iVOD / 159891

Field Value
IVOD_ID 159891
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159891
日期 2025-04-07
會議資料.會議代碼 聯席會議-11-3-23,36-1
會議資料.會議代碼:str 第11屆第3會期交通、司法及法制委員會第1次聯席會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 23
會議資料.委員會代碼[1] 36
會議資料.委員會代碼:str[0] 交通委員會
會議資料.委員會代碼:str[1] 司法及法制委員會
會議資料.標題 第11屆第3會期交通、司法及法制委員會第1次聯席會議
影片種類 Clip
開始時間 2025-04-07T11:20:20+08:00
結束時間 2025-04-07T11:32:00+08:00
影片長度 00:11:40
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/c41b1a0504d137e5a7dc9722b8adc0e3daa51b2df98f8e7fb95a6c2cde3b5686303c495862b7e09b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蔡其昌
委員發言時間 11:20:20 - 11:32:00
會議時間 2025-04-07T09:00:00+08:00
會議名稱 立法院第11屆第3會期交通、司法及法制委員會第1次聯席會議(事由:審查一、委員蔡其昌等17人、二、委員林宜瑾等27人、三、委員楊瓊瓔等21人及四、委員徐富癸等17人分別擬具「國營臺灣鐵路股份有限公司設置條例第十條及第二十三條條文修正草案」案。 【以上各案詢答完畢後,進行處理】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 1.90409375
transcript.pyannote[0].end 5.65034375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 6.22409375
transcript.pyannote[1].end 6.86534375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 6.86534375
transcript.pyannote[2].end 7.82721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 9.09284375
transcript.pyannote[3].end 13.09221875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 13.27784375
transcript.pyannote[4].end 13.96971875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 16.60221875
transcript.pyannote[5].end 17.68221875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 18.34034375
transcript.pyannote[6].end 19.38659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 19.62284375
transcript.pyannote[7].end 23.26784375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 23.99346875
transcript.pyannote[8].end 27.18284375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 27.89159375
transcript.pyannote[9].end 29.76471875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 30.23721875
transcript.pyannote[10].end 38.28659375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 38.86034375
transcript.pyannote[11].end 42.50534375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 42.84284375
transcript.pyannote[12].end 52.00596875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 52.30971875
transcript.pyannote[13].end 56.98409375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 57.72659375
transcript.pyannote[14].end 60.51096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 61.28721875
transcript.pyannote[15].end 61.40534375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 62.01284375
transcript.pyannote[16].end 63.81846875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 63.90284375
transcript.pyannote[17].end 69.80909375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 70.19721875
transcript.pyannote[18].end 74.38221875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 74.80409375
transcript.pyannote[19].end 79.88346875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 80.10284375
transcript.pyannote[20].end 80.94659375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 81.08159375
transcript.pyannote[21].end 85.13159375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 85.63784375
transcript.pyannote[22].end 92.67471875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 92.96159375
transcript.pyannote[23].end 97.02846875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 97.58534375
transcript.pyannote[24].end 104.35221875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 104.82471875
transcript.pyannote[25].end 109.73534375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 110.41034375
transcript.pyannote[26].end 124.51784375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 124.99034375
transcript.pyannote[27].end 125.95221875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 126.47534375
transcript.pyannote[28].end 130.10346875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 130.67721875
transcript.pyannote[29].end 131.58846875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 132.14534375
transcript.pyannote[30].end 136.43159375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 136.75221875
transcript.pyannote[31].end 137.98409375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 138.65909375
transcript.pyannote[32].end 140.11034375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 140.51534375
transcript.pyannote[33].end 142.54034375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 142.94534375
transcript.pyannote[34].end 144.22784375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 144.71721875
transcript.pyannote[35].end 148.90221875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 150.04971875
transcript.pyannote[36].end 150.80909375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 151.06221875
transcript.pyannote[37].end 154.36971875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 154.58909375
transcript.pyannote[38].end 157.27221875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 157.52534375
transcript.pyannote[39].end 159.63471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 159.65159375
transcript.pyannote[40].end 160.71471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 161.40659375
transcript.pyannote[41].end 162.16596875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 162.85784375
transcript.pyannote[42].end 170.13096875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 170.68784375
transcript.pyannote[43].end 175.42971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 176.32409375
transcript.pyannote[44].end 184.33971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 184.67721875
transcript.pyannote[45].end 186.17909375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 186.70221875
transcript.pyannote[46].end 189.40221875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 190.71846875
transcript.pyannote[47].end 194.07659375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 194.76846875
transcript.pyannote[48].end 200.52284375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 200.82659375
transcript.pyannote[49].end 202.51409375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 202.98659375
transcript.pyannote[50].end 203.86409375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 204.23534375
transcript.pyannote[51].end 209.50034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 210.15846875
transcript.pyannote[52].end 211.54221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 212.41971875
transcript.pyannote[53].end 214.68096875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 214.56284375
transcript.pyannote[54].end 215.60909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 215.62596875
transcript.pyannote[55].end 216.90846875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 216.45284375
transcript.pyannote[56].end 217.14471875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 217.09409375
transcript.pyannote[57].end 219.82784375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 220.63784375
transcript.pyannote[58].end 224.16471875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 224.58659375
transcript.pyannote[59].end 237.09096875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 237.37784375
transcript.pyannote[60].end 242.15346875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 242.62596875
transcript.pyannote[61].end 243.26721875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 243.82409375
transcript.pyannote[62].end 244.21221875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 245.14034375
transcript.pyannote[63].end 252.51471875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 253.35846875
transcript.pyannote[64].end 256.61534375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 256.96971875
transcript.pyannote[65].end 262.57221875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 262.89284375
transcript.pyannote[66].end 263.53409375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 264.49596875
transcript.pyannote[67].end 266.09909375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 266.45346875
transcript.pyannote[68].end 270.09846875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 270.73971875
transcript.pyannote[69].end 272.86596875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 273.38909375
transcript.pyannote[70].end 274.95846875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 275.19471875
transcript.pyannote[71].end 277.48971875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 277.97909375
transcript.pyannote[72].end 288.72846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 289.28534375
transcript.pyannote[73].end 293.01471875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 293.89221875
transcript.pyannote[74].end 295.68096875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 295.78221875
transcript.pyannote[75].end 299.78159375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 300.55784375
transcript.pyannote[76].end 302.36346875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 302.73471875
transcript.pyannote[77].end 309.16409375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 309.51846875
transcript.pyannote[78].end 311.12159375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 312.37034375
transcript.pyannote[79].end 314.00721875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 312.42096875
transcript.pyannote[80].end 315.52596875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 315.32346875
transcript.pyannote[81].end 317.82096875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 318.44534375
transcript.pyannote[82].end 321.66846875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 321.21284375
transcript.pyannote[83].end 323.01846875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 322.42784375
transcript.pyannote[84].end 331.27034375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 327.08534375
transcript.pyannote[85].end 327.10221875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 330.71346875
transcript.pyannote[86].end 332.85659375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 332.85659375
transcript.pyannote[87].end 332.89034375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 333.21096875
transcript.pyannote[88].end 336.07971875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 336.51846875
transcript.pyannote[89].end 371.51721875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 340.58534375
transcript.pyannote[90].end 342.20534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 344.87159375
transcript.pyannote[91].end 345.51284375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 371.83784375
transcript.pyannote[92].end 385.08471875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 385.16909375
transcript.pyannote[93].end 389.94471875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 389.94471875
transcript.pyannote[94].end 390.38346875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 390.60284375
transcript.pyannote[95].end 391.68284375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 392.17221875
transcript.pyannote[96].end 395.47971875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 395.86784375
transcript.pyannote[97].end 398.92221875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 399.64784375
transcript.pyannote[98].end 406.41471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 407.03909375
transcript.pyannote[99].end 408.55784375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 408.94596875
transcript.pyannote[100].end 417.55221875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 418.09221875
transcript.pyannote[101].end 421.36596875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 421.46721875
transcript.pyannote[102].end 425.87159375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 425.98971875
transcript.pyannote[103].end 428.70659375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 429.09471875
transcript.pyannote[104].end 431.54159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 431.76096875
transcript.pyannote[105].end 433.78596875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 434.81534375
transcript.pyannote[106].end 436.50284375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 437.04284375
transcript.pyannote[107].end 445.71659375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 446.47596875
transcript.pyannote[108].end 451.70721875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 452.46659375
transcript.pyannote[109].end 455.58846875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 456.19596875
transcript.pyannote[110].end 457.76534375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 458.25471875
transcript.pyannote[111].end 460.95471875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 461.27534375
transcript.pyannote[112].end 462.67596875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 462.74346875
transcript.pyannote[113].end 464.31284375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 464.70096875
transcript.pyannote[114].end 467.50221875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 468.51471875
transcript.pyannote[115].end 472.27784375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 472.48034375
transcript.pyannote[116].end 475.46721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 475.63596875
transcript.pyannote[117].end 477.07034375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 477.34034375
transcript.pyannote[118].end 480.07409375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 480.86721875
transcript.pyannote[119].end 482.30159375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 482.52096875
transcript.pyannote[120].end 484.83284375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 485.33909375
transcript.pyannote[121].end 487.27971875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 487.41471875
transcript.pyannote[122].end 491.38034375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 491.63346875
transcript.pyannote[123].end 494.29971875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 494.78909375
transcript.pyannote[124].end 495.90284375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 496.37534375
transcript.pyannote[125].end 498.09659375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 498.43409375
transcript.pyannote[126].end 521.13096875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 521.63721875
transcript.pyannote[127].end 530.76659375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 530.81721875
transcript.pyannote[128].end 532.75784375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 531.44159375
transcript.pyannote[129].end 533.73659375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 533.87159375
transcript.pyannote[130].end 535.67721875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 535.94721875
transcript.pyannote[131].end 536.79096875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 537.26346875
transcript.pyannote[132].end 541.27971875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 541.92096875
transcript.pyannote[133].end 542.79846875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 543.47346875
transcript.pyannote[134].end 543.54096875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 544.43534375
transcript.pyannote[135].end 564.65159375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 564.87096875
transcript.pyannote[136].end 570.94596875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 571.38471875
transcript.pyannote[137].end 571.97534375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 572.34659375
transcript.pyannote[138].end 589.22159375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 589.49159375
transcript.pyannote[139].end 606.16409375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 606.68721875
transcript.pyannote[140].end 611.56409375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 612.27284375
transcript.pyannote[141].end 616.08659375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 616.27221875
transcript.pyannote[142].end 617.82471875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 617.97659375
transcript.pyannote[143].end 627.49409375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 627.25784375
transcript.pyannote[144].end 630.27846875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 630.93659375
transcript.pyannote[145].end 635.35784375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 635.64471875
transcript.pyannote[146].end 636.37034375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 637.31534375
transcript.pyannote[147].end 644.99346875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 645.73596875
transcript.pyannote[148].end 652.67159375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 652.78971875
transcript.pyannote[149].end 654.46034375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 655.27034375
transcript.pyannote[150].end 656.36721875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 656.73846875
transcript.pyannote[151].end 658.32471875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 658.62846875
transcript.pyannote[152].end 658.94909375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 659.67471875
transcript.pyannote[153].end 664.46721875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 664.70346875
transcript.pyannote[154].end 665.19284375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 665.49659375
transcript.pyannote[155].end 666.12096875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 666.79596875
transcript.pyannote[156].end 670.30596875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 670.60971875
transcript.pyannote[157].end 672.73596875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 673.52909375
transcript.pyannote[158].end 674.25471875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 675.62159375
transcript.pyannote[159].end 676.46534375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 677.61284375
transcript.pyannote[160].end 680.65034375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 681.25784375
transcript.pyannote[161].end 684.22784375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 684.64971875
transcript.pyannote[162].end 688.56471875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 689.52659375
transcript.pyannote[163].end 690.43784375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 690.79221875
transcript.pyannote[164].end 698.87534375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 692.24346875
transcript.pyannote[165].end 695.38221875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 695.83784375
transcript.pyannote[166].end 695.90534375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 695.92221875
transcript.pyannote[167].end 697.17096875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 697.54221875
transcript.pyannote[168].end 697.71096875
transcript.whisperx[0].start 2.864
transcript.whisperx[0].end 12.049
transcript.whisperx[0].text 謝謝主席 請五次長請次長鐵道局梁局長然後台鐵局馮總經理馮總委員好次長好次長那個海線鐵道的這個雙軌高架
transcript.whisperx[1].start 24.159
transcript.whisperx[1].end 40.939
transcript.whisperx[1].text 本席知道因為楊局長在之前有到我辦公室因為我陸續都會追蹤那個進度局長也很負責任只要有心有進度就會來本席的辦公室商討報告那現在最新的進度是因為那個財務
transcript.whisperx[2].start 43.561
transcript.whisperx[2].end 60.391
transcript.whisperx[2].text 台中市政府送到交通部來的財務規劃裡面還是希望財務要中央尋求中央的補助那看起來那補助好像不符合中央的相關規定嘛是不是這樣所以我們又把報告退回請市政府修改
transcript.whisperx[3].start 62.062
transcript.whisperx[3].end 84.607
transcript.whisperx[3].text 沒有問題 請局長回答一個報告委員 因為台中市政府在這個報告裡面有提到要求專案協商那按照要點 也就是我們立體化有一個這個審議的要點它有相關的這個計算的版本也就是說現在有按要點計算是A版本那台中市政府希望爭取比較優惠的條件 這是B版本
transcript.whisperx[4].start 85.7
transcript.whisperx[4].end 109.39
transcript.whisperx[4].text 那我們這個在呈報過程當中因為相關的審議機關有意見所以我想我們會再來協助雙方來做溝通好那也私下跟台中市政府講一下啦就是刪了中央的預算再加上財政授制劃分把那麼多的錢都給地方政府所以要這個補助啊不是不行啦講起來獨立的嘛要中央
transcript.whisperx[5].start 110.47
transcript.whisperx[5].end 131.56
transcript.whisperx[5].text 大錢來補助基本上我站在海線立委的立場我不會反對嘛就分配的比例除了公視之外我們盡量來協助地方政府趕快民眾要海線的這個雙軌高架能夠早日落實本席是支持的也就是說在合理之外我們怎麼盡量來幫助地方政府把這件事情做好
transcript.whisperx[6].start 132.296
transcript.whisperx[6].end 158.678
transcript.whisperx[6].text 但是呢你把財政授權劃分把它切割一大塊給地方政府再來又預算又要刪又要動那又要中央補助哇這個世間怎麼有這種事情所以你們跟地方政府溝通的時候也要跟盧市長講一下嘛你不能這樣你們這個黨不可以這樣幹嘛這樣幹的結果就是就是導致中央沒錢沒錢你又要發公文又要這樣寫這樣怎麼合理
transcript.whisperx[7].start 161.705
transcript.whisperx[7].end 188.982
transcript.whisperx[7].text 所以本席很支持啦只要中央有能力我們就盡量來幫忙但是要弱化中央又要中央幫忙這個是緣木求雨啦這是做不高的事情所以我會希望那個楊局長緊盯這個公文的進度啦不要只發給台中市政府請他做修改修改之後可能又要過半年過一年才又再修改上來好不好這個我再一次提醒啦
transcript.whisperx[8].start 190.762
transcript.whisperx[8].end 219.399
transcript.whisperx[8].text 第二個我想今天這個來講一下這個台鐵這個償債基金的部分我想我就不再多談因為它主要還是放在本席有提案希望在法在法裡面解決你們是希望那個辦法就是償債基金你們打算多久要把債償完市長30年嘛對不對你們辦法裡面寫30年嘛因為這個償債基金它不是一個
transcript.whisperx[9].start 221.283
transcript.whisperx[9].end 244.017
transcript.whisperx[9].text 純粹性的啦也就是它不是一支你們要藏在基金裡面你們要運為譬如說裡面又有百年企業所以你們就一百年要去藏在兩百年永久性的長期性的不是它就有一個年限嘛台鐵公司土地作價給鐵道局然後鐵道局你要把債務還清所以它有一個年限啦那本息為了
transcript.whisperx[10].start 245.322
transcript.whisperx[10].end 263.377
transcript.whisperx[10].text 為了認為這個很慎重應該趕快來處理這個土地常在的事情所以本席把它放在法律裡面來處理那你們希望在辦法裡面來處理這個等一下主席在主持這個討論的時候我沒有堅持啦我只是強調不可以
transcript.whisperx[11].start 264.534
transcript.whisperx[11].end 291.172
transcript.whisperx[11].text 沒有期限的一直下去那為什麼我擔心這個沒有不能沒有期限的一直下去這個要回過過來你看看台鐵台鐵公司你看這個大家都在講公司化本席也不反對公司化透過台鐵的公司化可不可以提升台鐵的績效讓永遠虧損的台鐵公司能夠步上軌道來賺錢至少不賺錢也不要每年虧損這麼多錢
transcript.whisperx[12].start 293.936
transcript.whisperx[12].end 305.225
transcript.whisperx[12].text 那你看我們每一年的預估,你看我再把你們自己的預估表拿出來看你們的預估表當中,你看已經發生的啦你們預估113年要虧損74.9億,但實際上虧損多少?137.9億你不覺得這個預估差距有一點遠嗎?
transcript.whisperx[13].start 318.673
transcript.whisperx[13].end 335.733
transcript.whisperx[13].text 主要是幫委員如果可以給我說明一下我當然要聽你說明因為公司化我們其實做支付金提撥23億當初也沒有在預算裡面被考量所以後來還有那為什麼沒有被考量這件事情是突然之間發生沒有被考量進去
transcript.whisperx[14].start 336.827
transcript.whisperx[14].end 362.613
transcript.whisperx[14].text 對就因為我們的預算都是113年預算在121年我們就提報112送到院裡面所以在兩年前我們就在估的時候公司化的政策有配合有編列部分的一些費用預算費用但是大部分的費用沒有編列進去的所以也要特別說明一下那中間過程還碰到電價有兩次的調漲
transcript.whisperx[15].start 363.593
transcript.whisperx[15].end 389.3
transcript.whisperx[15].text 那鐵路運輸業調漲幅度都很高又高達15%那再來就是我們的優退的一個機制措施也大概也投入了5到6億那所以電費然後薪資調漲所以這種種加起來事實上我們有如果同一個基準來計算的話事實上我們的虧損跟這個預算的預估的虧損是很接近的這個也跟委員做一個報告
transcript.whisperx[16].start 390.12
transcript.whisperx[16].end 414.913
transcript.whisperx[16].text 對啦 總經理這個你講這些理由其實我不能說我反對啦但是如果我們以一個公司運營的角度啦一個公司我現在要編假設我要開產114的時候我就已經可以大約預估未來一年除非像黑天鵝啦就像今天川普這幾天川普關稅的事情對不對大家覺得他應該不會這麼狠結果他真的那麼狠
transcript.whisperx[17].start 415.413
transcript.whisperx[17].end 433.685
transcript.whisperx[17].text 但他有沒有跡象 他還是有跡象嘛所以該避險的人 他在川普可能上他可能當選就是一個時機避險的時機再來第二個川普在談關稅的時候可能就是第二個時機因為他說我們在清明年假的時候他之前要宣布嘛所以有人這兩個他都避了
transcript.whisperx[18].start 434.858
transcript.whisperx[18].end 446.803
transcript.whisperx[18].text 他就進行相關的避嫌所以你說他黑天鵝嘛是但也沒有到那麼黑啦這個天鵝也沒有那麼黑啦所以我的意思在講說一個公司啊虧損預估虧損74億實際上虧損137億
transcript.whisperx[19].start 452.806
transcript.whisperx[19].end 479.193
transcript.whisperx[19].text 這個幅度說實在話有一點大有一點大所以電會不會上漲其實我們應該已經會知道因為電會不會上漲我們做政府自己都還不知道電會不會上漲我覺得這個說不大過去你完全腦袋裡面沒有這本來預估電會下跌的結果電竟然上漲我認為應該不會吧因為大家所有的企業都預估電會上漲
transcript.whisperx[20].start 480.936
transcript.whisperx[20].end 495.701
transcript.whisperx[20].text 就像你要我預估明年我還是會告訴你電有可能會上漲啊因為這是我們可預期的就像川普的關稅也是一樣從他當選那一刻到他宣布4月2號宣布其實都是可預期的所以我的意思就是說
transcript.whisperx[21].start 496.421
transcript.whisperx[21].end 519.712
transcript.whisperx[21].text 台鐵預估這個數字都讓我感到害怕啦所以你常債基金我叫你三十年已經衝衝的原因就是這後輩都不遵守這都不知道要說到什麼時候但我不堅持啦你辦法上面有我覺得就表示一個態度啦態度先出來只是我很擔心那個態度跟實際執行的結果還是有相當的距離跟落差啦好那台鐵公司114年
transcript.whisperx[22].start 521.613
transcript.whisperx[22].end 524.695
transcript.whisperx[22].text 從虧損實際上虧損137億我們預計你們的預算是要來預計虧損8.6億預估虧損86億這個差距怎麼弄這個怎麼樣變成137億要虧損86億你們怎麼算的
transcript.whisperx[23].start 544.468
transcript.whisperx[23].end 570.694
transcript.whisperx[23].text 報告委員就是我們在首先是在收入面收入面我們有預計我們的營運本業會增加到7億元左右那我們的附屬事業包括便當文創商品還有這個IP的授權那也會增加到10億左右今年大概是8.6億所以我們有設定這樣的一個KPI就是營收的增加那還有就是剛才講的公司化
transcript.whisperx[24].start 571.654
transcript.whisperx[24].end 588.936
transcript.whisperx[24].text 當初第一年有投入的一些支出有減少那接著再計算我們一個人事的成本那人事在支出的費用裡面三大項是主要的一個是用人費用一個是折舊費用這兩項事實上就佔了我們整個公司的支出的八成
transcript.whisperx[25].start 589.577
transcript.whisperx[25].end 610.189
transcript.whisperx[25].text 那我們所以在114年碰到 營收我們一定會增加我們預估大概都會增加到10%到15%之間那但是資本的支出我們折舊因為這個新車投入了將近1000億開始就要分攤折舊費用所以折舊費用也會同步的增加20到30億所以
transcript.whisperx[26].start 612.35
transcript.whisperx[26].end 635.957
transcript.whisperx[26].text 所以我們整體的努力相關的一些費用能夠節流那再開源那整體的這個營收可以相較113年可以減少大約50億這個虧損以上報告我總經理這樣啦因為時間真的是太短了就我要認真的每一個項目來問你譬如說營業外收入為什麼
transcript.whisperx[27].start 638.289
transcript.whisperx[27].end 654.394
transcript.whisperx[27].text 減少的砍了快一半這個我都很希望了解所以是不是總經理你把未來你們的預估的狀況讓我了解一下每一個每一個細項你們到底要增加要增減多少讓我了解一下那個主席時間是不是已經到了
transcript.whisperx[28].start 659.704
transcript.whisperx[28].end 688.443
transcript.whisperx[28].text 那個齁另外那個站票跟坐票的問題啊我看消費者大家都很在意嘛到底我們的志強號哪一些是可站哪一些是不可站那為什麼站的人跟坐的人都在吵架都在吵架啦那到底為什麼時間都沒時間 我很想了解耶這齁台鐵公司部跟旅客都會玩架每天都在上網齁這個罵坐的人罵站的站的人罵坐的
transcript.whisperx[29].start 689.568
transcript.whisperx[29].end 697.852
transcript.whisperx[29].text 阿這個我們難道沒有想要解決嗎就我們的有啦齁那怎麼解決來告訴我一下啦好不好時間的關係我沒在這裡跟你們問啦好謝謝