IVOD_ID |
159987 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/159987 |
日期 |
2025-04-09 |
會議資料.會議代碼 |
委員會-11-3-19-7 |
會議資料.會議代碼:str |
第11屆第3會期經濟委員會第7次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
7 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第3會期經濟委員會第7次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-04-09T11:53:14+08:00 |
結束時間 |
2025-04-09T12:03:01+08:00 |
影片長度 |
00:09:47 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/984603a5a250cdceee93e882524cb52aa0ce932bdb5123482eb6e21b32d8c6bec85d994a9850a63d5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
洪孟楷 |
委員發言時間 |
11:53:14 - 12:03:01 |
會議時間 |
2025-04-09T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期經濟委員會第7次全體委員會議(事由:邀請經濟部部長及國家發展委員會主任委員就「國際經貿情勢變化,提出協助國內傳統產業及中小企業因應之對策」進行報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
9.10971875 |
transcript.pyannote[0].end |
13.09221875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
14.05409375 |
transcript.pyannote[1].end |
14.54346875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
14.86409375 |
transcript.pyannote[2].end |
15.31971875 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
20.26409375 |
transcript.pyannote[3].end |
21.69846875 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
21.88409375 |
transcript.pyannote[4].end |
30.57471875 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
30.92909375 |
transcript.pyannote[5].end |
31.58721875 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
31.90784375 |
transcript.pyannote[6].end |
33.79784375 |
transcript.pyannote[7].speaker |
SPEAKER_02 |
transcript.pyannote[7].start |
34.05096875 |
transcript.pyannote[7].end |
41.61096875 |
transcript.pyannote[8].speaker |
SPEAKER_02 |
transcript.pyannote[8].start |
42.11721875 |
transcript.pyannote[8].end |
43.48409375 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
43.68659375 |
transcript.pyannote[9].end |
43.99034375 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
44.26034375 |
transcript.pyannote[10].end |
44.59784375 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
45.17159375 |
transcript.pyannote[11].end |
46.13346875 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
46.28534375 |
transcript.pyannote[12].end |
55.38096875 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
55.80284375 |
transcript.pyannote[13].end |
56.98409375 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
57.47346875 |
transcript.pyannote[14].end |
60.47721875 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
60.74721875 |
transcript.pyannote[15].end |
73.48784375 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
74.12909375 |
transcript.pyannote[16].end |
74.95596875 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
75.24284375 |
transcript.pyannote[17].end |
76.62659375 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
76.94721875 |
transcript.pyannote[18].end |
82.22909375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
82.22909375 |
transcript.pyannote[19].end |
85.26659375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
86.41409375 |
transcript.pyannote[20].end |
87.15659375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
88.21971875 |
transcript.pyannote[21].end |
89.45159375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
89.45159375 |
transcript.pyannote[22].end |
91.51034375 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
91.84784375 |
transcript.pyannote[23].end |
93.19784375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
93.63659375 |
transcript.pyannote[24].end |
93.85596875 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
94.21034375 |
transcript.pyannote[25].end |
94.83471875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
94.83471875 |
transcript.pyannote[26].end |
101.21346875 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
94.91909375 |
transcript.pyannote[27].end |
96.74159375 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
101.21346875 |
transcript.pyannote[28].end |
106.69784375 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
107.17034375 |
transcript.pyannote[29].end |
109.31346875 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
109.60034375 |
transcript.pyannote[30].end |
115.87784375 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
116.58659375 |
transcript.pyannote[31].end |
117.31221875 |
transcript.pyannote[32].speaker |
SPEAKER_02 |
transcript.pyannote[32].start |
117.54846875 |
transcript.pyannote[32].end |
118.34159375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
118.34159375 |
transcript.pyannote[33].end |
118.35846875 |
transcript.pyannote[34].speaker |
SPEAKER_02 |
transcript.pyannote[34].start |
119.15159375 |
transcript.pyannote[34].end |
119.18534375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
119.18534375 |
transcript.pyannote[35].end |
119.47221875 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
119.47221875 |
transcript.pyannote[36].end |
119.48909375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
119.48909375 |
transcript.pyannote[37].end |
119.60721875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
119.62409375 |
transcript.pyannote[38].end |
119.65784375 |
transcript.pyannote[39].speaker |
SPEAKER_02 |
transcript.pyannote[39].start |
119.65784375 |
transcript.pyannote[39].end |
119.72534375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
119.72534375 |
transcript.pyannote[40].end |
119.87721875 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
119.87721875 |
transcript.pyannote[41].end |
119.97846875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
119.97846875 |
transcript.pyannote[42].end |
129.79971875 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
120.11346875 |
transcript.pyannote[43].end |
120.28221875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
126.81284375 |
transcript.pyannote[44].end |
127.13346875 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
129.79971875 |
transcript.pyannote[45].end |
129.95159375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
129.95159375 |
transcript.pyannote[46].end |
130.96409375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
130.96409375 |
transcript.pyannote[47].end |
139.19909375 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
139.82346875 |
transcript.pyannote[48].end |
139.84034375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
139.84034375 |
transcript.pyannote[49].end |
148.02471875 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
145.45971875 |
transcript.pyannote[50].end |
155.38221875 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
156.07409375 |
transcript.pyannote[51].end |
164.42721875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
162.55409375 |
transcript.pyannote[52].end |
162.57096875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
164.02221875 |
transcript.pyannote[53].end |
194.27909375 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
164.81534375 |
transcript.pyannote[54].end |
166.97534375 |
transcript.pyannote[55].speaker |
SPEAKER_02 |
transcript.pyannote[55].start |
182.78721875 |
transcript.pyannote[55].end |
184.32284375 |
transcript.pyannote[56].speaker |
SPEAKER_02 |
transcript.pyannote[56].start |
187.71471875 |
transcript.pyannote[56].end |
188.54159375 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
189.03096875 |
transcript.pyannote[57].end |
189.33471875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
194.88659375 |
transcript.pyannote[58].end |
201.45096875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
201.50159375 |
transcript.pyannote[59].end |
202.44659375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
202.76721875 |
transcript.pyannote[60].end |
204.38721875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
204.74159375 |
transcript.pyannote[61].end |
205.68659375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
206.14221875 |
transcript.pyannote[62].end |
211.05284375 |
transcript.pyannote[63].speaker |
SPEAKER_03 |
transcript.pyannote[63].start |
207.76221875 |
transcript.pyannote[63].end |
208.03221875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
211.45784375 |
transcript.pyannote[64].end |
213.78659375 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
213.78659375 |
transcript.pyannote[65].end |
222.73034375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
219.38909375 |
transcript.pyannote[66].end |
220.65471875 |
transcript.pyannote[67].speaker |
SPEAKER_02 |
transcript.pyannote[67].start |
223.21971875 |
transcript.pyannote[67].end |
233.73284375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
230.57721875 |
transcript.pyannote[68].end |
233.81721875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
234.03659375 |
transcript.pyannote[69].end |
244.22909375 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
234.55971875 |
transcript.pyannote[70].end |
234.91409375 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
239.62221875 |
transcript.pyannote[71].end |
239.77409375 |
transcript.pyannote[72].speaker |
SPEAKER_02 |
transcript.pyannote[72].start |
240.11159375 |
transcript.pyannote[72].end |
241.05659375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
245.10659375 |
transcript.pyannote[73].end |
247.30034375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
247.95846875 |
transcript.pyannote[74].end |
257.66159375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
258.33659375 |
transcript.pyannote[75].end |
262.06596875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
260.24346875 |
transcript.pyannote[76].end |
260.39534375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
262.28534375 |
transcript.pyannote[77].end |
273.52409375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
273.89534375 |
transcript.pyannote[78].end |
274.97534375 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
274.97534375 |
transcript.pyannote[79].end |
275.63346875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
275.63346875 |
transcript.pyannote[80].end |
275.97096875 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
275.97096875 |
transcript.pyannote[81].end |
291.24284375 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
291.42846875 |
transcript.pyannote[82].end |
293.26784375 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
293.38596875 |
transcript.pyannote[83].end |
294.41534375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
293.43659375 |
transcript.pyannote[84].end |
294.78659375 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
294.78659375 |
transcript.pyannote[85].end |
297.50346875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
297.50346875 |
transcript.pyannote[86].end |
298.97159375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
298.97159375 |
transcript.pyannote[87].end |
299.00534375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
299.00534375 |
transcript.pyannote[88].end |
304.86096875 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
304.86096875 |
transcript.pyannote[89].end |
305.13096875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
305.13096875 |
transcript.pyannote[90].end |
308.18534375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
308.45534375 |
transcript.pyannote[91].end |
309.65346875 |
transcript.pyannote[92].speaker |
SPEAKER_03 |
transcript.pyannote[92].start |
309.65346875 |
transcript.pyannote[92].end |
310.14284375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
310.32846875 |
transcript.pyannote[93].end |
317.97284375 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
317.97284375 |
transcript.pyannote[94].end |
321.55034375 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
322.95096875 |
transcript.pyannote[95].end |
326.64659375 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
327.69284375 |
transcript.pyannote[96].end |
334.13909375 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
334.76346875 |
transcript.pyannote[97].end |
343.63971875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
343.63971875 |
transcript.pyannote[98].end |
347.52096875 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
345.52971875 |
transcript.pyannote[99].end |
345.71534375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
347.95971875 |
transcript.pyannote[100].end |
349.17471875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
349.46159375 |
transcript.pyannote[101].end |
350.64284375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
351.21659375 |
transcript.pyannote[102].end |
362.79284375 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
361.30784375 |
transcript.pyannote[103].end |
362.75909375 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
362.79284375 |
transcript.pyannote[104].end |
362.91096875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
362.91096875 |
transcript.pyannote[105].end |
364.83471875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
365.07096875 |
transcript.pyannote[106].end |
368.96909375 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
368.96909375 |
transcript.pyannote[107].end |
369.86346875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
370.08284375 |
transcript.pyannote[108].end |
370.09971875 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
370.09971875 |
transcript.pyannote[109].end |
377.37284375 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
377.47409375 |
transcript.pyannote[110].end |
380.17409375 |
transcript.pyannote[111].speaker |
SPEAKER_03 |
transcript.pyannote[111].start |
377.79471875 |
transcript.pyannote[111].end |
377.86221875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
379.27971875 |
transcript.pyannote[112].end |
380.30909375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
380.47784375 |
transcript.pyannote[113].end |
385.48971875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
384.69659375 |
transcript.pyannote[114].end |
390.50159375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
390.92346875 |
transcript.pyannote[115].end |
395.86784375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
391.56471875 |
transcript.pyannote[116].end |
392.08784375 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
395.98596875 |
transcript.pyannote[117].end |
404.11971875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
404.38971875 |
transcript.pyannote[118].end |
433.88721875 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
420.94409375 |
transcript.pyannote[119].end |
421.33221875 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
424.52159375 |
transcript.pyannote[120].end |
425.21346875 |
transcript.pyannote[121].speaker |
SPEAKER_02 |
transcript.pyannote[121].start |
426.04034375 |
transcript.pyannote[121].end |
427.86284375 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
432.80721875 |
transcript.pyannote[122].end |
433.87034375 |
transcript.pyannote[123].speaker |
SPEAKER_02 |
transcript.pyannote[123].start |
433.88721875 |
transcript.pyannote[123].end |
434.34284375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
434.34284375 |
transcript.pyannote[124].end |
434.47784375 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
434.47784375 |
transcript.pyannote[125].end |
434.56221875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
434.56221875 |
transcript.pyannote[126].end |
435.96284375 |
transcript.pyannote[127].speaker |
SPEAKER_02 |
transcript.pyannote[127].start |
435.96284375 |
transcript.pyannote[127].end |
435.99659375 |
transcript.pyannote[128].speaker |
SPEAKER_02 |
transcript.pyannote[128].start |
436.21596875 |
transcript.pyannote[128].end |
436.31721875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
436.31721875 |
transcript.pyannote[129].end |
446.96534375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
447.53909375 |
transcript.pyannote[130].end |
450.50909375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
450.72846875 |
transcript.pyannote[131].end |
454.76159375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
454.84596875 |
transcript.pyannote[132].end |
456.48284375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
456.73596875 |
transcript.pyannote[133].end |
459.18284375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
459.35159375 |
transcript.pyannote[134].end |
464.05971875 |
transcript.pyannote[135].speaker |
SPEAKER_02 |
transcript.pyannote[135].start |
464.05971875 |
transcript.pyannote[135].end |
491.75159375 |
transcript.pyannote[136].speaker |
SPEAKER_03 |
transcript.pyannote[136].start |
483.73596875 |
transcript.pyannote[136].end |
484.39409375 |
transcript.pyannote[137].speaker |
SPEAKER_02 |
transcript.pyannote[137].start |
492.15659375 |
transcript.pyannote[137].end |
496.47659375 |
transcript.pyannote[138].speaker |
SPEAKER_02 |
transcript.pyannote[138].start |
497.55659375 |
transcript.pyannote[138].end |
501.91034375 |
transcript.pyannote[139].speaker |
SPEAKER_02 |
transcript.pyannote[139].start |
502.31534375 |
transcript.pyannote[139].end |
516.77721875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
503.42909375 |
transcript.pyannote[140].end |
503.66534375 |
transcript.pyannote[141].speaker |
SPEAKER_03 |
transcript.pyannote[141].start |
508.20471875 |
transcript.pyannote[141].end |
508.35659375 |
transcript.pyannote[142].speaker |
SPEAKER_02 |
transcript.pyannote[142].start |
516.79409375 |
transcript.pyannote[142].end |
517.35096875 |
transcript.pyannote[143].speaker |
SPEAKER_02 |
transcript.pyannote[143].start |
517.58721875 |
transcript.pyannote[143].end |
530.02409375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
530.02409375 |
transcript.pyannote[144].end |
535.60971875 |
transcript.pyannote[145].speaker |
SPEAKER_02 |
transcript.pyannote[145].start |
534.61409375 |
transcript.pyannote[145].end |
534.91784375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
535.96409375 |
transcript.pyannote[146].end |
544.73909375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
544.87409375 |
transcript.pyannote[147].end |
547.96221875 |
transcript.pyannote[148].speaker |
SPEAKER_02 |
transcript.pyannote[148].start |
547.96221875 |
transcript.pyannote[148].end |
548.18159375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
548.18159375 |
transcript.pyannote[149].end |
548.19846875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
548.41784375 |
transcript.pyannote[150].end |
548.43471875 |
transcript.pyannote[151].speaker |
SPEAKER_02 |
transcript.pyannote[151].start |
548.43471875 |
transcript.pyannote[151].end |
549.02534375 |
transcript.pyannote[152].speaker |
SPEAKER_02 |
transcript.pyannote[152].start |
549.21096875 |
transcript.pyannote[152].end |
570.59159375 |
transcript.pyannote[153].speaker |
SPEAKER_02 |
transcript.pyannote[153].start |
570.99659375 |
transcript.pyannote[153].end |
582.06659375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
581.62784375 |
transcript.pyannote[154].end |
585.62721875 |
transcript.pyannote[155].speaker |
SPEAKER_02 |
transcript.pyannote[155].start |
586.01534375 |
transcript.pyannote[155].end |
586.20096875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
586.20096875 |
transcript.pyannote[156].end |
586.43721875 |
transcript.whisperx[0].start |
9.141 |
transcript.whisperx[0].end |
11.123 |
transcript.whisperx[0].text |
好主席謝謝麻煩請我們經濟部長跟國發會主委國部長劉主委 |
transcript.whisperx[1].start |
20.285 |
transcript.whisperx[1].end |
41.256 |
transcript.whisperx[1].text |
好部長好主委好我想美國關稅的因應全世界大家都一起面對那當然台灣2350萬人我們共同努力因為這不會分朝野不會分黨派但其中一個部分我想現在因為我們也有代表團現在正在美國要準備要談判嘛對不對 |
transcript.whisperx[2].start |
42.176 |
transcript.whisperx[2].end |
59.975 |
transcript.whisperx[2].text |
都有溝通嗎?是不是?好那其中一個很大的關鍵喔我覺得到目前為止我們還沒有聽到我們政府部門的一個說法我想也在這邊救教就是美國總統川普他用一個大帽子對等關稅那他先拿出來講是說因為台灣 |
transcript.whisperx[3].start |
61.074 |
transcript.whisperx[3].end |
84.502 |
transcript.whisperx[3].text |
課美國64%關稅所以要砍一半變32%但我們這幾天也都陸陸續續看到我們也認為說不可能有那麼高關稅嘛這是第一點第二點也有媒體報導講是說這公式是算錯了那我想請教我們自己現在盤點到底台灣對美國的產品也好相關的關稅我們到底實際課多少我們實際跟美國差的關稅不到3%3% |
transcript.whisperx[4].start |
88.257 |
transcript.whisperx[4].end |
104.992 |
transcript.whisperx[4].text |
我們就相差不是 不是相差 是 我講的是說他講64嘛 對不對美國總統川普先講那個64是用那個粗糙跟對整體是 他的計算方式是這樣子嘛所以他就是用這個來變成是說是32嘛 |
transcript.whisperx[5].start |
107.52 |
transcript.whisperx[5].end |
118.142 |
transcript.whisperx[5].text |
他就變是說要求我們要變成是32的關稅嘛那我們現在就對美國對進到台灣到底多少關稅各產品我們最高 |
transcript.whisperx[6].start |
119.232 |
transcript.whisperx[6].end |
138.332 |
transcript.whisperx[6].text |
因為這就不符合對等我們平均跟委員報告我們平均對美國的課的關稅大概是6.5%6.5%嘛對不對對阿美國對我們是3.2是還是3.4所以他現在變成是說他不管用什麼樣的理由他現在從原本現在3點多要一次提高10倍變32 |
transcript.whisperx[7].start |
139.824 |
transcript.whisperx[7].end |
155.08 |
transcript.whisperx[7].text |
他也不是說10倍啦 他就是用那個入鈔齁來除這個整個的 是嘛部長我理解 但是我們是說外面 因為他的公式拿出來而他先用這個大帽子來扣下來 所以他 |
transcript.whisperx[8].start |
156.461 |
transcript.whisperx[8].end |
182.268 |
transcript.whisperx[8].text |
說實在話我覺得這就是變成我們談判的底氣以及我們談判的策略嘛你要怎麼樣拆掉他的大帽子嘛他講了一個64因為他這個是一體適用對全球各個國家都是用這個方法來讓大家上去跟他談判但是他的談判的目的大概不外乎幾個就第一個可能是解決他貿易失衡的問題 |
transcript.whisperx[9].start |
182.808 |
transcript.whisperx[9].end |
193.594 |
transcript.whisperx[9].text |
是就逆差的部分第二個解決他金融失衡的問題第三個解決他的國債問題國家對解決他國家製造空中化的問題大概就是這三個問題 |
transcript.whisperx[10].start |
194.946 |
transcript.whisperx[10].end |
220.001 |
transcript.whisperx[10].text |
那為什麼要用關稅呢關稅你就是剛才我想這個委員也指教的很好就是他這個金融的問題國債的問題所以他需要一點Cash所以這個Cash就是從關稅來說是最快或者從投資來說是最快所以我們是不是已經嚴正的讓美方知道其實到現在為止它不是一個對等關稅因為我們收美國是所以 |
transcript.whisperx[11].start |
224.304 |
transcript.whisperx[11].end |
246.463 |
transcript.whisperx[11].text |
連這個所謂我們賴清德總統也提出來說現在要雙方研議甚至往零關稅的方向但實際上來講我們收美國只有6%報告委員我想總統的意思是說從零關稅開始談起對對對這是我們的底牌有一些這個就談判的籌碼Give and Take如果他沒有進來我們台灣的 |
transcript.whisperx[12].start |
247.984 |
transcript.whisperx[12].end |
269.41 |
transcript.whisperx[12].text |
我們台灣也沒有輸出日本的先談 大家都是零嘛這個談判的一部分啦我給委員報告 這個我們都總體的盤過了所以我們談判小組 他們會收集各部門各個各界的這個建議他們會綜合考量以後呢然後就像剛才委員所指導的 |
transcript.whisperx[13].start |
270.33 |
transcript.whisperx[13].end |
291.057 |
transcript.whisperx[13].text |
然後他們會去跟美國做一些更細膩的談判好那部長你剛剛提到就說已經都整體的盤過我想我們國人也期待因為畢竟從上禮拜宣布到現在今天中午12點要生效我們也期待說政府部門已經有掌握我們目前的狀況那幾個部分我再跟您就教第一 |
transcript.whisperx[14].start |
291.797 |
transcript.whisperx[14].end |
317.228 |
transcript.whisperx[14].text |
藥品目前是還沒有宣布藥品跟半導體都還沒有宣布藥品跟半導體什麼時候會宣布他們要計算這個美國是如何去計算他會參考這樣的一個過程但目前我們還是沒有辦法得知我們其實這個就是因為這一次的這個變數太大就是我想我們雖然有盤但是現在不敢再先講因為這是談判的一部分 |
transcript.whisperx[15].start |
317.608 |
transcript.whisperx[15].end |
333.993 |
transcript.whisperx[15].text |
好那第二個部分預計何時我們真的能夠上談判桌我們有沒有掌握確知我們現在是第一群的人但現在媒體報導不管是媒體報導或說我們當然希望我們能夠儘速上談判桌嘛 |
transcript.whisperx[16].start |
334.83 |
transcript.whisperx[16].end |
350.06 |
transcript.whisperx[16].text |
我想在商業考量在國家考量尤其是我們在這一次這個對於我們國家來講這其實很重的一個方向32%我想都是跟委員所擔心的是一樣但是我們不能夠跟大家講 |
transcript.whisperx[17].start |
351.798 |
transcript.whisperx[17].end |
369.559 |
transcript.whisperx[17].text |
確確的數字因為這個會移情其他的在那個LINE上面的人不高興嘛然後會講說為什麼他台灣會到前面沒關係 確實我們有在等待有機會談判我們希望啦希望這是在前面談判好 那第三 |
transcript.whisperx[18].start |
370.621 |
transcript.whisperx[18].end |
390.078 |
transcript.whisperx[18].text |
關鍵的部分也是今天我們這個專案報告的一個方向就是說中小企業中南部有一些在零組件的相關也都我們現在已經有紓困的部分跟這個轉型的部分我們都有掌握您剛才已經有講到是說有盤點了有掌握現在會有多少家的一個企業 |
transcript.whisperx[19].start |
390.979 |
transcript.whisperx[19].end |
418.916 |
transcript.whisperx[19].text |
已經有宣布因為其實最近我也不希望人心惶惶其實部長這一點我要提出來的就是因為現在有人已經有看到新聞有哪一家已經有放無薪假等等的那到底實際狀況為何報告委員我們現在就是透過兩個管道在收集這個資訊一個就是我們自己經濟部的同仁一家一家去拜訪這是一個管道另外一個因為怕這個太慢所以我們有開放那個call center讓他們打電話進來 |
transcript.whisperx[20].start |
420.217 |
transcript.whisperx[20].end |
446.543 |
transcript.whisperx[20].text |
然後有區域工業區的部分呢工業區工業區的部分因為其實經濟部下面工業區我們有66個工業區所以我們都有服務中心是那我們就開放這個服務中心幹部長我們現在66個工業區裡面的廠商狀況廠商的狀況還有這個外部的我們都在調查而且我想一步一步調查我們會了解因為每一家的這個情況不會一樣 |
transcript.whisperx[21].start |
447.663 |
transcript.whisperx[21].end |
463.873 |
transcript.whisperx[21].text |
所以你一個措施下去不一定每天都有效啦我是希望能夠對症下藥他需要我們協助什麼到底是金融的紓困還是我們幫他訂單的轉移或者是他將來技術的提升我想這個是不同的層次部長當然 |
transcript.whisperx[22].start |
464.653 |
transcript.whisperx[22].end |
491.502 |
transcript.whisperx[22].text |
您剛提到對症下藥這就是本席想要請教以及今天為什麼我們早晚會排這樣的一個專報其實我們都希望對症下藥但到目前為止我們想要了解說至少你從大方向經濟部下面的工業區66個工業區裡面廠商的部分一定是更加連結我可以理解跟同意中小企業它沒有辦法你完全同時間掌握但你先從大方向著手 |
transcript.whisperx[23].start |
492.242 |
transcript.whisperx[23].end |
512.972 |
transcript.whisperx[23].text |
工業區裡面先掌握到底現在裡面是不是真的有所謂的停止訂單是不是有所謂的這個調整是不是有所謂的無薪假這一點總是可以先做做完之後你才有辦法把你的政策再拿出來嘛否則我們上禮拜看到先講到一個所謂的特別700億經濟部農業部180億所以總共880億當然 |
transcript.whisperx[24].start |
517.734 |
transcript.whisperx[24].end |
531.999 |
transcript.whisperx[24].text |
合理的預算運用我們都不會反對我們也都希望能夠當台灣中小企業的後盾但重點在於是說把錢怎麼樣用在刀口上這是我們現在所關注的是 我們現在880億是就根據過去的經驗推論出來的一個數目字 |
transcript.whisperx[25].start |
536.101 |
transcript.whisperx[25].end |
555.414 |
transcript.whisperx[25].text |
但是我想我們院長有特別的交代也就是說希望我們盤點具體的這個出來以後那如果有需要增加預算那麼我們會再提第二次的特別預算好 所以部長我給一個比較具體的建議因為這個禮拜五也已經排定了行政院長做特別預算的專案報告在下午的時間 |
transcript.whisperx[26].start |
556.355 |
transcript.whisperx[26].end |
583.841 |
transcript.whisperx[26].text |
我們朝野黨團也都有代表要去做質詢所以這一個部分請經濟部的同仁真的一定要掌握因為我相信在禮拜五的時候一定還會有委員也詢問到不管是特別預算數額夠不夠災情的狀況怎麼樣以及現在充其產面到底有多廣多少中小企業現在面臨到什麼樣的困境我想這一些部分也都需要在專案報告的時候好好的說明所以委員催情的部分我們會馬上來準備謝謝 |
transcript.whisperx[27].start |
586.125 |
transcript.whisperx[27].end |
586.288 |
transcript.whisperx[27].text |
谢谢 |