 |
transcript.pyannote[153].start |
685.67909375 |
transcript.pyannote[153].end |
695.12909375 |
transcript.pyannote[154].speaker |
SPEAKER_02 |
transcript.pyannote[154].start |
695.26409375 |
transcript.pyannote[154].end |
719.93534375 |
transcript.pyannote[155].speaker |
SPEAKER_02 |
transcript.pyannote[155].start |
720.57659375 |
transcript.pyannote[155].end |
724.10346875 |
transcript.pyannote[156].speaker |
SPEAKER_02 |
transcript.pyannote[156].start |
724.18784375 |
transcript.pyannote[156].end |
724.99784375 |
transcript.pyannote[157].speaker |
SPEAKER_02 |
transcript.pyannote[157].start |
725.50409375 |
transcript.pyannote[157].end |
726.07784375 |
transcript.pyannote[158].speaker |
SPEAKER_02 |
transcript.pyannote[158].start |
727.76534375 |
transcript.pyannote[158].end |
730.66784375 |
transcript.pyannote[159].speaker |
SPEAKER_02 |
transcript.pyannote[159].start |
730.87034375 |
transcript.pyannote[159].end |
731.95034375 |
transcript.pyannote[160].speaker |
SPEAKER_02 |
transcript.pyannote[160].start |
732.30471875 |
transcript.pyannote[160].end |
733.68846875 |
transcript.pyannote[161].speaker |
SPEAKER_02 |
transcript.pyannote[161].start |
734.39721875 |
transcript.pyannote[161].end |
735.86534375 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
736.18596875 |
transcript.pyannote[162].end |
738.56534375 |
transcript.pyannote[163].speaker |
SPEAKER_02 |
transcript.pyannote[163].start |
738.56534375 |
transcript.pyannote[163].end |
745.97346875 |
transcript.pyannote[164].speaker |
SPEAKER_02 |
transcript.pyannote[164].start |
746.44596875 |
transcript.pyannote[164].end |
747.37409375 |
transcript.pyannote[165].speaker |
SPEAKER_02 |
transcript.pyannote[165].start |
748.13346875 |
transcript.pyannote[165].end |
749.73659375 |
transcript.pyannote[166].speaker |
SPEAKER_02 |
transcript.pyannote[166].start |
750.41159375 |
transcript.pyannote[166].end |
751.30596875 |
transcript.pyannote[167].speaker |
SPEAKER_02 |
transcript.pyannote[167].start |
751.67721875 |
transcript.pyannote[167].end |
752.75721875 |
transcript.pyannote[168].speaker |
SPEAKER_02 |
transcript.pyannote[168].start |
753.75284375 |
transcript.pyannote[168].end |
754.90034375 |
transcript.pyannote[169].speaker |
SPEAKER_02 |
transcript.pyannote[169].start |
755.45721875 |
transcript.pyannote[169].end |
757.06034375 |
transcript.pyannote[170].speaker |
SPEAKER_02 |
transcript.pyannote[170].start |
757.92096875 |
transcript.pyannote[170].end |
758.66346875 |
transcript.pyannote[171].speaker |
SPEAKER_02 |
transcript.pyannote[171].start |
758.74784375 |
transcript.pyannote[171].end |
759.50721875 |
transcript.pyannote[172].speaker |
SPEAKER_02 |
transcript.pyannote[172].start |
760.87409375 |
transcript.pyannote[172].end |
763.30409375 |
transcript.pyannote[173].speaker |
SPEAKER_02 |
transcript.pyannote[173].start |
763.70909375 |
transcript.pyannote[173].end |
764.68784375 |
transcript.pyannote[174].speaker |
SPEAKER_02 |
transcript.pyannote[174].start |
765.16034375 |
transcript.pyannote[174].end |
765.43034375 |
transcript.pyannote[175].speaker |
SPEAKER_02 |
transcript.pyannote[175].start |
766.83096875 |
transcript.pyannote[175].end |
768.26534375 |
transcript.pyannote[176].speaker |
SPEAKER_02 |
transcript.pyannote[176].start |
770.12159375 |
transcript.pyannote[176].end |
771.87659375 |
transcript.pyannote[177].speaker |
SPEAKER_02 |
transcript.pyannote[177].start |
772.29846875 |
transcript.pyannote[177].end |
772.92284375 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
772.58534375 |
transcript.pyannote[178].end |
781.69784375 |
transcript.pyannote[179].speaker |
SPEAKER_02 |
transcript.pyannote[179].start |
778.25534375 |
transcript.pyannote[179].end |
778.71096875 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
781.91721875 |
transcript.pyannote[180].end |
784.14471875 |
transcript.pyannote[181].speaker |
SPEAKER_02 |
transcript.pyannote[181].start |
784.14471875 |
transcript.pyannote[181].end |
787.87409375 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
785.81534375 |
transcript.pyannote[182].end |
786.27096875 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
787.45221875 |
transcript.pyannote[183].end |
787.80659375 |
transcript.pyannote[184].speaker |
SPEAKER_02 |
transcript.pyannote[184].start |
788.66721875 |
transcript.pyannote[184].end |
796.32846875 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
796.88534375 |
transcript.pyannote[185].end |
810.25034375 |
transcript.pyannote[186].speaker |
SPEAKER_02 |
transcript.pyannote[186].start |
802.36971875 |
transcript.pyannote[186].end |
802.89284375 |
transcript.pyannote[187].speaker |
SPEAKER_02 |
transcript.pyannote[187].start |
810.99284375 |
transcript.pyannote[187].end |
814.24971875 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
814.24971875 |
transcript.pyannote[188].end |
814.53659375 |
transcript.pyannote[189].speaker |
SPEAKER_02 |
transcript.pyannote[189].start |
814.78971875 |
transcript.pyannote[189].end |
819.51471875 |
transcript.pyannote[190].speaker |
SPEAKER_02 |
transcript.pyannote[190].start |
819.58221875 |
transcript.pyannote[190].end |
820.66221875 |
transcript.pyannote[191].speaker |
SPEAKER_02 |
transcript.pyannote[191].start |
821.53971875 |
transcript.pyannote[191].end |
821.96159375 |
transcript.pyannote[192].speaker |
SPEAKER_02 |
transcript.pyannote[192].start |
822.28221875 |
transcript.pyannote[192].end |
822.70409375 |
transcript.pyannote[193].speaker |
SPEAKER_04 |
transcript.pyannote[193].start |
822.99096875 |
transcript.pyannote[193].end |
823.80096875 |
transcript.pyannote[194].speaker |
SPEAKER_02 |
transcript.pyannote[194].start |
823.80096875 |
transcript.pyannote[194].end |
831.66471875 |
transcript.pyannote[195].speaker |
SPEAKER_02 |
transcript.pyannote[195].start |
832.10346875 |
transcript.pyannote[195].end |
833.26784375 |
transcript.pyannote[196].speaker |
SPEAKER_02 |
transcript.pyannote[196].start |
833.89221875 |
transcript.pyannote[196].end |
834.41534375 |
transcript.pyannote[197].speaker |
SPEAKER_02 |
transcript.pyannote[197].start |
834.75284375 |
transcript.pyannote[197].end |
837.11534375 |
transcript.pyannote[198].speaker |
SPEAKER_02 |
transcript.pyannote[198].start |
837.25034375 |
transcript.pyannote[198].end |
838.22909375 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
837.46971875 |
transcript.pyannote[199].end |
838.14471875 |
transcript.pyannote[200].speaker |
SPEAKER_01 |
transcript.pyannote[200].start |
838.16159375 |
transcript.pyannote[200].end |
838.19534375 |
transcript.pyannote[201].speaker |
SPEAKER_01 |
transcript.pyannote[201].start |
838.22909375 |
transcript.pyannote[201].end |
863.77784375 |
transcript.pyannote[202].speaker |
SPEAKER_02 |
transcript.pyannote[202].start |
864.35159375 |
transcript.pyannote[202].end |
880.29846875 |
transcript.pyannote[203].speaker |
SPEAKER_02 |
transcript.pyannote[203].start |
880.97346875 |
transcript.pyannote[203].end |
885.24284375 |
transcript.pyannote[204].speaker |
SPEAKER_02 |
transcript.pyannote[204].start |
885.69846875 |
transcript.pyannote[204].end |
890.91284375 |
transcript.pyannote[205].speaker |
SPEAKER_02 |
transcript.pyannote[205].start |
891.35159375 |
transcript.pyannote[205].end |
893.05596875 |
transcript.pyannote[206].speaker |
SPEAKER_01 |
transcript.pyannote[206].start |
891.48659375 |
transcript.pyannote[206].end |
893.83221875 |
transcript.pyannote[207].speaker |
SPEAKER_02 |
transcript.pyannote[207].start |
893.83221875 |
transcript.pyannote[207].end |
904.24409375 |
transcript.pyannote[208].speaker |
SPEAKER_04 |
transcript.pyannote[208].start |
903.83909375 |
transcript.pyannote[208].end |
905.77971875 |
transcript.pyannote[209].speaker |
SPEAKER_02 |
transcript.pyannote[209].start |
904.41284375 |
transcript.pyannote[209].end |
906.26909375 |
transcript.pyannote[210].speaker |
SPEAKER_04 |
transcript.pyannote[210].start |
906.13409375 |
transcript.pyannote[210].end |
906.97784375 |
transcript.whisperx[0].start |
5.236 |
transcript.whisperx[0].end |
10.52 |
transcript.whisperx[0].text |
好 謝謝主席 有請審計部理副審計長審計部最主要的詞權 |
transcript.whisperx[1].start |
23.669 |
transcript.whisperx[1].end |
41.625 |
transcript.whisperx[1].text |
簡單說明好不好主要是監督預算執行還有考核財務效能跟核定財務責任核定財務責任嘛是也有稽查財務上的缺失嘛違失嘛對不對核定相關財務的這個責任嘛是所以基本上你們是在監督各級政府 |
transcript.whisperx[2].start |
43.146 |
transcript.whisperx[2].end |
56.885 |
transcript.whisperx[2].text |
機關的整個這個財政上的這個收支的情況然後也要這個審定這個決算等等最主要最主要還是有個財務上的這樣的一個維持都是你們在做這個稽查沒有錯嘛是 |
transcript.whisperx[3].start |
57.225 |
transcript.whisperx[3].end |
78.742 |
transcript.whisperx[3].text |
所以基本上我們要監督人家的這個機關那要對外整個調查整個集合整個審查的報告要非常非常的精準不為過嘛對不對好所以今天今天你能不能就蘇昭偉排的這個勞動部所屬基金違規使用如何追悔及究責這個題目表達你簡單的看法 |
transcript.whisperx[4].start |
83.465 |
transcript.whisperx[4].end |
108.4 |
transcript.whisperx[4].text |
這個議題剛剛前面已經報告就是各界其實都非常關注那關注我想分為兩個部分一個部分是過去發現那些疏失以審計部的立場必須針對過去發生的原因還有根據我們查核發現的相關事證那我們會做一些財務上的監督上要做的處理 |
transcript.whisperx[5].start |
109.321 |
transcript.whisperx[5].end |
136.502 |
transcript.whisperx[5].text |
那另外就是後續後續就是這個事情既然已經發生後續怎麼樣就那個救安定基金這樣救安定基金本身是一個獨立的財務個體他本身基金設置有他的目的我們希望能夠從跟這個行政機關一起來努力讓這個從我們查核發現外部的角度觀察到還有各界的意見 |
transcript.whisperx[6].start |
137.182 |
transcript.whisperx[6].end |
152.179 |
transcript.whisperx[6].text |
我們把它中整提供給勞動部來參考希望能夠在制度面能夠做一些改善好 謝謝副省長我的時間有限了那我們就從第一個面先來談你剛剛討論到了嘛那你看今天張偉白這個主題到底是違規還是違法 |
transcript.whisperx[7].start |
156.579 |
transcript.whisperx[7].end |
164.682 |
transcript.whisperx[7].text |
以目前看上去有違法的也有違規的違法部分因為檢調都已經有一部分已經處理了另外一部分我們也申報有違法亦有違規就是副執行長對這事情的 |
transcript.whisperx[8].start |
175.746 |
transcript.whisperx[8].end |
194.958 |
transcript.whisperx[8].text |
今天主題的這樣一個看法嘛對不對好那我再請教一下你們給勞動部的含糊是民國109年到113年總共有7000多萬都接受安利基金在使用上與基金業務用途關聯性不高是沒有錯嘛這是你們所寫出來的報告嘛對不對屬公務預算資應換籌也沒有錯嘛屬公務預算資應換籌 |
transcript.whisperx[9].start |
201.125 |
transcript.whisperx[9].end |
229.626 |
transcript.whisperx[9].text |
這個文字我們其實是其實後面有其他文字啦因為我們覺得說那個部分我們尊重勞動部是勞動業務的主管機關他認為這個跟我整個勞動業務有關我們不能有其他的不同意見這個我們尊重所以關聯性並不高就是說不能使用在這個救援基金上面跟基金的用途是關聯性不高嘛對不對但是他應該可以屬於用在公務預算裡面 |
transcript.whisperx[10].start |
231.047 |
transcript.whisperx[10].end |
249.52 |
transcript.whisperx[10].text |
這個必須勞動部他們根據自己個案因為裡面個案非常多我們列舉出來包括演唱會或者是宣導部分那個部分我想有一部分應該都是跟勞動業務有直接相關是嘛有相關嘛對不對但是跟救援基金的關聯性不高不高應該是這麼講嘛我應該對你這個報告裡面的這樣的一個解釋應該是理解的嘛跟你要表達的應該是看完一致嘛好 |
transcript.whisperx[11].start |
259.206 |
transcript.whisperx[11].end |
261.228 |
transcript.whisperx[11].text |
那如果這樣有沒有所謂的違規違法因為這裡面我們現在就針對這個範疇就好有違規跟違法嗎違法部分其他違法部分就不談嘛可以在公務預算去動之但是不能在居安基金這邊動之那基本上有違規違法的問題嗎 |
transcript.whisperx[12].start |
281.712 |
transcript.whisperx[12].end |
304.352 |
transcript.whisperx[12].text |
如果從預算法25條來看因為預算法25條規定是不能在預算外動之經費所以這個部分是需要審酌相關規定審酌相關規定 對但是如果說陳磊所講的他們拍影片做相關的宣導然後在各部會其實原本的預算裡面也都有編列這樣的一個計畫 |
transcript.whisperx[13].start |
306.954 |
transcript.whisperx[13].end |
315.6 |
transcript.whisperx[13].text |
那在這個救援基金基本上不應該來編這樣的一個經費所以就回歸到公務預算去做支應 |
transcript.whisperx[14].start |
316.755 |
transcript.whisperx[14].end |
337.712 |
transcript.whisperx[14].text |
才屬於合情合理合法嘛對不對應該是這麼講嘛所以就是簡單講就是矯正回歸到公務預算來做這個指引嘛逐級上是這樣嘛對不對好我是必須要這麼講啊如果他如果以這個困獲裡面他並沒有違規違法的問題只不過他動這情況確實有違反到相關的法令那簡單講 |
transcript.whisperx[15].start |
340.137 |
transcript.whisperx[15].end |
357.951 |
transcript.whisperx[15].text |
再比較從第二個角度去思考它還是有違規之前啦但是是否涉及到違法我覺得那倒不至於啦是這個幻蟲這我個人的簡單看法你看到各部位都拍了這麼多片 |
transcript.whisperx[16].start |
358.832 |
transcript.whisperx[16].end |
368.436 |
transcript.whisperx[16].text |
我倒要幫這個勞動部講幾句話這麼多部位拍了這麼多片勞動部到2023年還拍到這個勞動萬歲為勞工拍的影片勞動萬歲還入圍到2024的坎城創意獎然後也得到這個國內的32屆的4A創意獎最佳長秒數的廣告也得到這個金獎其他部位我看還沒有得到這麼多獎項 |
transcript.whisperx[17].start |
386.499 |
transcript.whisperx[17].end |
403.639 |
transcript.whisperx[17].text |
那總而言之 業務總之反正他不應該編載救援基金就是不應該編載救援基金啦是他就是要回歸到這個公務預算區之一嘛 對不對所以我今天要表達這樣的一個論述基本上以審計部在審查在查額在 |
transcript.whisperx[18].start |
404.379 |
transcript.whisperx[18].end |
419.168 |
transcript.whisperx[18].text |
整個處理這個相關的預算支應過程裡面是我有為師也是你的義務範圍那我們就要把他校正嘛對不對好那謝謝副審計長的答覆請副審計長可以回座位謝謝委員來有請部長部長我跟副審計長的對話很清楚嘛那為什麼這些錢一定要在居安基金不在勞動部裡面去做支應 |
transcript.whisperx[19].start |
429.643 |
transcript.whisperx[19].end |
451.959 |
transcript.whisperx[19].text |
一個很大的原因是因為長期以來其實勞動部的這個部本部的預算的編列真的都不足工預算都不足所以後來其實有很多的支出就開始好像就會越來越依賴專基金那這也是很多我們現在看到的一個問題的根源系統性的根源的來源所以你們有做怎樣的矯正嗎 |
transcript.whisperx[20].start |
454.076 |
transcript.whisperx[20].end |
462.312 |
transcript.whisperx[20].text |
第一個是我們其實那時候在提出救安基金的改革做法的時候我們第一個步驟就是先跟行政院跟主計來表達我們未來 |
transcript.whisperx[21].start |
463.973 |
transcript.whisperx[21].end |
489.814 |
transcript.whisperx[21].text |
在其他部會如果他們照理來說應該是用公務預算的我們要爭取我們也要用公務預算比方說有很多的宣傳這些宣傳就像剛剛劉燕說的其實我們有很多宣傳這些績效他甚至上了國際的舞台他其實是好的可是因為我們的公務預算邊內不足變成他要去用救安基金這時候就會被判定跟救安基金關聯不高或不該用救安基金的問題接下來這些我們都希望能夠回到公務預算這是第一個第二個事情是我覺得有確實有一些部分 |
transcript.whisperx[22].start |
490.214 |
transcript.whisperx[22].end |
517.131 |
transcript.whisperx[22].text |
我認為我們在這個執行上面是可以在做效益上面的檢討的那包括這些相關的規範也包括這次在審計裡面有講到開口契約的問題我是覺得我們的開口契約也該做更嚴格的規範不用像 不該像過去這樣這麼這個所謂開口契約的彈性這麼大也很容易引起爭議你開口契約怎麼去做一個改善你能不能簡單在委員會說明清楚好 |
transcript.whisperx[23].start |
518.722 |
transcript.whisperx[23].end |
535.983 |
transcript.whisperx[23].text |
過去其實在開口企業裡面你會看到很多影片或者是活動他都放在開口企業裡面其實容易出爭議的就會是這些拍攝影片或者是活動的辦理未來我們會把這些影片跟活動的辦理都從開口企業裡面拿出來也就是他該依照採購法 |
transcript.whisperx[24].start |
536.984 |
transcript.whisperx[24].end |
560.045 |
transcript.whisperx[24].text |
來去做相關的採購招標的就走這個路而不用只是把它放在開口契約裡面這個部分的改革已經從12月我們就開始去年12月就已經開始了所以我們把那時候開口契約的標案是直接給停下來的OK 好那另外另外一點你特別提到預算如果不足的情況之下要怎麼辦我們當然現在是要跟你爭取不到又要怎麼辦 |
transcript.whisperx[25].start |
562.506 |
transcript.whisperx[25].end |
590.807 |
transcript.whisperx[25].text |
我們會就是不能再從這個不相關聯性的資應裡面去中救安基金去動之嘛你做得到嗎對你當部長你做得到嗎當然對不對對不應該把這個事情再發生嗎對如果我們做出多少的成績反正關聯性跟救安基金沒有相關的你就不能從那邊動之嗎對未來就是不能做因為我們就是在用途面直接做出了限定了好了所以請南東部要自行檢討清楚了避免未來的這個誤用跟錯用好不好好那最後一點 |
transcript.whisperx[26].start |
592.088 |
transcript.whisperx[26].end |
619.93 |
transcript.whisperx[26].text |
救援基金回歸到本題救援基金其實它最主要目的就是促進國民就業提升勞工扶植但是它在疫情的時間它也扮演著救火隊當時兩年是變了多少錢你記得吧要應付整個勞動市場這樣的大變動要應付所謂的自營作業者還有無一定的雇主的生活補助以及勞工紓困貸款的利息補貼 |
transcript.whisperx[27].start |
621.913 |
transcript.whisperx[27].end |
626.081 |
transcript.whisperx[27].text |
我們算了一下3年多應該是有400億左右嘛對不對3年多那我們這次要應變這個關稅大戰的情況之下 |
transcript.whisperx[28].start |
633.14 |
transcript.whisperx[28].end |
659.493 |
transcript.whisperx[28].text |
行政院在勞動部的換手裡面變了多少錢 同意變了多少錢現在我們因為這次關稅的因應的時間長短還不一定我們目前是先框151但如果需要的話也可以再增加如果需要的話也可以再增加絕對需要也一定要增加所以你可能部長要積極的爭取未雨綢繆因為到底要打多久的關稅站不清楚而且像 |
transcript.whisperx[29].start |
660.513 |
transcript.whisperx[29].end |
675.93 |
transcript.whisperx[29].text |
川普這樣的一個政治狂人你跟他講零關稅他要請你要再多拿一些錢來談甚至於他從這個領域裡面他又會跑到另外一個領域現在又講到我們下個禮拜或許我要特別跟蘇貞偉來討論要不要請武漢委員會來針對 |
transcript.whisperx[30].start |
679.514 |
transcript.whisperx[30].end |
698.286 |
transcript.whisperx[30].text |
這個相關藥品的進出口的問題因為他又點到這一項了所以全世界皆因川普而要趕快做相關的機器的應用跟佈局跟還有一些跟長治久安的規劃尤其勞工的這樣的一個市場裡面這樣的環境裡面可能會衝擊到更多 |
transcript.whisperx[31].start |
701.348 |
transcript.whisperx[31].end |
725.708 |
transcript.whisperx[31].text |
我想這邊列舉的應該部長都很清楚嘛是對不對出國最深的產業是電子資訊、鋼鐵、金屬機械、汽車零組件、建材、家電農業部門還有蝴蝶籃、毛豆、茶葉以及烏龜魚、鬼頭豆、鱸魚等等等這全部都是勞力密集的中小企業及傳統製造業還有農業是所以可能會很快的遇到很多的無薪假很多的被裁員 |
transcript.whisperx[32].start |
728.753 |
transcript.whisperx[32].end |
754.24 |
transcript.whisperx[32].text |
這個絕對不會亞於疫情的時間所受到的衝擊而且他來的速度會更快多久的時間不清楚我們會把財源都做好準備對OK你們之前有一個10萬的這個這個這個滴滴滴的貸款對不對那利息你知道那次10萬塊而已沒這個但是要還只不過免利息推這個案的時候總共幾個案幾個件數 |
transcript.whisperx[33].start |
758.211 |
transcript.whisperx[33].end |
767.468 |
transcript.whisperx[33].text |
幾個眷屬你們還記得吧這十萬塊賺到的工資跟家庭是很好用的沒理想的 |
transcript.whisperx[34].start |
770.228 |
transcript.whisperx[34].end |
785.493 |
transcript.whisperx[34].text |
生態的件數總共幾案?你記得嗎?國務委員報告一下在109年跟110年有辦了勞工紓困貸款總共核定的件數有159萬多件159萬多件嗎?159萬就對了齁?對只有受理的這個過程裡面其實就耗過很多時間嘛對不對?好那我們要去補貼這些利息,勞動部花多少錢? |
transcript.whisperx[35].start |
797.586 |
transcript.whisperx[35].end |
819.28 |
transcript.whisperx[35].text |
這兩年我們勞動部是補貼他一年勞工貸款第一年的利息那包括後來央行升息那我們大概總共花費了兩次的貸款總共花費了30億所以補貼利息這兩年我們就貼了30億了對不對等於佔現在關稅的這一個因應的措施150億的五分之一了 |
transcript.whisperx[36].start |
821.57 |
transcript.whisperx[36].end |
825.052 |
transcript.whisperx[36].text |
對不對 歷史補貼就歷史補貼而已歷史補貼就佔了你這一次應對關稅大戰的151的50%的額度了嘛 對不對那你什麼時候要啟動 |
transcript.whisperx[37].start |
834.079 |
transcript.whisperx[37].end |
863.078 |
transcript.whisperx[37].text |
這一次什麼時候要啟動什麼時機有評估過了嗎目前看起來因為其實我們現在其實把相關的政策工具準備那有些部分會先實施有些這邊後實施那比方說就像大家現在比較關心的可能減班休息的部分我們會優先的來先做實施所以剛才在講說保護要向勞工的紓困貸款這是當時在疫情的時候可能比較中斷的時候會來推出的做法所以我們目前其實也是在盤點不同的政策工具它上路的工具上路的時機點 |
transcript.whisperx[38].start |
864.92 |
transcript.whisperx[38].end |
879.841 |
transcript.whisperx[38].text |
我只是提醒部長這一次的換酬裡面很多都是屬於密集勞工的相關的一些產業跟農業跟傳統製造業對不對這次來的速度可能會更快150億真的會不夠用所以我要請部長是不是很快速度一週內吧 |
transcript.whisperx[39].start |
881.581 |
transcript.whisperx[39].end |
901.356 |
transcript.whisperx[39].text |
因為你看川普不用一週內他就變化萬千要變大家要一起跟著來應變不然會到時候連變都來不及變我們會再盤點一下經費的可能好是請整個盤整勞工的衝擊的影響評估還有可能所需要的實際經費同時也能啟動勞工紓困貸款利息補貼的時機好不好好謝謝謝謝 |