iVOD / 159987

Field Value
IVOD_ID 159987
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159987
日期 2025-04-09
會議資料.會議代碼 委員會-11-3-19-7
會議資料.會議代碼:str 第11屆第3會期經濟委員會第7次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 7
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第3會期經濟委員會第7次全體委員會議
影片種類 Clip
開始時間 2025-04-09T11:53:14+08:00
結束時間 2025-04-09T12:03:01+08:00
影片長度 00:09:47
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdceee93e882524cb52aa0ce932bdb5123482eb6e21b32d8c6bec85d994a9850a63d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 洪孟楷
委員發言時間 11:53:14 - 12:03:01
會議時間 2025-04-09T09:00:00+08:00
會議名稱 立法院第11屆第3會期經濟委員會第7次全體委員會議(事由:邀請經濟部部長及國家發展委員會主任委員就「國際經貿情勢變化,提出協助國內傳統產業及中小企業因應之對策」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 9.10971875
transcript.pyannote[0].end 13.09221875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 14.05409375
transcript.pyannote[1].end 14.54346875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 14.86409375
transcript.pyannote[2].end 15.31971875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 20.26409375
transcript.pyannote[3].end 21.69846875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 21.88409375
transcript.pyannote[4].end 30.57471875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 30.92909375
transcript.pyannote[5].end 31.58721875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 31.90784375
transcript.pyannote[6].end 33.79784375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 34.05096875
transcript.pyannote[7].end 41.61096875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 42.11721875
transcript.pyannote[8].end 43.48409375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 43.68659375
transcript.pyannote[9].end 43.99034375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 44.26034375
transcript.pyannote[10].end 44.59784375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 45.17159375
transcript.pyannote[11].end 46.13346875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 46.28534375
transcript.pyannote[12].end 55.38096875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 55.80284375
transcript.pyannote[13].end 56.98409375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 57.47346875
transcript.pyannote[14].end 60.47721875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 60.74721875
transcript.pyannote[15].end 73.48784375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 74.12909375
transcript.pyannote[16].end 74.95596875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 75.24284375
transcript.pyannote[17].end 76.62659375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 76.94721875
transcript.pyannote[18].end 82.22909375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 82.22909375
transcript.pyannote[19].end 85.26659375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 86.41409375
transcript.pyannote[20].end 87.15659375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 88.21971875
transcript.pyannote[21].end 89.45159375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 89.45159375
transcript.pyannote[22].end 91.51034375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 91.84784375
transcript.pyannote[23].end 93.19784375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 93.63659375
transcript.pyannote[24].end 93.85596875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 94.21034375
transcript.pyannote[25].end 94.83471875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 94.83471875
transcript.pyannote[26].end 101.21346875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 94.91909375
transcript.pyannote[27].end 96.74159375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 101.21346875
transcript.pyannote[28].end 106.69784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 107.17034375
transcript.pyannote[29].end 109.31346875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 109.60034375
transcript.pyannote[30].end 115.87784375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 116.58659375
transcript.pyannote[31].end 117.31221875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 117.54846875
transcript.pyannote[32].end 118.34159375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 118.34159375
transcript.pyannote[33].end 118.35846875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 119.15159375
transcript.pyannote[34].end 119.18534375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 119.18534375
transcript.pyannote[35].end 119.47221875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 119.47221875
transcript.pyannote[36].end 119.48909375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 119.48909375
transcript.pyannote[37].end 119.60721875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 119.62409375
transcript.pyannote[38].end 119.65784375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 119.65784375
transcript.pyannote[39].end 119.72534375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 119.72534375
transcript.pyannote[40].end 119.87721875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 119.87721875
transcript.pyannote[41].end 119.97846875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 119.97846875
transcript.pyannote[42].end 129.79971875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 120.11346875
transcript.pyannote[43].end 120.28221875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 126.81284375
transcript.pyannote[44].end 127.13346875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 129.79971875
transcript.pyannote[45].end 129.95159375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 129.95159375
transcript.pyannote[46].end 130.96409375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 130.96409375
transcript.pyannote[47].end 139.19909375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 139.82346875
transcript.pyannote[48].end 139.84034375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 139.84034375
transcript.pyannote[49].end 148.02471875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 145.45971875
transcript.pyannote[50].end 155.38221875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 156.07409375
transcript.pyannote[51].end 164.42721875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 162.55409375
transcript.pyannote[52].end 162.57096875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 164.02221875
transcript.pyannote[53].end 194.27909375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 164.81534375
transcript.pyannote[54].end 166.97534375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 182.78721875
transcript.pyannote[55].end 184.32284375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 187.71471875
transcript.pyannote[56].end 188.54159375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 189.03096875
transcript.pyannote[57].end 189.33471875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 194.88659375
transcript.pyannote[58].end 201.45096875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 201.50159375
transcript.pyannote[59].end 202.44659375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 202.76721875
transcript.pyannote[60].end 204.38721875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 204.74159375
transcript.pyannote[61].end 205.68659375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 206.14221875
transcript.pyannote[62].end 211.05284375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 207.76221875
transcript.pyannote[63].end 208.03221875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 211.45784375
transcript.pyannote[64].end 213.78659375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 213.78659375
transcript.pyannote[65].end 222.73034375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 219.38909375
transcript.pyannote[66].end 220.65471875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 223.21971875
transcript.pyannote[67].end 233.73284375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 230.57721875
transcript.pyannote[68].end 233.81721875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 234.03659375
transcript.pyannote[69].end 244.22909375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 234.55971875
transcript.pyannote[70].end 234.91409375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 239.62221875
transcript.pyannote[71].end 239.77409375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 240.11159375
transcript.pyannote[72].end 241.05659375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 245.10659375
transcript.pyannote[73].end 247.30034375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 247.95846875
transcript.pyannote[74].end 257.66159375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 258.33659375
transcript.pyannote[75].end 262.06596875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 260.24346875
transcript.pyannote[76].end 260.39534375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 262.28534375
transcript.pyannote[77].end 273.52409375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 273.89534375
transcript.pyannote[78].end 274.97534375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 274.97534375
transcript.pyannote[79].end 275.63346875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 275.63346875
transcript.pyannote[80].end 275.97096875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 275.97096875
transcript.pyannote[81].end 291.24284375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 291.42846875
transcript.pyannote[82].end 293.26784375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 293.38596875
transcript.pyannote[83].end 294.41534375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 293.43659375
transcript.pyannote[84].end 294.78659375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 294.78659375
transcript.pyannote[85].end 297.50346875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 297.50346875
transcript.pyannote[86].end 298.97159375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 298.97159375
transcript.pyannote[87].end 299.00534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 299.00534375
transcript.pyannote[88].end 304.86096875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 304.86096875
transcript.pyannote[89].end 305.13096875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 305.13096875
transcript.pyannote[90].end 308.18534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 308.45534375
transcript.pyannote[91].end 309.65346875
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 309.65346875
transcript.pyannote[92].end 310.14284375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 310.32846875
transcript.pyannote[93].end 317.97284375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 317.97284375
transcript.pyannote[94].end 321.55034375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 322.95096875
transcript.pyannote[95].end 326.64659375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 327.69284375
transcript.pyannote[96].end 334.13909375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 334.76346875
transcript.pyannote[97].end 343.63971875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 343.63971875
transcript.pyannote[98].end 347.52096875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 345.52971875
transcript.pyannote[99].end 345.71534375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 347.95971875
transcript.pyannote[100].end 349.17471875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 349.46159375
transcript.pyannote[101].end 350.64284375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 351.21659375
transcript.pyannote[102].end 362.79284375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 361.30784375
transcript.pyannote[103].end 362.75909375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 362.79284375
transcript.pyannote[104].end 362.91096875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 362.91096875
transcript.pyannote[105].end 364.83471875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 365.07096875
transcript.pyannote[106].end 368.96909375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 368.96909375
transcript.pyannote[107].end 369.86346875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 370.08284375
transcript.pyannote[108].end 370.09971875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 370.09971875
transcript.pyannote[109].end 377.37284375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 377.47409375
transcript.pyannote[110].end 380.17409375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 377.79471875
transcript.pyannote[111].end 377.86221875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 379.27971875
transcript.pyannote[112].end 380.30909375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 380.47784375
transcript.pyannote[113].end 385.48971875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 384.69659375
transcript.pyannote[114].end 390.50159375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 390.92346875
transcript.pyannote[115].end 395.86784375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 391.56471875
transcript.pyannote[116].end 392.08784375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 395.98596875
transcript.pyannote[117].end 404.11971875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 404.38971875
transcript.pyannote[118].end 433.88721875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 420.94409375
transcript.pyannote[119].end 421.33221875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 424.52159375
transcript.pyannote[120].end 425.21346875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 426.04034375
transcript.pyannote[121].end 427.86284375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 432.80721875
transcript.pyannote[122].end 433.87034375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 433.88721875
transcript.pyannote[123].end 434.34284375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 434.34284375
transcript.pyannote[124].end 434.47784375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 434.47784375
transcript.pyannote[125].end 434.56221875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 434.56221875
transcript.pyannote[126].end 435.96284375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 435.96284375
transcript.pyannote[127].end 435.99659375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 436.21596875
transcript.pyannote[128].end 436.31721875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 436.31721875
transcript.pyannote[129].end 446.96534375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 447.53909375
transcript.pyannote[130].end 450.50909375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 450.72846875
transcript.pyannote[131].end 454.76159375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 454.84596875
transcript.pyannote[132].end 456.48284375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 456.73596875
transcript.pyannote[133].end 459.18284375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 459.35159375
transcript.pyannote[134].end 464.05971875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 464.05971875
transcript.pyannote[135].end 491.75159375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 483.73596875
transcript.pyannote[136].end 484.39409375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 492.15659375
transcript.pyannote[137].end 496.47659375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 497.55659375
transcript.pyannote[138].end 501.91034375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 502.31534375
transcript.pyannote[139].end 516.77721875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 503.42909375
transcript.pyannote[140].end 503.66534375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 508.20471875
transcript.pyannote[141].end 508.35659375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 516.79409375
transcript.pyannote[142].end 517.35096875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 517.58721875
transcript.pyannote[143].end 530.02409375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 530.02409375
transcript.pyannote[144].end 535.60971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 534.61409375
transcript.pyannote[145].end 534.91784375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 535.96409375
transcript.pyannote[146].end 544.73909375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 544.87409375
transcript.pyannote[147].end 547.96221875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 547.96221875
transcript.pyannote[148].end 548.18159375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 548.18159375
transcript.pyannote[149].end 548.19846875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 548.41784375
transcript.pyannote[150].end 548.43471875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 548.43471875
transcript.pyannote[151].end 549.02534375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 549.21096875
transcript.pyannote[152].end 570.59159375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 570.99659375
transcript.pyannote[153].end 582.06659375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 581.62784375
transcript.pyannote[154].end 585.62721875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 586.01534375
transcript.pyannote[155].end 586.20096875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 586.20096875
transcript.pyannote[156].end 586.43721875
transcript.whisperx[0].start 9.141
transcript.whisperx[0].end 11.123
transcript.whisperx[0].text 好主席謝謝麻煩請我們經濟部長跟國發會主委國部長劉主委
transcript.whisperx[1].start 20.285
transcript.whisperx[1].end 41.256
transcript.whisperx[1].text 好部長好主委好我想美國關稅的因應全世界大家都一起面對那當然台灣2350萬人我們共同努力因為這不會分朝野不會分黨派但其中一個部分我想現在因為我們也有代表團現在正在美國要準備要談判嘛對不對
transcript.whisperx[2].start 42.176
transcript.whisperx[2].end 59.975
transcript.whisperx[2].text 都有溝通嗎?是不是?好那其中一個很大的關鍵喔我覺得到目前為止我們還沒有聽到我們政府部門的一個說法我想也在這邊救教就是美國總統川普他用一個大帽子對等關稅那他先拿出來講是說因為台灣
transcript.whisperx[3].start 61.074
transcript.whisperx[3].end 84.502
transcript.whisperx[3].text 課美國64%關稅所以要砍一半變32%但我們這幾天也都陸陸續續看到我們也認為說不可能有那麼高關稅嘛這是第一點第二點也有媒體報導講是說這公式是算錯了那我想請教我們自己現在盤點到底台灣對美國的產品也好相關的關稅我們到底實際課多少我們實際跟美國差的關稅不到3%3%
transcript.whisperx[4].start 88.257
transcript.whisperx[4].end 104.992
transcript.whisperx[4].text 我們就相差不是 不是相差 是 我講的是說他講64嘛 對不對美國總統川普先講那個64是用那個粗糙跟對整體是 他的計算方式是這樣子嘛所以他就是用這個來變成是說是32嘛
transcript.whisperx[5].start 107.52
transcript.whisperx[5].end 118.142
transcript.whisperx[5].text 他就變是說要求我們要變成是32的關稅嘛那我們現在就對美國對進到台灣到底多少關稅各產品我們最高
transcript.whisperx[6].start 119.232
transcript.whisperx[6].end 138.332
transcript.whisperx[6].text 因為這就不符合對等我們平均跟委員報告我們平均對美國的課的關稅大概是6.5%6.5%嘛對不對對阿美國對我們是3.2是還是3.4所以他現在變成是說他不管用什麼樣的理由他現在從原本現在3點多要一次提高10倍變32
transcript.whisperx[7].start 139.824
transcript.whisperx[7].end 155.08
transcript.whisperx[7].text 他也不是說10倍啦 他就是用那個入鈔齁來除這個整個的 是嘛部長我理解 但是我們是說外面 因為他的公式拿出來而他先用這個大帽子來扣下來 所以他
transcript.whisperx[8].start 156.461
transcript.whisperx[8].end 182.268
transcript.whisperx[8].text 說實在話我覺得這就是變成我們談判的底氣以及我們談判的策略嘛你要怎麼樣拆掉他的大帽子嘛他講了一個64因為他這個是一體適用對全球各個國家都是用這個方法來讓大家上去跟他談判但是他的談判的目的大概不外乎幾個就第一個可能是解決他貿易失衡的問題
transcript.whisperx[9].start 182.808
transcript.whisperx[9].end 193.594
transcript.whisperx[9].text 是就逆差的部分第二個解決他金融失衡的問題第三個解決他的國債問題國家對解決他國家製造空中化的問題大概就是這三個問題
transcript.whisperx[10].start 194.946
transcript.whisperx[10].end 220.001
transcript.whisperx[10].text 那為什麼要用關稅呢關稅你就是剛才我想這個委員也指教的很好就是他這個金融的問題國債的問題所以他需要一點Cash所以這個Cash就是從關稅來說是最快或者從投資來說是最快所以我們是不是已經嚴正的讓美方知道其實到現在為止它不是一個對等關稅因為我們收美國是所以
transcript.whisperx[11].start 224.304
transcript.whisperx[11].end 246.463
transcript.whisperx[11].text 連這個所謂我們賴清德總統也提出來說現在要雙方研議甚至往零關稅的方向但實際上來講我們收美國只有6%報告委員我想總統的意思是說從零關稅開始談起對對對這是我們的底牌有一些這個就談判的籌碼Give and Take如果他沒有進來我們台灣的
transcript.whisperx[12].start 247.984
transcript.whisperx[12].end 269.41
transcript.whisperx[12].text 我們台灣也沒有輸出日本的先談 大家都是零嘛這個談判的一部分啦我給委員報告 這個我們都總體的盤過了所以我們談判小組 他們會收集各部門各個各界的這個建議他們會綜合考量以後呢然後就像剛才委員所指導的
transcript.whisperx[13].start 270.33
transcript.whisperx[13].end 291.057
transcript.whisperx[13].text 然後他們會去跟美國做一些更細膩的談判好那部長你剛剛提到就說已經都整體的盤過我想我們國人也期待因為畢竟從上禮拜宣布到現在今天中午12點要生效我們也期待說政府部門已經有掌握我們目前的狀況那幾個部分我再跟您就教第一
transcript.whisperx[14].start 291.797
transcript.whisperx[14].end 317.228
transcript.whisperx[14].text 藥品目前是還沒有宣布藥品跟半導體都還沒有宣布藥品跟半導體什麼時候會宣布他們要計算這個美國是如何去計算他會參考這樣的一個過程但目前我們還是沒有辦法得知我們其實這個就是因為這一次的這個變數太大就是我想我們雖然有盤但是現在不敢再先講因為這是談判的一部分
transcript.whisperx[15].start 317.608
transcript.whisperx[15].end 333.993
transcript.whisperx[15].text 好那第二個部分預計何時我們真的能夠上談判桌我們有沒有掌握確知我們現在是第一群的人但現在媒體報導不管是媒體報導或說我們當然希望我們能夠儘速上談判桌嘛
transcript.whisperx[16].start 334.83
transcript.whisperx[16].end 350.06
transcript.whisperx[16].text 我想在商業考量在國家考量尤其是我們在這一次這個對於我們國家來講這其實很重的一個方向32%我想都是跟委員所擔心的是一樣但是我們不能夠跟大家講
transcript.whisperx[17].start 351.798
transcript.whisperx[17].end 369.559
transcript.whisperx[17].text 確確的數字因為這個會移情其他的在那個LINE上面的人不高興嘛然後會講說為什麼他台灣會到前面沒關係 確實我們有在等待有機會談判我們希望啦希望這是在前面談判好 那第三
transcript.whisperx[18].start 370.621
transcript.whisperx[18].end 390.078
transcript.whisperx[18].text 關鍵的部分也是今天我們這個專案報告的一個方向就是說中小企業中南部有一些在零組件的相關也都我們現在已經有紓困的部分跟這個轉型的部分我們都有掌握您剛才已經有講到是說有盤點了有掌握現在會有多少家的一個企業
transcript.whisperx[19].start 390.979
transcript.whisperx[19].end 418.916
transcript.whisperx[19].text 已經有宣布因為其實最近我也不希望人心惶惶其實部長這一點我要提出來的就是因為現在有人已經有看到新聞有哪一家已經有放無薪假等等的那到底實際狀況為何報告委員我們現在就是透過兩個管道在收集這個資訊一個就是我們自己經濟部的同仁一家一家去拜訪這是一個管道另外一個因為怕這個太慢所以我們有開放那個call center讓他們打電話進來
transcript.whisperx[20].start 420.217
transcript.whisperx[20].end 446.543
transcript.whisperx[20].text 然後有區域工業區的部分呢工業區工業區的部分因為其實經濟部下面工業區我們有66個工業區所以我們都有服務中心是那我們就開放這個服務中心幹部長我們現在66個工業區裡面的廠商狀況廠商的狀況還有這個外部的我們都在調查而且我想一步一步調查我們會了解因為每一家的這個情況不會一樣
transcript.whisperx[21].start 447.663
transcript.whisperx[21].end 463.873
transcript.whisperx[21].text 所以你一個措施下去不一定每天都有效啦我是希望能夠對症下藥他需要我們協助什麼到底是金融的紓困還是我們幫他訂單的轉移或者是他將來技術的提升我想這個是不同的層次部長當然
transcript.whisperx[22].start 464.653
transcript.whisperx[22].end 491.502
transcript.whisperx[22].text 您剛提到對症下藥這就是本席想要請教以及今天為什麼我們早晚會排這樣的一個專報其實我們都希望對症下藥但到目前為止我們想要了解說至少你從大方向經濟部下面的工業區66個工業區裡面廠商的部分一定是更加連結我可以理解跟同意中小企業它沒有辦法你完全同時間掌握但你先從大方向著手
transcript.whisperx[23].start 492.242
transcript.whisperx[23].end 512.972
transcript.whisperx[23].text 工業區裡面先掌握到底現在裡面是不是真的有所謂的停止訂單是不是有所謂的這個調整是不是有所謂的無薪假這一點總是可以先做做完之後你才有辦法把你的政策再拿出來嘛否則我們上禮拜看到先講到一個所謂的特別700億經濟部農業部180億所以總共880億當然
transcript.whisperx[24].start 517.734
transcript.whisperx[24].end 531.999
transcript.whisperx[24].text 合理的預算運用我們都不會反對我們也都希望能夠當台灣中小企業的後盾但重點在於是說把錢怎麼樣用在刀口上這是我們現在所關注的是 我們現在880億是就根據過去的經驗推論出來的一個數目字
transcript.whisperx[25].start 536.101
transcript.whisperx[25].end 555.414
transcript.whisperx[25].text 但是我想我們院長有特別的交代也就是說希望我們盤點具體的這個出來以後那如果有需要增加預算那麼我們會再提第二次的特別預算好 所以部長我給一個比較具體的建議因為這個禮拜五也已經排定了行政院長做特別預算的專案報告在下午的時間
transcript.whisperx[26].start 556.355
transcript.whisperx[26].end 583.841
transcript.whisperx[26].text 我們朝野黨團也都有代表要去做質詢所以這一個部分請經濟部的同仁真的一定要掌握因為我相信在禮拜五的時候一定還會有委員也詢問到不管是特別預算數額夠不夠災情的狀況怎麼樣以及現在充其產面到底有多廣多少中小企業現在面臨到什麼樣的困境我想這一些部分也都需要在專案報告的時候好好的說明所以委員催情的部分我們會馬上來準備謝謝
transcript.whisperx[27].start 586.125
transcript.whisperx[27].end 586.288
transcript.whisperx[27].text 谢谢