iVOD / 159991

Field Value
IVOD_ID 159991
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159991
日期 2025-04-09
會議資料.會議代碼 委員會-11-3-19-7
會議資料.會議代碼:str 第11屆第3會期經濟委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-04-09T12:11:27+08:00
結束時間 2025-04-09T12:20:17+08:00
影片長度 00:08:50
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdce164d78e197ab2b36a0ce932bdb5123482eb6e21b32d8c6be22361ff6ef9879315ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李坤城
委員發言時間 12:11:27 - 12:20:17
會議時間 2025-04-09T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第7次全體委員會議(事由:邀請經濟部部長及國家發展委員會主任委員就「國際經貿情勢變化,提出協助國內傳統產業及中小企業因應之對策」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 8.23221875
transcript.pyannote[0].end 9.64971875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 9.91971875
transcript.pyannote[1].end 14.56034375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 14.00346875
transcript.pyannote[2].end 14.20596875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 14.30721875
transcript.pyannote[3].end 14.37471875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 14.76284375
transcript.pyannote[4].end 15.23534375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 20.46659375
transcript.pyannote[5].end 23.33534375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 23.79096875
transcript.pyannote[6].end 26.67659375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 26.76096875
transcript.pyannote[7].end 27.65534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 27.77346875
transcript.pyannote[8].end 28.85346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 29.07284375
transcript.pyannote[9].end 31.72221875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 32.02596875
transcript.pyannote[10].end 34.25346875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 34.38846875
transcript.pyannote[11].end 34.89471875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 35.16471875
transcript.pyannote[12].end 36.76784375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 37.30784375
transcript.pyannote[13].end 44.32784375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 44.56409375
transcript.pyannote[14].end 47.06159375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 48.07409375
transcript.pyannote[15].end 49.47471875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 50.84159375
transcript.pyannote[16].end 61.20284375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 59.11034375
transcript.pyannote[17].end 60.19034375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 61.20284375
transcript.pyannote[18].end 66.87284375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 61.67534375
transcript.pyannote[19].end 62.67096875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 67.24409375
transcript.pyannote[20].end 68.67846875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 68.67846875
transcript.pyannote[21].end 73.13346875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 73.16721875
transcript.pyannote[22].end 73.21784375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 73.40346875
transcript.pyannote[23].end 80.03534375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 80.64284375
transcript.pyannote[24].end 81.36846875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 82.09409375
transcript.pyannote[25].end 83.37659375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 84.37221875
transcript.pyannote[26].end 85.43534375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 85.72221875
transcript.pyannote[27].end 86.85284375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 87.34221875
transcript.pyannote[28].end 88.48971875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 88.15221875
transcript.pyannote[29].end 91.49346875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 91.67909375
transcript.pyannote[30].end 91.96596875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 91.72971875
transcript.pyannote[31].end 92.87721875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 93.68721875
transcript.pyannote[32].end 101.26409375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 101.53409375
transcript.pyannote[33].end 108.13221875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 108.63846875
transcript.pyannote[34].end 108.99284375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 110.02221875
transcript.pyannote[35].end 111.13596875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 111.43971875
transcript.pyannote[36].end 111.62534375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 111.62534375
transcript.pyannote[37].end 111.69284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 111.69284375
transcript.pyannote[38].end 112.55346875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 112.75596875
transcript.pyannote[39].end 112.77284375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 112.77284375
transcript.pyannote[40].end 113.02596875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 113.22846875
transcript.pyannote[41].end 113.80221875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 113.80221875
transcript.pyannote[42].end 113.85284375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 113.85284375
transcript.pyannote[43].end 113.95409375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 114.27471875
transcript.pyannote[44].end 123.84284375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 122.07096875
transcript.pyannote[45].end 122.44221875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 123.84284375
transcript.pyannote[46].end 124.14659375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 124.36596875
transcript.pyannote[47].end 124.63596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 124.92284375
transcript.pyannote[48].end 128.53409375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 129.04034375
transcript.pyannote[49].end 131.09909375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 131.67284375
transcript.pyannote[50].end 133.63034375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 134.05221875
transcript.pyannote[51].end 134.94659375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 135.90846875
transcript.pyannote[52].end 138.03471875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 136.16159375
transcript.pyannote[53].end 136.33034375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 138.25409375
transcript.pyannote[54].end 138.54096875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 138.54096875
transcript.pyannote[55].end 140.16096875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 140.16096875
transcript.pyannote[56].end 140.73471875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 140.31284375
transcript.pyannote[57].end 141.69659375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 142.15221875
transcript.pyannote[58].end 142.92846875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 143.04659375
transcript.pyannote[59].end 143.31659375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 143.41784375
transcript.pyannote[60].end 144.12659375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 144.44721875
transcript.pyannote[61].end 145.18971875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 145.59471875
transcript.pyannote[62].end 146.96159375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 147.21471875
transcript.pyannote[63].end 149.56034375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 149.72909375
transcript.pyannote[64].end 151.39971875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 151.75409375
transcript.pyannote[65].end 152.56409375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 152.78346875
transcript.pyannote[66].end 156.32721875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 156.69846875
transcript.pyannote[67].end 159.90471875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 161.05221875
transcript.pyannote[68].end 162.19971875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 162.60471875
transcript.pyannote[69].end 181.25159375
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 177.94409375
transcript.pyannote[70].end 178.43346875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 181.23471875
transcript.pyannote[71].end 181.58909375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 181.26846875
transcript.pyannote[72].end 181.28534375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 181.58909375
transcript.pyannote[73].end 188.00159375
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 188.00159375
transcript.pyannote[74].end 188.15346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 188.15346875
transcript.pyannote[75].end 192.05159375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 192.16971875
transcript.pyannote[76].end 192.60846875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 192.70971875
transcript.pyannote[77].end 195.56159375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 196.21971875
transcript.pyannote[78].end 204.20159375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 204.20159375
transcript.pyannote[79].end 204.21846875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 204.21846875
transcript.pyannote[80].end 204.25221875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 204.53909375
transcript.pyannote[81].end 209.78721875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 210.00659375
transcript.pyannote[82].end 213.61784375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 214.05659375
transcript.pyannote[83].end 217.12784375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 217.12784375
transcript.pyannote[84].end 217.41471875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 218.08971875
transcript.pyannote[85].end 218.68034375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 219.10221875
transcript.pyannote[86].end 219.76034375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 220.11471875
transcript.pyannote[87].end 221.48159375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 221.71784375
transcript.pyannote[88].end 224.16471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 225.02534375
transcript.pyannote[89].end 225.22784375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 225.70034375
transcript.pyannote[90].end 226.05471875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 226.32471875
transcript.pyannote[91].end 227.75909375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 227.84346875
transcript.pyannote[92].end 229.26096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 230.00346875
transcript.pyannote[93].end 235.43721875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 235.62284375
transcript.pyannote[94].end 242.18721875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 242.44034375
transcript.pyannote[95].end 247.68846875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 248.09346875
transcript.pyannote[96].end 252.19409375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 252.39659375
transcript.pyannote[97].end 255.02909375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 255.28221875
transcript.pyannote[98].end 256.15971875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 256.68284375
transcript.pyannote[99].end 259.23096875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 260.44596875
transcript.pyannote[100].end 263.48346875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 264.02346875
transcript.pyannote[101].end 265.05284375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 265.40721875
transcript.pyannote[102].end 267.53346875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 268.19159375
transcript.pyannote[103].end 271.80284375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 271.80284375
transcript.pyannote[104].end 272.14034375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 272.14034375
transcript.pyannote[105].end 275.41409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 275.59971875
transcript.pyannote[106].end 279.05909375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 279.54846875
transcript.pyannote[107].end 283.42971875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 284.15534375
transcript.pyannote[108].end 286.46721875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 286.92284375
transcript.pyannote[109].end 292.74471875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 292.96409375
transcript.pyannote[110].end 306.31221875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 306.75096875
transcript.pyannote[111].end 313.38284375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 314.42909375
transcript.pyannote[112].end 319.62659375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 319.94721875
transcript.pyannote[113].end 321.60096875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 321.92159375
transcript.pyannote[114].end 326.61284375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 321.97221875
transcript.pyannote[115].end 322.83284375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 324.31784375
transcript.pyannote[116].end 340.48409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 327.30471875
transcript.pyannote[117].end 327.81096875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 332.35034375
transcript.pyannote[118].end 332.36721875
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 332.36721875
transcript.pyannote[119].end 332.38409375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 332.38409375
transcript.pyannote[120].end 332.46846875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 332.46846875
transcript.pyannote[121].end 332.50221875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 332.53596875
transcript.pyannote[122].end 332.62034375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 332.62034375
transcript.pyannote[123].end 332.97471875
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 332.97471875
transcript.pyannote[124].end 335.11784375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 340.88909375
transcript.pyannote[125].end 343.75784375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 343.77471875
transcript.pyannote[126].end 343.89284375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 344.28096875
transcript.pyannote[127].end 348.85409375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 349.79909375
transcript.pyannote[128].end 354.20346875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 354.99659375
transcript.pyannote[129].end 355.97534375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 356.21159375
transcript.pyannote[130].end 356.65034375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 356.65034375
transcript.pyannote[131].end 357.12284375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 357.30846875
transcript.pyannote[132].end 358.00034375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 357.42659375
transcript.pyannote[133].end 357.76409375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 358.10159375
transcript.pyannote[134].end 358.11846875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 358.11846875
transcript.pyannote[135].end 359.04659375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 358.13534375
transcript.pyannote[136].end 358.59096875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 358.99596875
transcript.pyannote[137].end 360.44721875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 360.49784375
transcript.pyannote[138].end 360.51471875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 360.51471875
transcript.pyannote[139].end 360.85221875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 360.85221875
transcript.pyannote[140].end 362.13471875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 361.67909375
transcript.pyannote[141].end 368.53034375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 368.53034375
transcript.pyannote[142].end 368.54721875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 369.25596875
transcript.pyannote[143].end 371.26409375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 371.58471875
transcript.pyannote[144].end 374.03159375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 374.26784375
transcript.pyannote[145].end 375.24659375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 375.56721875
transcript.pyannote[146].end 377.15346875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 377.32221875
transcript.pyannote[147].end 381.74346875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 382.48596875
transcript.pyannote[148].end 385.21971875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 385.59096875
transcript.pyannote[149].end 388.71284375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 389.53971875
transcript.pyannote[150].end 389.65784375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 390.23159375
transcript.pyannote[151].end 392.07096875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 392.27346875
transcript.pyannote[152].end 394.78784375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 394.90596875
transcript.pyannote[153].end 396.69471875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 394.95659375
transcript.pyannote[154].end 397.04909375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 397.23471875
transcript.pyannote[155].end 398.12909375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 398.71971875
transcript.pyannote[156].end 403.07346875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 403.54596875
transcript.pyannote[157].end 404.47409375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 405.31784375
transcript.pyannote[158].end 409.09784375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 409.41846875
transcript.pyannote[159].end 410.80221875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 411.03846875
transcript.pyannote[160].end 415.42596875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 415.74659375
transcript.pyannote[161].end 417.02909375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 417.02909375
transcript.pyannote[162].end 420.03284375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 420.47159375
transcript.pyannote[163].end 420.50534375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 420.79221875
transcript.pyannote[164].end 429.83721875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 430.56284375
transcript.pyannote[165].end 431.27159375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 431.47409375
transcript.pyannote[166].end 431.62596875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 431.62596875
transcript.pyannote[167].end 431.77784375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 431.77784375
transcript.pyannote[168].end 431.96346875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 431.96346875
transcript.pyannote[169].end 431.98034375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 431.98034375
transcript.pyannote[170].end 432.06471875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 432.06471875
transcript.pyannote[171].end 433.16159375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 432.11534375
transcript.pyannote[172].end 441.98721875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 441.93659375
transcript.pyannote[173].end 442.42596875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 442.42596875
transcript.pyannote[174].end 442.45971875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 442.45971875
transcript.pyannote[175].end 442.52721875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 442.52721875
transcript.pyannote[176].end 442.59471875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 442.59471875
transcript.pyannote[177].end 442.67909375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 442.67909375
transcript.pyannote[178].end 442.69596875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 442.69596875
transcript.pyannote[179].end 444.61971875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 445.05846875
transcript.pyannote[180].end 449.53034375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 449.95221875
transcript.pyannote[181].end 449.96909375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 449.96909375
transcript.pyannote[182].end 451.13346875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 451.15034375
transcript.pyannote[183].end 451.16721875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 451.25159375
transcript.pyannote[184].end 461.20784375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 461.20784375
transcript.pyannote[185].end 461.30909375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 462.74346875
transcript.pyannote[186].end 468.46409375
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 468.46409375
transcript.pyannote[187].end 468.76784375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 468.76784375
transcript.pyannote[188].end 468.81846875
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 468.81846875
transcript.pyannote[189].end 468.83534375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 468.83534375
transcript.pyannote[190].end 468.86909375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 468.97034375
transcript.pyannote[191].end 468.98721875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 468.98721875
transcript.pyannote[192].end 469.10534375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 469.10534375
transcript.pyannote[193].end 469.13909375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 469.13909375
transcript.pyannote[194].end 470.97846875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 470.97846875
transcript.pyannote[195].end 472.22721875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 472.37909375
transcript.pyannote[196].end 486.03096875
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 486.08159375
transcript.pyannote[197].end 488.52846875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 488.89971875
transcript.pyannote[198].end 491.02596875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 492.07221875
transcript.pyannote[199].end 492.49409375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 493.60784375
transcript.pyannote[200].end 497.25284375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 497.77596875
transcript.pyannote[201].end 499.05846875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 499.49721875
transcript.pyannote[202].end 500.12159375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 500.29034375
transcript.pyannote[203].end 502.97346875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 502.97346875
transcript.pyannote[204].end 503.02409375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 503.02409375
transcript.pyannote[205].end 503.29409375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 503.80034375
transcript.pyannote[206].end 516.27096875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 516.42284375
transcript.pyannote[207].end 517.28346875
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 517.89096875
transcript.pyannote[208].end 523.05471875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 520.77659375
transcript.pyannote[209].end 521.50221875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 523.05471875
transcript.pyannote[210].end 527.17221875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 526.46346875
transcript.pyannote[211].end 527.05409375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 527.47596875
transcript.pyannote[212].end 530.29409375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 528.10034375
transcript.pyannote[213].end 528.94409375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 530.47971875
transcript.pyannote[214].end 530.59784375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 530.59784375
transcript.pyannote[215].end 530.96909375
transcript.whisperx[0].start 9.135
transcript.whisperx[0].end 13.001
transcript.whisperx[0].text 謝謝主席我們請經濟部的郭部長還有國發會的劉主委
transcript.whisperx[1].start 20.809
transcript.whisperx[1].end 49.15
transcript.whisperx[1].text 部長跟主委都辛苦了最近這幾天為了美國關稅的事情相信大家都卯足全力在做這件事情可是其實因為我在財政委員會我在關稅還沒有公布之前其實不論是央行或是財政部都沒有提到會有課到32%這麼高的關稅所以這個32%的關稅出來之後有沒有超乎你們的預期
transcript.whisperx[2].start 50.982
transcript.whisperx[2].end 79.323
transcript.whisperx[2].text 報告委員我想這個整體的營業小組來講我們在做評估的時候是有算到35%有算到35%高標是35%那你們高標的35%是按照川普這種方式算出來的嗎因為他是算貿易逆差的不是我們有各種這個評估的方法各種評估的方法所以你們那時候算出來有最高到35%但是不是像川普這種算法就對了川普這種算法有沒有在你們的這個
transcript.whisperx[3].start 80.82
transcript.whisperx[3].end 107.178
transcript.whisperx[3].text 評估裡面他是一個比較舊的計算方式比較舊的計算方式應該好像是19400還是什麼時候的一個計算方式好那請教一下那就是說現在早上很多委員都很關心就是說接下來要跟這個美國談判嘛因為4月9號其實12點台灣的關稅其實就算是生效了嘛我們就是算是課32%了對不對
transcript.whisperx[4].start 110.083
transcript.whisperx[4].end 134.69
transcript.whisperx[4].text 就是今天開始出貨的就是32%今天開始出貨的到美國的就是算32%那你剛有提到啦就是說有什麼在船上的然後之前已經出貨的有一個時間的算法就對了那請問一下那現在我們跟美國的談判我剛看這個委員在問已經有接上線了而且是排在前面在談了
transcript.whisperx[5].start 135.987
transcript.whisperx[5].end 159.546
transcript.whisperx[5].text 我們當然在這個line上面我們應該是排在前面啦但是還沒有正式談還沒有正式談那其實川普的算法也很簡單貿易逆差這麼大他要的就是第一個你就是多買美國貨那第二個呢就是減少這個逆差就是擴大去美國投資嘛那這兩點的話目前我們做什麼樣的準備
transcript.whisperx[6].start 161.124
transcript.whisperx[6].end 175.599
transcript.whisperx[6].text 我們擴大買美國的東西這個部分我想我們都有在盤點然後實際依照國內的情形以不傷害國內的廠商的利益為主我們進行擴大對美國的採購
transcript.whisperx[7].start 178.502
transcript.whisperx[7].end 195.071
transcript.whisperx[7].text 因為我們採購的東西不是只有美國一個國家我們有很多其他的國家採購的東西我們可以稍微來在這上面做一些調整但民間的企業的部分我們比較沒有算到我們這一次但是我們在國營的企業
transcript.whisperx[8].start 196.531
transcript.whisperx[8].end 221.126
transcript.whisperx[8].text 我們的機構所需要的採購我們可以調整方向比如說大家可能關心的能源的問題能源問題可以攻擊的國家蠻多的所以根據在目前的這個階段我們就是擴大對美國的採購比如像天然氣比如說像天然氣其他的部分也有OK 好那現在開始對中國的關稅是課到這個104%
transcript.whisperx[9].start 225.779
transcript.whisperx[9].end 228.979
transcript.whisperx[9].text 那我們還是有台商在那邊那這樣對台商的影響勒
transcript.whisperx[10].start 230.049
transcript.whisperx[10].end 258.644
transcript.whisperx[10].text 我們大概希望是這樣子就是說在這件事件會影響到我們的台商在中國的台商或在東南亞的台商那我們可能就是有兩個方向來幫助他們第一個就協助他們轉移不賣到美國賣到其他的國家因為美國畢竟佔整個全球的貿易市場沒有那麼大所以他還有其他的市場可以去
transcript.whisperx[11].start 260.492
transcript.whisperx[11].end 283.126
transcript.whisperx[11].text 去銷售這是幫助他第二個如果他的產品是以美國為重點那我們有兩個方式第一個就請他回來台灣製造台灣生產這個是優先第二個如果他是需要美國那邊的資源的他的市場跟資源都在美國那我們協助他
transcript.whisperx[12].start 284.207
transcript.whisperx[12].end 313.203
transcript.whisperx[12].text 到美国去透过我的之前跟大家报告的境外关内也就是说由我们政府跟美国政府来共同成立一个管理机构协助我们台商可以快速的出海落地然后在那地方做一站式的我们做一站式的服务让他们可以避免一些行政上面往来的时间过去在美国要设一个工厂最快要四年
transcript.whisperx[13].start 314.482
transcript.whisperx[13].end 339.598
transcript.whisperx[13].text 但是如果說我們用這個統一在這個行政的這樣的一個服務的話大概可以縮短成兩年對啊 那不短你這樣講是比較長期的耶大概要花一年到兩年的時間對 所以短期的話我們希望他轉移市場幫他調整訂單轉移市場或是另外一個 報告委員另外一個如果他的產品在美國由我們台灣的廠商在製造的
transcript.whisperx[14].start 340.979
transcript.whisperx[14].end 367.708
transcript.whisperx[14].text 我們請他幫台灣的品牌做OEM然後他市場上面照樣用他自己的品牌去銷售但是製造請我們台商在美國的同業幫他製造這說得通嗎?通了嗎?通當然是通啊有跟他們講過了嗎?這個我們在之前我們在這件事情之前就已經跟很多的業者在討論
transcript.whisperx[15].start 369.298
transcript.whisperx[15].end 397.961
transcript.whisperx[15].text 因為其實我們的網通設備我們的PC我們的筆電伺服器手機零件這個會受到很大的影響啊這個不見得我跟委員報告台灣的很多的廠商是做EMS他很多做EMS或是幫人家代工的所以那個稅是由美國的客戶在繳的所以你說這樣子課了104%的關稅對台灣的這些台商影響不大對台灣的才有對台灣的才有
transcript.whisperx[16].start 398.766
transcript.whisperx[16].end 402.072
transcript.whisperx[16].text 好我最後問一下就是說對於經濟的影響這個
transcript.whisperx[17].start 405.353
transcript.whisperx[17].end 415.102
transcript.whisperx[17].text 彭博他有說到 他說台灣對美國的出口可能會銳減63%導致對台灣GDP下滑約3.8% 這個劉主委是不是可以答一下因為他這個數字出來 其實還蠻震撼的其實目前我們有委託專業機構進行研究目前出來的數字是減少0.43到1.610.43到1.61 這是在
transcript.whisperx[18].start 431.716
transcript.whisperx[18].end 450.934
transcript.whisperx[18].text 關稅確定32%之後算了嗎對確定關稅之後我們委外研究的我們現在是在委託另外一家研究機構做第二次的檢核所以沒有像這個像這個什麼彭博他們所講的這一個會掉了這麼多就對了對目前是出來的數字是沒有
transcript.whisperx[19].start 451.314
transcript.whisperx[19].end 453.837
transcript.whisperx[19].text 好我再問最後就是其實這881比較是像是這一個讓台灣的廠商能夠渡過難關那我請問一下這881夠嗎
transcript.whisperx[20].start 464.117
transcript.whisperx[20].end 490.847
transcript.whisperx[20].text 880億其實它是一個可以隨時在市狀況再進行調整的我是覺得是880億可能還不夠雖然我不知道說談判的情況是怎麼樣但是這個短時間你用880億因為我不知道這個數字最後怎麼算出來的700是屬於工業部門 180是屬於這個農業部門但是我直覺啦我直覺這個對廠商來講可能還不夠啦那你們有沒有想說這個再爭取再多一點部長
transcript.whisperx[21].start 493.766
transcript.whisperx[21].end 514.053
transcript.whisperx[21].text 報告委員,我想881是我們有一個假設的稅率啦可能造成了這個影響所以我們大概881...你這假設的稅率是多少?這是我們有一個假設的,這個抱歉在這個地方不能夠來談因為現在還在談判嘛,所以這個部分只能X好不好X的話我們大概881是夠的,高於這個X
transcript.whisperx[22].start 517.95
transcript.whisperx[22].end 527.935
transcript.whisperx[22].text 那881就像您所說的可能不夠我們會有第二次的特別預算所以是希望881就夠用就對了以下以下謝謝委員謝謝部長 謝謝主委
gazette.lineno 996
gazette.blocks[0][0] 李委員坤城:(12時11分)謝謝主席。請經濟部郭部長及國發會劉主委。
gazette.blocks[1][0] 主席:請郭部長、劉主委。
gazette.blocks[2][0] 郭部長智輝:委員好。
gazette.blocks[3][0] 李委員坤城:部長跟主委都辛苦了。最近這幾天,為了美國關稅的事情,我相信大家都卯足全力在做這件事情。我在財政委員會,在關稅還沒有公布之前,不論是央行或是財政部,都沒有提到會課到32%這麼高的關稅,這個32%的關稅出來之後,有沒有超乎你們的預期?
gazette.blocks[4][0] 郭部長智輝:報告委員,整體的因應小組來講,我們在評估的時候,有算到35%。
gazette.blocks[5][0] 李委員坤城:有算到35%?
gazette.blocks[6][0] 郭部長智輝:高標是35%。
gazette.blocks[7][0] 李委員坤城:那你們高標的35%是按照川普這種方式算出來的嗎?因為他是算貿易逆差的啊。
gazette.blocks[8][0] 郭部長智輝:我們有各種評估的方法。
gazette.blocks[9][0] 李委員坤城:所以你們那時候算出來最高有到35%,但不是像川普這種算法就對了?
gazette.blocks[10][0] 郭部長智輝:是。
gazette.blocks[11][0] 李委員坤城:川普這種算法有沒有在你們的評估裡面?
gazette.blocks[12][0] 郭部長智輝:他是用一個比較舊的計算方式。
gazette.blocks[13][0] 李委員坤城:比較舊的計算方式?
gazette.blocks[14][0] 郭部長智輝:好像是1940年還是什麼時候的一個計算方式。
gazette.blocks[15][0] 李委員坤城:好。那請教一下,早上很多委員都很關心,接下來要跟美國談判,4月9日12時起,臺灣的關稅其實就算是生效了嘛,我們就算是課32%了,對不對?
gazette.blocks[16][0] 郭部長智輝:今天開始出貨的就是32%。
gazette.blocks[17][0] 李委員坤城:今天開始出貨到美國的就是算32%?
gazette.blocks[18][0] 郭部長智輝:對。
gazette.blocks[19][0] 李委員坤城:你剛剛有提到,有在船上的,還有之前已經出貨的,有一個時間的算法就對了?
gazette.blocks[20][0] 郭部長智輝:對。
gazette.blocks[21][0] 李委員坤城:好。那請問一下,現在我們跟美國的談判,我剛剛看有委員在問,說已經有接上線了,而且是排在前面在談的。
gazette.blocks[22][0] 郭部長智輝:我們當然在這個line上面,我們應該是排在前面,但是還沒有正式談。
gazette.blocks[23][0] 李委員坤城:還沒有正式談?
gazette.blocks[24][0] 郭部長智輝:對。
gazette.blocks[25][0] 李委員坤城:好,其實川普的算法也很簡單,貿易逆差這麼大,他要的就是幾個:第一個,多買美國貨;第二個,減少逆差,擴大去美國投資。就這兩點的話,目前我們做什麼樣的準備?
gazette.blocks[26][0] 郭部長智輝:我們擴大買美國的東西,這個部分我想我們都有在盤點,然後實際依照國內的情形,以不傷害國內廠商的利益為主,來擴大對美國的採購,因為我們採購的東西不是只有美國一個國家,我們有很多跟其他國家採購的東西,我們可以稍微在這上面做一些調整。民間企業的部分,我們比較沒有算到這一次,但是我們國營的企業、我們的機構所需要的採購,我們可以調整方向,比如說大家可能關心能源的問題,能源可以供給的國家滿多的,所以在目前的這個階段,我們就是擴大對美國的採購。
gazette.blocks[27][0] 李委員坤城:比如說,像天然氣。
gazette.blocks[28][0] 郭部長智輝:比如說,像天然氣,其他的部分也有。
gazette.blocks[29][0] 李委員坤城:OK,好。現在開始,對中國的關稅是課到104%,但我們還是有臺商在那邊,這樣對臺商的影響呢?
gazette.blocks[30][0] 郭部長智輝:我們大概希望是這樣子,這件事件會影響到在中國的臺商或在東南亞的臺商,我們可能有兩個方向來幫助他們,第一個就是協助他們轉移,不賣到美國,賣到其他的國家,因為美國畢竟占整個全球的貿易市場沒有那麼大,所以還有其他的市場可以去銷售,這是幫助他們。第二個,如果他的產品是以美國為重點,那我們有兩個方式,第一個就是請他回來臺灣製造,臺灣生產,這個是優先。第二個,如果他是需要美國那邊的資源的,他的市場跟資源都在美國,那我們協助他到美國去,透過我之前跟大家報告的境外關內,也就是說,由我們政府跟美國政府共同成立一個管理機構,協助我們臺商可以快速地出海落地,然後在那個地方,我們做一站式的服務,讓他們可以避免一些行政上面往來的時間。過去在美國要設一個工廠最快要4年,但是如果我們用統一在行政方面提供這樣的一個服務的話,大概可以縮短成2年。
gazette.blocks[31][0] 李委員坤城:對啊,部長,你這樣講是比較長期的,大概要花一年到兩年的時間。
gazette.blocks[32][0] 郭部長智輝:對。所以短期的話,我們希望他轉移市場,幫他調整訂單,轉移市場。另外一個,如果他的產品在美國有我們臺灣的廠商在製造的,我們請他幫臺灣的品牌做OEM,然後他在市場上面照樣用他自己的品牌去銷售,但是在製造方面,請我們臺商在美國的同業幫他製造。
gazette.blocks[33][0] 李委員坤城:這樣說得通嗎?
gazette.blocks[34][0] 郭部長智輝:通啊,當然是通啊。
gazette.blocks[35][0] 李委員坤城:有跟他們講過了嗎?
gazette.blocks[36][0] 郭部長智輝:我們在這件事情的之前,就已經跟很多的業者在討論。
gazette.blocks[37][0] 李委員坤城:其實我們的網通設備、PC、筆電、伺服器、手機、零件會受到很大的影響。
gazette.blocks[38][0] 郭部長智輝:這個不見得。我跟委員報告,臺灣很多廠商是做EMS,很多是做EMS或是幫人家代工,所以那個稅是由美國的客戶在繳的。
gazette.blocks[39][0] 李委員坤城:所以你說課了104%的關稅對臺灣這些臺商的影響不大?
gazette.blocks[40][0] 郭部長智輝:對中國的沒有,對臺灣的才有。
gazette.blocks[41][0] 李委員坤城:對臺灣的才有?
gazette.blocks[42][0] 郭部長智輝:對。
gazette.blocks[43][0] 李委員坤城:好。我最後問一下,對於經濟的影響,彭博有說到,臺灣對美國的出口可能會銳減63%,導致臺灣GDP下滑約3.8%。針對這個,劉主委是不是可以答一下?因為這個數字出來其實還滿令人震撼的。
gazette.blocks[44][0] 劉主任委員鏡清:其實目前我們有委託專業機構進行研究,目前出來的數字是減少0.43%到1.61%。
gazette.blocks[45][0] 李委員坤城:0.43%到1.61%,這是在關稅確定32%最後算的嗎?
gazette.blocks[46][0] 劉主任委員鏡清:對。確定關稅之後,我們委外研究的,我們現在是再委託另外一家研究機構做第二次的檢核。
gazette.blocks[47][0] 李委員坤城:所以沒有像彭博所講的,會掉得這麼多就對了?
gazette.blocks[48][0] 劉主任委員鏡清:對。目前出來的數字是沒有。
gazette.blocks[49][0] 李委員坤城:好。我再問,其實這880億比較像是讓臺灣的廠商能夠渡過難關,那我請問一下,這880億夠嗎?
gazette.blocks[50][0] 劉主任委員鏡清:880億其實是可以隨時視狀況再進行調整的。
gazette.blocks[51][0] 李委員坤城:我是覺得880億可能還不夠,雖然我不知道談判的情況是怎麼樣,但是短時間內用880億,我覺得可能不夠。我不知道這個數字最後是怎麼算出來的,700億是屬於工業部門,180億是屬於農業部門,但是以我的直覺,我覺得這個對廠商來講可能還不夠,你們有沒有想再爭取多一點?部長。
gazette.blocks[52][0] 郭部長智輝:報告委員,我想880億是我們有一個假設的稅率可能造成的影響,所以我們大概880億就夠了。
gazette.blocks[53][0] 李委員坤城:你說假設稅率是多少?
gazette.blocks[54][0] 郭部長智輝:我們有個假設,抱歉,在這個地方不能夠說,因為現在還在談判嘛,所以這個部分只能用X來代替,好不好?
gazette.blocks[55][0] 李委員坤城:OK。
gazette.blocks[56][0] 郭部長智輝:用X來算的話,我們大概880億是夠的,如果高於X,那880億就像您所說的可能不夠,我們會有第二次的特別預算。
gazette.blocks[57][0] 李委員坤城:所以是希望880億夠用就對了?
gazette.blocks[58][0] 郭部長智輝:以下。
gazette.blocks[59][0] 李委員坤城:以下?
gazette.blocks[60][0] 郭部長智輝:對。
gazette.blocks[61][0] 李委員坤城:好,OK。
gazette.blocks[62][0] 郭部長智輝:謝謝委員。
gazette.blocks[63][0] 李委員坤城:好,謝謝。謝謝部長、謝謝主委。
gazette.blocks[64][0] 主席:好,謝謝。
gazette.blocks[64][1] 現在請鍾佳濱委員詢答。
gazette.agenda.page_end 116
gazette.agenda.meet_id 委員會-11-3-19-7
gazette.agenda.speakers[0] 謝衣鳯
gazette.agenda.speakers[1] 邱議瑩
gazette.agenda.speakers[2] 邱志偉
gazette.agenda.speakers[3] 楊瓊瓔
gazette.agenda.speakers[4] 鄭正鈐
gazette.agenda.speakers[5] 張啓楷
gazette.agenda.speakers[6] 鄭天財Sra Kacaw
gazette.agenda.speakers[7] 陳亭妃
gazette.agenda.speakers[8] 呂玉玲
gazette.agenda.speakers[9] 賴瑞隆
gazette.agenda.speakers[10] 徐巧芯
gazette.agenda.speakers[11] 張嘉郡
gazette.agenda.speakers[12] 洪孟楷
gazette.agenda.speakers[13] 劉書彬
gazette.agenda.speakers[14] 李坤城
gazette.agenda.speakers[15] 鍾佳濱
gazette.agenda.speakers[16] 蔡易餘
gazette.agenda.speakers[17] 黃國昌
gazette.agenda.speakers[18] 牛煦庭
gazette.agenda.speakers[19] 林倩綺
gazette.agenda.speakers[20] 陳冠廷
gazette.agenda.speakers[21] 黃建賓
gazette.agenda.speakers[22] 徐富癸
gazette.agenda.speakers[23] 葉元之
gazette.agenda.speakers[24] 徐欣瑩
gazette.agenda.speakers[25] 陳超明
gazette.agenda.speakers[26] 劉建國
gazette.agenda.page_start 37
gazette.agenda.meetingDate[0] 2025-04-09
gazette.agenda.gazette_id 1143501
gazette.agenda.agenda_lcidc_ids[0] 1143501_00003
gazette.agenda.meet_name 立法院第11屆第3會期經濟委員會第7次全體委員會議紀錄
gazette.agenda.content 邀請經濟部部長及國家發展委員會主任委員就「國際經貿情勢變化,提出協助國內傳統產業及中 小企業因應之對策」進行報告,並備質詢
gazette.agenda.agenda_id 1143501_00002