IVOD_ID |
159995 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/159995 |
日期 |
2025-04-09 |
會議資料.會議代碼 |
委員會-11-3-19-7 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第7次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
7 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第7次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-09T12:20:25+08:00 |
結束時間 |
2025-04-09T12:28:25+08:00 |
影片長度 |
00:08:00 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdce990ec624c5a343c5a0ce932bdb5123482eb6e21b32d8c6bec9b4925af52c8bb35ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鍾佳濱 |
委員發言時間 |
12:20:25 - 12:28:25 |
會議時間 |
2025-04-09T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第7次全體委員會議(事由:邀請經濟部部長及國家發展委員會主任委員就「國際經貿情勢變化,提出協助國內傳統產業及中小企業因應之對策」進行報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
8.75534375 |
transcript.pyannote[0].end |
13.88534375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
14.35784375 |
transcript.pyannote[1].end |
17.07471875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
17.26034375 |
transcript.pyannote[2].end |
17.76659375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
17.91846875 |
transcript.pyannote[3].end |
18.37409375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
25.39409375 |
transcript.pyannote[4].end |
31.92471875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
32.41409375 |
transcript.pyannote[5].end |
40.09221875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
40.48034375 |
transcript.pyannote[6].end |
43.53471875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
44.76659375 |
transcript.pyannote[7].end |
48.09096875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
48.25971875 |
transcript.pyannote[8].end |
48.73221875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
48.91784375 |
transcript.pyannote[9].end |
49.22159375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
50.11596875 |
transcript.pyannote[10].end |
51.11159375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
51.11159375 |
transcript.pyannote[11].end |
51.14534375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
51.97221875 |
transcript.pyannote[12].end |
57.69284375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
58.95846875 |
transcript.pyannote[13].end |
59.34659375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
59.71784375 |
transcript.pyannote[14].end |
65.11784375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
61.75971875 |
transcript.pyannote[15].end |
63.31221875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
65.11784375 |
transcript.pyannote[16].end |
65.72534375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
66.19784375 |
transcript.pyannote[17].end |
82.54971875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
82.66784375 |
transcript.pyannote[18].end |
85.03034375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
85.30034375 |
transcript.pyannote[19].end |
93.90659375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
86.12721875 |
transcript.pyannote[20].end |
86.61659375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
90.27846875 |
transcript.pyannote[21].end |
92.55659375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
94.27784375 |
transcript.pyannote[22].end |
96.77534375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
97.12971875 |
transcript.pyannote[23].end |
97.82159375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
98.19284375 |
transcript.pyannote[24].end |
99.18846875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
100.03221875 |
transcript.pyannote[25].end |
101.19659375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
102.34409375 |
transcript.pyannote[26].end |
103.40721875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
103.47471875 |
transcript.pyannote[27].end |
103.49159375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
103.49159375 |
transcript.pyannote[28].end |
104.11596875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
104.11596875 |
transcript.pyannote[29].end |
104.67284375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
104.67284375 |
transcript.pyannote[30].end |
104.79096875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
104.79096875 |
transcript.pyannote[31].end |
104.99346875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
104.99346875 |
transcript.pyannote[32].end |
105.02721875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
105.02721875 |
transcript.pyannote[33].end |
105.93846875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
105.93846875 |
transcript.pyannote[34].end |
106.02284375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
106.02284375 |
transcript.pyannote[35].end |
106.41096875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
106.59659375 |
transcript.pyannote[36].end |
109.87034375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
106.78221875 |
transcript.pyannote[37].end |
107.01846875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
110.41034375 |
transcript.pyannote[38].end |
115.43909375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
115.65846875 |
transcript.pyannote[39].end |
118.29096875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
118.62846875 |
transcript.pyannote[40].end |
119.89409375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
120.50159375 |
transcript.pyannote[41].end |
123.48846875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
123.58971875 |
transcript.pyannote[42].end |
126.71159375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
126.89721875 |
transcript.pyannote[43].end |
128.01096875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
128.06159375 |
transcript.pyannote[44].end |
129.96846875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
131.14971875 |
transcript.pyannote[45].end |
131.23409375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
131.89221875 |
transcript.pyannote[46].end |
138.84471875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
139.14846875 |
transcript.pyannote[47].end |
140.56596875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
141.20721875 |
transcript.pyannote[48].end |
145.17284375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
145.51034375 |
transcript.pyannote[49].end |
148.69971875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
149.27346875 |
transcript.pyannote[50].end |
151.97346875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
152.39534375 |
transcript.pyannote[51].end |
155.26409375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
155.60159375 |
transcript.pyannote[52].end |
156.71534375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
157.44096875 |
transcript.pyannote[53].end |
158.94284375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
159.34784375 |
transcript.pyannote[54].end |
160.83284375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
161.13659375 |
transcript.pyannote[55].end |
164.42721875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
166.51971875 |
transcript.pyannote[56].end |
168.91596875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
168.51096875 |
transcript.pyannote[57].end |
169.06784375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
169.06784375 |
transcript.pyannote[58].end |
171.24471875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
171.36284375 |
transcript.pyannote[59].end |
174.72096875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
175.31159375 |
transcript.pyannote[60].end |
177.87659375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
179.09159375 |
transcript.pyannote[61].end |
181.89284375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
182.19659375 |
transcript.pyannote[62].end |
184.66034375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
184.94721875 |
transcript.pyannote[63].end |
187.49534375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
187.68096875 |
transcript.pyannote[64].end |
189.43596875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
189.84096875 |
transcript.pyannote[65].end |
191.83221875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
192.38909375 |
transcript.pyannote[66].end |
193.04721875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
193.97534375 |
transcript.pyannote[67].end |
194.92034375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
195.61221875 |
transcript.pyannote[68].end |
196.92846875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
199.17284375 |
transcript.pyannote[69].end |
199.88159375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
200.45534375 |
transcript.pyannote[70].end |
205.29846875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
202.29471875 |
transcript.pyannote[71].end |
203.67846875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
205.97346875 |
transcript.pyannote[72].end |
209.43284375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
209.51721875 |
transcript.pyannote[73].end |
211.52534375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
212.31846875 |
transcript.pyannote[74].end |
213.29721875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
213.92159375 |
transcript.pyannote[75].end |
215.38971875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
215.47409375 |
transcript.pyannote[76].end |
216.48659375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
216.85784375 |
transcript.pyannote[77].end |
218.86596875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
219.16971875 |
transcript.pyannote[78].end |
220.36784375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
220.89096875 |
transcript.pyannote[79].end |
222.47721875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
223.01721875 |
transcript.pyannote[80].end |
224.70471875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
226.03784375 |
transcript.pyannote[81].end |
226.84784375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
227.20221875 |
transcript.pyannote[82].end |
229.53096875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
229.88534375 |
transcript.pyannote[83].end |
235.65659375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
236.21346875 |
transcript.pyannote[84].end |
239.67284375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
239.84159375 |
transcript.pyannote[85].end |
242.65971875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
243.04784375 |
transcript.pyannote[86].end |
243.63846875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
243.92534375 |
transcript.pyannote[87].end |
248.02596875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
249.71346875 |
transcript.pyannote[88].end |
250.37159375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
250.81034375 |
transcript.pyannote[89].end |
251.19846875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
251.28284375 |
transcript.pyannote[90].end |
252.31221875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
252.68346875 |
transcript.pyannote[91].end |
254.26971875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
254.50596875 |
transcript.pyannote[92].end |
256.90221875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
257.32409375 |
transcript.pyannote[93].end |
258.67409375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
258.99471875 |
transcript.pyannote[94].end |
259.73721875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
260.44596875 |
transcript.pyannote[95].end |
262.31909375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
262.69034375 |
transcript.pyannote[96].end |
264.66471875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
265.27221875 |
transcript.pyannote[97].end |
266.52096875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
266.99346875 |
transcript.pyannote[98].end |
267.88784375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
268.39409375 |
transcript.pyannote[99].end |
271.12784375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
271.19534375 |
transcript.pyannote[100].end |
272.81534375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
274.14846875 |
transcript.pyannote[101].end |
281.32034375 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
281.77596875 |
transcript.pyannote[102].end |
283.02471875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
283.02471875 |
transcript.pyannote[103].end |
283.61534375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
283.61534375 |
transcript.pyannote[104].end |
283.63221875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
284.13846875 |
transcript.pyannote[105].end |
287.12534375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
287.41221875 |
transcript.pyannote[106].end |
290.36534375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
291.58034375 |
transcript.pyannote[107].end |
292.30596875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
292.62659375 |
transcript.pyannote[108].end |
295.34346875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
295.57971875 |
transcript.pyannote[109].end |
297.03096875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
297.68909375 |
transcript.pyannote[110].end |
305.04659375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
306.29534375 |
transcript.pyannote[111].end |
308.03346875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
308.05034375 |
transcript.pyannote[112].end |
308.55659375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
308.91096875 |
transcript.pyannote[113].end |
310.59846875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
310.86846875 |
transcript.pyannote[114].end |
312.82596875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
313.02846875 |
transcript.pyannote[115].end |
316.99409375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
315.52596875 |
transcript.pyannote[116].end |
315.55971875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
315.61034375 |
transcript.pyannote[117].end |
315.71159375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
317.33159375 |
transcript.pyannote[118].end |
319.94721875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
320.14971875 |
transcript.pyannote[119].end |
323.98034375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
324.48659375 |
transcript.pyannote[120].end |
328.24971875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
328.87409375 |
transcript.pyannote[121].end |
331.03409375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
331.40534375 |
transcript.pyannote[122].end |
331.87784375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
333.00846875 |
transcript.pyannote[123].end |
333.34596875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
334.24034375 |
transcript.pyannote[124].end |
335.87721875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
336.60284375 |
transcript.pyannote[125].end |
339.40409375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
339.52221875 |
transcript.pyannote[126].end |
340.93971875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
341.42909375 |
transcript.pyannote[127].end |
342.94784375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
343.38659375 |
transcript.pyannote[128].end |
344.56784375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
344.68596875 |
transcript.pyannote[129].end |
345.54659375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
345.86721875 |
transcript.pyannote[130].end |
346.28909375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
346.71096875 |
transcript.pyannote[131].end |
348.24659375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
348.33096875 |
transcript.pyannote[132].end |
349.32659375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
349.79909375 |
transcript.pyannote[133].end |
350.59221875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
350.99721875 |
transcript.pyannote[134].end |
352.88721875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
353.29221875 |
transcript.pyannote[135].end |
354.00096875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
356.53221875 |
transcript.pyannote[136].end |
356.78534375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
356.78534375 |
transcript.pyannote[137].end |
356.81909375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
357.24096875 |
transcript.pyannote[138].end |
360.49784375 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
358.16909375 |
transcript.pyannote[139].end |
358.28721875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
360.49784375 |
transcript.pyannote[140].end |
360.86909375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
361.02096875 |
transcript.pyannote[141].end |
362.59034375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
363.24846875 |
transcript.pyannote[142].end |
364.41284375 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
365.10471875 |
transcript.pyannote[143].end |
372.02346875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
369.52596875 |
transcript.pyannote[144].end |
369.55971875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
372.02346875 |
transcript.pyannote[145].end |
378.26721875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
378.31784375 |
transcript.pyannote[146].end |
379.34721875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
379.78596875 |
transcript.pyannote[147].end |
382.03034375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
382.92471875 |
transcript.pyannote[148].end |
382.94159375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
382.94159375 |
transcript.pyannote[149].end |
387.58221875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
387.85221875 |
transcript.pyannote[150].end |
390.06284375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
390.18096875 |
transcript.pyannote[151].end |
396.12096875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
396.69471875 |
transcript.pyannote[152].end |
400.99784375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
400.99784375 |
transcript.pyannote[153].end |
401.03159375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
401.03159375 |
transcript.pyannote[154].end |
401.31846875 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
401.31846875 |
transcript.pyannote[155].end |
401.36909375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
401.36909375 |
transcript.pyannote[156].end |
402.93846875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
402.21284375 |
transcript.pyannote[157].end |
402.24659375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
404.50784375 |
transcript.pyannote[158].end |
404.74409375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
405.26721875 |
transcript.pyannote[159].end |
406.80284375 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
406.16159375 |
transcript.pyannote[160].end |
406.43159375 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
406.97159375 |
transcript.pyannote[161].end |
408.62534375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
409.11471875 |
transcript.pyannote[162].end |
410.85284375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
411.19034375 |
transcript.pyannote[163].end |
421.61909375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
422.17596875 |
transcript.pyannote[164].end |
425.61846875 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
425.77034375 |
transcript.pyannote[165].end |
427.62659375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
427.98096875 |
transcript.pyannote[166].end |
428.31846875 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
428.55471875 |
transcript.pyannote[167].end |
436.99221875 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
437.05971875 |
transcript.pyannote[168].end |
439.67534375 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
439.91159375 |
transcript.pyannote[169].end |
442.88159375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
443.16846875 |
transcript.pyannote[170].end |
448.14659375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
448.45034375 |
transcript.pyannote[171].end |
454.45784375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
454.60971875 |
transcript.pyannote[172].end |
457.15784375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
457.76534375 |
transcript.pyannote[173].end |
457.84971875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
458.05221875 |
transcript.pyannote[174].end |
459.85784375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
460.19534375 |
transcript.pyannote[175].end |
463.85721875 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
464.02596875 |
transcript.pyannote[176].end |
464.98784375 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
465.19034375 |
transcript.pyannote[177].end |
466.43909375 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
467.45159375 |
transcript.pyannote[178].end |
468.58221875 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
468.80159375 |
transcript.pyannote[179].end |
469.18971875 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
469.44284375 |
transcript.pyannote[180].end |
471.43409375 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
471.55221875 |
transcript.pyannote[181].end |
473.13846875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
473.22284375 |
transcript.pyannote[182].end |
476.54721875 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
476.80034375 |
transcript.pyannote[183].end |
477.01971875 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
477.07034375 |
transcript.pyannote[184].end |
479.29784375 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
478.30221875 |
transcript.pyannote[185].end |
479.60159375 |
transcript.whisperx[0].start |
8.999 |
transcript.whisperx[0].end |
17.968 |
transcript.whisperx[0].text |
主席 在場的委員 現屆列席的政府機關首長 官員 會長 工作夥伴 媒體 記者 女士先生有請郭部長跟劉主委郭部長 劉主委 |
transcript.whisperx[1].start |
25.444 |
transcript.whisperx[1].end |
51.03 |
transcript.whisperx[1].text |
委員好 部長好 主委好兩位都是經貿財政的專家 容我班門弄斧今天我的題目是台灣要擴大對美採購 要降低美國對台的貿易逆差而且要嚴防中國起產地 避免遭美國圍堵我來先表述一下大家這幾天緊張的事情請問部長你認為川普總統 美國總統他要解決什麼問題他最念之再之的是什麼 |
transcript.whisperx[2].start |
52.011 |
transcript.whisperx[2].end |
57.087 |
transcript.whisperx[2].text |
報告委員我想他解決三個問題但是念之再之的是他的這個金融失控的問題是 |
transcript.whisperx[3].start |
59.793 |
transcript.whisperx[3].end |
84.607 |
transcript.whisperx[3].text |
然後呢然後再來就是貿易失衡的問題第三個解決製造空中化的問題很好大概跟我的很接近我覺得他要解決美國的赤字哪兩種赤字貿易赤字跟財政赤字貿易赤字主要來源是包括中國在內的不對等貿易就是逆差財政赤字他要削減政府支出要增加財政收入我這樣講劉主委認為有沒有符合川普的目前的想法 |
transcript.whisperx[4].start |
85.367 |
transcript.whisperx[4].end |
100.967 |
transcript.whisperx[4].text |
有的 好 我們來看還有他解決他目前這個中低階階的解決機會是 很好 那製造他就會往下看來 川普開出各國不等的關稅清單目的是什麼大家都不合理啊部長你覺得他的目的是什麼 |
transcript.whisperx[5].start |
102.386 |
transcript.whisperx[5].end |
128.309 |
transcript.whisperx[5].text |
一句話他的目的他的目的就叫你繳關稅啊我覺得不是這樣他要你上談判桌因為不合理嘛所以你會跟他argue嘛所以你要上談判桌但是談判的目的是什麼呢兩個目的第一他要維持對中國的高關稅第二他希望他的貿易主要對手友邦他建立一個零關稅的自由貿易同盟來對抗中國你認為我這個推測合理嗎 劉主委 |
transcript.whisperx[6].start |
131.923 |
transcript.whisperx[6].end |
156.276 |
transcript.whisperx[6].text |
我想這是一個選項之一但是我很樂觀的認為他不是要跟其他的貿易對手課高關稅他是要叫你調低零關稅我就跟你成為一個零關稅的自由貿易同盟然後我們都對中國圍堵好往下看如果零關稅同盟圍堵中國產生什麼結果呢第一本來消亡美國的中國貨被同盟國取代因為中國高關稅嘛 |
transcript.whisperx[7].start |
157.489 |
transcript.whisperx[7].end |
177.76 |
transcript.whisperx[7].text |
本來很有競爭力的 現在呢 盟國是零關稅所以盟國就取代銷往美國的中國貨 是不是這樣子 部長可以這樣的 這個方向來討論但是同樣的 中國也對你美國高關稅啊所以美國貨銷不到同盟國去 它要銷給誰銷給零關稅的同盟國嘛 是不是這樣子 |
transcript.whisperx[8].start |
179.304 |
transcript.whisperx[8].end |
196.509 |
transcript.whisperx[8].text |
我們都是零關稅的同盟,所以他賣給我們,好,往下看所以美國輸台,如果是零關稅,能改善美國的貿易逆差嗎?有兩個可能一個是有的產品會啊,真的零關稅之後我們就跟美國買啊部長是不是這樣?什麼會跟美國買?主委你覺得哪個會跟美國買?零關稅後會有一些產品的確我直接跟你講,我來自農業圈,我們很擔心的,農產品 |
transcript.whisperx[9].start |
206.221 |
transcript.whisperx[9].end |
224.252 |
transcript.whisperx[9].text |
黃小玉啊這些牛奶乳製品啊還有什麼還有這些其他的美國的出口大宗那我們要因應產業衝擊明天會問農業部但是有的產品不會什麼產品不會我請教一下美國車跟日本車都零關稅你覺得國人會買美國車還是日本車我直接講好了我想很多人都會選擇還是買日本車所以零關稅也不見得能解決美國銷台的輸售問題就要擴大採購往下看 |
transcript.whisperx[10].start |
236.297 |
transcript.whisperx[10].end |
263.54 |
transcript.whisperx[10].text |
所以我在3月17號就建議要加大對美的採購其實最美採購的大家第一宗就是什麼 能源嘛所以部長 現在我們台電跟台灣中油是不是有擴大要跟美國採購天然氣有可能沒有 有可能 好 很好但是為什麼台灣過去不買呢因為跟澳洲買比較便宜啊 至少運匯便宜啊運匯跟關稅有沒有關係 沒有關係啊就算零關稅 我跟澳洲買運匯便宜啊 跟美國買運匯貴 |
transcript.whisperx[11].start |
265.382 |
transcript.whisperx[11].end |
289.701 |
transcript.whisperx[11].text |
成本會提高 應經部要不要因應台電買比較貴的電纜器又不影響電價經濟部要不要因應 部長要不要因應這一部分我想我們會擴大評估啦從成本的概念 從時間的方面都可以評估好 下一頁但是 好啦 我們解決了對美擴大採購問題之後日月南都降到零關稅了 為什麼美國認為還不夠 |
transcript.whisperx[12].start |
291.618 |
transcript.whisperx[12].end |
304.887 |
transcript.whisperx[12].text |
部長你覺得呢他這裡面有很多就是國家補助啊國家補助還有一個最重要的如果越南跟美國之間是零關稅但是越南跟中國也是零關稅中國就洗越南的產地去美國啊有沒有辦法防堵 |
transcript.whisperx[13].start |
306.325 |
transcript.whisperx[13].end |
331.031 |
transcript.whisperx[13].text |
美國要防堵中國有沒有辦法防堵 不行除了我們之間彼此零關稅你越南要跟中國要建立一個關稅壁壘或非關稅壁壘 是不是這樣子你點頭嘛 往下看所以說台灣也要擔心美國我相信我們可以跟美國彼此零關稅這個希望可能很高但是當我們跟美國零關稅美國還是會把舊金金在卡上中國產品有沒有透過你台灣洗產地啊請問 部長 |
transcript.whisperx[14].start |
334.281 |
transcript.whisperx[14].end |
361.553 |
transcript.whisperx[14].text |
有沒有這個過去的實例 有嘛從中國進口建制就到台灣來交貨其實又貼什麼 改標籤嘛養殖的東西 水產品透過活魚搬運跑到台灣來 有沒有有的是賣過去 有的是賣過來有沒有 好 往下看所以部長台灣輸出美國的主要商品有哪些你們有沒有統計你說產品的產品我們賣給美國的東西主要是半導體電子產業 |
transcript.whisperx[15].start |
363.311 |
transcript.whisperx[15].end |
381.916 |
transcript.whisperx[15].text |
五金零件還有呢比較優勢的就是半導體嘛然後電子相關的零組件然後還有汽車零件的這個部分那一旦零關稅之後呢台灣很多的產品就更具有競爭力可以到美國市場了但是美國會擔心啊你的上游供應員有沒有來自中國是不是這樣子 |
transcript.whisperx[16].start |
382.964 |
transcript.whisperx[16].end |
402.705 |
transcript.whisperx[16].text |
我們現在大概因為跟美國在談就是飛鴻供應鏈是我是意思說我們要注意到當美國這樣看越南的時候零關稅還不夠的時候我們台灣也要遇到當我們也跟他零關稅之後他還是會檢視你輸出到美國的東西有沒有含有中國成分是是這樣嗎是主委你同意嗎 |
transcript.whisperx[17].start |
405.522 |
transcript.whisperx[17].end |
421.384 |
transcript.whisperx[17].text |
這是有可能的所以我做個結論其實這次我個人認為川普先生他主要的目的要解決美國的赤字包括貿易赤字跟財政赤字在貿易赤字部分最大的對手就是中國造成的不公平的貿易因此他要求 |
transcript.whisperx[18].start |
422.225 |
transcript.whisperx[18].end |
447.944 |
transcript.whisperx[18].text |
主要的貿易對手跟他成立一個零關稅的自由貿易同盟要求彼此之間零關稅讓同盟的產品可以取代美國市場上的中國貨另外他也希望同盟國開放你的國內市場讓我美國商品銷售但是由於美國商品有它的非關稅因素台灣可能必須特定的去進行大量的採購另外當台灣想要對美國零關稅的時候美國也會嚴格防止 |
transcript.whisperx[19].start |
448.544 |
transcript.whisperx[19].end |
468.337 |
transcript.whisperx[19].text |
我們台灣消美的產品有沒有含有中國成分所以結論請經濟部盤點消美的主要產品上游的供應鏈是不是含有中國製品可以嗎可以而且要提出調整對策因為我知道我們有很多的產業它是跟中國有一個供應鏈的關係一定要提出對策可以嗎這個是主委的事情嗎 |
transcript.whisperx[20].start |
469.806 |
transcript.whisperx[20].end |
477.639 |
transcript.whisperx[20].text |
這部長的事情部長可以嗎我現在再交代他們馬上謝謝馬上處理可能我下午就拿到了好那麼就謝謝部長謝謝主委謝謝主席 |