iVOD / 159758

Field Value
IVOD_ID 159758
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159758
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-26-4
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議
影片種類 Clip
開始時間 2025-03-27T13:11:23+08:00
結束時間 2025-03-27T13:21:57+08:00
影片長度 00:10:34
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db900791a170e72b169f97648dfe0a0275fc53cf129e64e549d191b9d0562b452a15f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊曜
委員發言時間 13:11:23 - 13:21:57
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議(事由:邀請衛生福利部、勞動部、國家發展委員會、教育部、法務部針對「少子女化衝擊,如何營造友善托育環境」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 2.22471875
transcript.pyannote[0].end 2.88284375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 3.62534375
transcript.pyannote[1].end 4.51971875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 5.68409375
transcript.pyannote[2].end 6.81471875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 15.25221875
transcript.pyannote[3].end 17.61471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 15.72471875
transcript.pyannote[4].end 29.27534375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 22.60971875
transcript.pyannote[5].end 23.53784375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 28.83659375
transcript.pyannote[6].end 29.07284375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 30.40596875
transcript.pyannote[7].end 31.63784375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 31.95846875
transcript.pyannote[8].end 38.96159375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 39.70409375
transcript.pyannote[9].end 45.25596875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 41.74596875
transcript.pyannote[10].end 42.96096875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 43.53471875
transcript.pyannote[11].end 44.31096875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 45.84659375
transcript.pyannote[12].end 50.70659375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 50.82471875
transcript.pyannote[13].end 50.87534375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 50.87534375
transcript.pyannote[14].end 50.95971875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 51.97221875
transcript.pyannote[15].end 53.23784375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 53.71034375
transcript.pyannote[16].end 54.68909375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 55.04346875
transcript.pyannote[17].end 56.46096875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 57.11909375
transcript.pyannote[18].end 58.21596875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 58.24971875
transcript.pyannote[19].end 95.15534375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 64.99971875
transcript.pyannote[20].end 65.11784375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 95.72909375
transcript.pyannote[21].end 103.45784375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 103.55909375
transcript.pyannote[22].end 123.11721875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 123.11721875
transcript.pyannote[23].end 123.65721875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 123.65721875
transcript.pyannote[24].end 124.01159375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 124.01159375
transcript.pyannote[25].end 128.33159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 126.44159375
transcript.pyannote[26].end 128.28096875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 128.77034375
transcript.pyannote[27].end 130.05284375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 130.28909375
transcript.pyannote[28].end 135.21659375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 135.94221875
transcript.pyannote[29].end 139.43534375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 140.26221875
transcript.pyannote[30].end 147.60284375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 146.65784375
transcript.pyannote[31].end 148.00784375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 149.10471875
transcript.pyannote[32].end 150.57284375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 152.51346875
transcript.pyannote[33].end 168.98346875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 152.68221875
transcript.pyannote[34].end 154.03221875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 161.38971875
transcript.pyannote[35].end 162.95909375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 164.12346875
transcript.pyannote[36].end 165.72659375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 169.59096875
transcript.pyannote[37].end 172.83096875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 173.48909375
transcript.pyannote[38].end 177.26909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 173.55659375
transcript.pyannote[39].end 175.27784375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 177.26909375
transcript.pyannote[40].end 177.50534375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 178.04534375
transcript.pyannote[41].end 207.34034375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 178.34909375
transcript.pyannote[42].end 178.51784375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 188.13659375
transcript.pyannote[43].end 188.35596875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 210.78284375
transcript.pyannote[44].end 211.17096875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 211.35659375
transcript.pyannote[45].end 218.54534375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 218.78159375
transcript.pyannote[46].end 218.79846875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 218.79846875
transcript.pyannote[47].end 219.15284375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 219.92909375
transcript.pyannote[48].end 219.94596875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 219.94596875
transcript.pyannote[49].end 229.09221875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 229.61534375
transcript.pyannote[50].end 231.30284375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 233.19284375
transcript.pyannote[51].end 234.86346875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 233.31096875
transcript.pyannote[52].end 233.47971875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 234.96471875
transcript.pyannote[53].end 250.32096875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 245.32596875
transcript.pyannote[54].end 245.84909375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 250.32096875
transcript.pyannote[55].end 262.97721875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 256.96971875
transcript.pyannote[56].end 257.99909375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 258.62346875
transcript.pyannote[57].end 258.84284375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 263.12909375
transcript.pyannote[58].end 265.99784375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 266.36909375
transcript.pyannote[59].end 304.30409375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 268.39409375
transcript.pyannote[60].end 269.06909375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 271.07721875
transcript.pyannote[61].end 271.66784375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 297.03096875
transcript.pyannote[62].end 297.63846875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 304.62471875
transcript.pyannote[63].end 310.14284375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 308.91096875
transcript.pyannote[64].end 311.61096875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 310.76721875
transcript.pyannote[65].end 312.87659375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 311.74596875
transcript.pyannote[66].end 312.10034375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 312.38721875
transcript.pyannote[67].end 313.09596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 313.73721875
transcript.pyannote[68].end 313.97346875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 313.97346875
transcript.pyannote[69].end 314.39534375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 315.22221875
transcript.pyannote[70].end 320.38596875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 318.86721875
transcript.pyannote[71].end 322.83284375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 323.25471875
transcript.pyannote[72].end 323.27159375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 323.27159375
transcript.pyannote[73].end 327.59159375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 323.54159375
transcript.pyannote[74].end 334.39221875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 331.86096875
transcript.pyannote[75].end 332.60346875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 332.60346875
transcript.pyannote[76].end 332.62034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 334.57784375
transcript.pyannote[77].end 347.40284375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 347.25096875
transcript.pyannote[78].end 348.29721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 347.65596875
transcript.pyannote[79].end 393.03284375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 354.57471875
transcript.pyannote[80].end 354.81096875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 357.61221875
transcript.pyannote[81].end 359.92409375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 373.00221875
transcript.pyannote[82].end 373.86284375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 383.81909375
transcript.pyannote[83].end 384.34221875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 386.24909375
transcript.pyannote[84].end 387.86909375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 393.40409375
transcript.pyannote[85].end 412.52346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 397.21784375
transcript.pyannote[86].end 397.69034375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 400.64346875
transcript.pyannote[87].end 400.67721875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 400.67721875
transcript.pyannote[88].end 401.28471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 406.70159375
transcript.pyannote[89].end 407.03909375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 413.21534375
transcript.pyannote[90].end 413.78909375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 419.35784375
transcript.pyannote[91].end 422.53034375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 423.25596875
transcript.pyannote[92].end 429.66846875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 429.97221875
transcript.pyannote[93].end 441.90284375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 441.37971875
transcript.pyannote[94].end 441.41346875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 441.48096875
transcript.pyannote[95].end 441.61596875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 442.89846875
transcript.pyannote[96].end 448.33221875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 449.05784375
transcript.pyannote[97].end 455.26784375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 450.93096875
transcript.pyannote[98].end 451.72409375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 456.63471875
transcript.pyannote[99].end 458.79471875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 459.16596875
transcript.pyannote[100].end 460.54971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 461.15721875
transcript.pyannote[101].end 461.84909375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 462.64221875
transcript.pyannote[102].end 471.14721875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 463.24971875
transcript.pyannote[103].end 464.70096875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 471.56909375
transcript.pyannote[104].end 472.71659375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 473.29034375
transcript.pyannote[105].end 475.46721875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 476.14221875
transcript.pyannote[106].end 477.72846875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 478.50471875
transcript.pyannote[107].end 481.55909375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 482.18346875
transcript.pyannote[108].end 484.74846875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 485.10284375
transcript.pyannote[109].end 487.63409375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 487.95471875
transcript.pyannote[110].end 489.45659375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 488.76471875
transcript.pyannote[111].end 489.18659375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 489.45659375
transcript.pyannote[112].end 491.70096875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 492.27471875
transcript.pyannote[113].end 493.42221875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 493.70909375
transcript.pyannote[114].end 496.07159375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 496.39221875
transcript.pyannote[115].end 497.64096875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 497.80971875
transcript.pyannote[116].end 515.17409375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 516.06846875
transcript.pyannote[117].end 517.18221875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 517.46909375
transcript.pyannote[118].end 517.99221875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 518.21159375
transcript.pyannote[119].end 519.51096875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 520.91159375
transcript.pyannote[120].end 521.99159375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 522.48096875
transcript.pyannote[121].end 523.71284375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 524.11784375
transcript.pyannote[122].end 532.43721875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 533.48346875
transcript.pyannote[123].end 534.98534375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 535.64346875
transcript.pyannote[124].end 536.80784375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 536.18346875
transcript.pyannote[125].end 536.25096875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 536.75721875
transcript.pyannote[126].end 536.84159375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 536.84159375
transcript.pyannote[127].end 536.87534375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 536.87534375
transcript.pyannote[128].end 544.23284375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 544.58721875
transcript.pyannote[129].end 554.42534375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 549.04221875
transcript.pyannote[130].end 549.49784375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 554.83034375
transcript.pyannote[131].end 555.18471875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 556.43346875
transcript.pyannote[132].end 559.77471875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 560.51721875
transcript.pyannote[133].end 561.44534375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 561.79971875
transcript.pyannote[134].end 563.45346875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 564.02721875
transcript.pyannote[135].end 565.17471875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 565.73159375
transcript.pyannote[136].end 566.15346875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 567.18284375
transcript.pyannote[137].end 568.33034375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 568.63409375
transcript.pyannote[138].end 569.84909375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 570.42284375
transcript.pyannote[139].end 572.85284375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 573.73034375
transcript.pyannote[140].end 574.32096875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 574.64159375
transcript.pyannote[141].end 578.77596875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 579.23159375
transcript.pyannote[142].end 586.85909375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 579.40034375
transcript.pyannote[143].end 581.71221875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 586.85909375
transcript.pyannote[144].end 587.34846875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 587.34846875
transcript.pyannote[145].end 603.53159375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 603.83534375
transcript.pyannote[146].end 604.57784375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 606.18096875
transcript.pyannote[147].end 621.26721875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 607.36221875
transcript.pyannote[148].end 607.64909375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 621.43596875
transcript.pyannote[149].end 623.81534375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 622.56659375
transcript.pyannote[150].end 630.80159375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 630.22784375
transcript.pyannote[151].end 632.82659375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 631.17284375
transcript.pyannote[152].end 632.13471875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 632.15159375
transcript.pyannote[153].end 632.21909375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 632.38784375
transcript.pyannote[154].end 632.52284375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 633.38346875
transcript.pyannote[155].end 633.73784375
transcript.whisperx[0].start 2.456
transcript.whisperx[0].end 28.897
transcript.whisperx[0].text 謝謝主席主席請一下衛福部理事長養委員好市長好市長就是少子化是一個全球性的問題啊是是沒錯我們看就是我國的爭議率是一路下滑沒錯
transcript.whisperx[1].start 30.515
transcript.whisperx[1].end 50.336
transcript.whisperx[1].text 南韓比較特殊南韓曾經是總和生育率全球幾乎是最低的他們在2024年也就是去年他們的生育率有微乎的回升
transcript.whisperx[2].start 52.488
transcript.whisperx[2].end 67.698
transcript.whisperx[2].text 請教一下次長你們有沒有研究到底是什麼原因非常感謝委員的關心據我所知去年的數字它本來是確實全世界競賠莫作就TFR是0.7去年大概回到0.76
transcript.whisperx[3].start 69.359
transcript.whisperx[3].end 95.054
transcript.whisperx[3].text 那這個其實對韓國人就很大的一個改變那據我了解因為我之前在學界也認識很多很多韓國的一個朋友其實昨天就有韓國學者也有來拜訪我我有這個問題我要請教他是說他們最近確實有一些除了津貼之外另外其實公托啦他們公托的比例老實說確實比我們高這是第二個重點第三個最重要的就是其實各地方政府他們的社會住宅
transcript.whisperx[4].start 95.794
transcript.whisperx[4].end 121.053
transcript.whisperx[4].text 他們的住宅啦住宅那邊的可以讓就是說他有分胎次別嘛一胎二胎三胎他的這一個補助的額度確實比台灣來得更高那我覺得這確實台灣應該要來借進的地方就是你總是讓其實韓國他們在最近這幾年他們的房價也漲得非常非常驚人那年輕人也付不起跟台灣同樣問題可是他們用社會住宅這一個方式我覺得確實應該可以來考慮我這個
transcript.whisperx[5].start 124.595
transcript.whisperx[5].end 146.747
transcript.whisperx[5].text 當然社宅好像不是衛福部那部分比較是內政部用社宅來當作誘因我個人也覺得好像是一個很很好的方法可以就這樣子就是他們的公托做得比我們好沒錯然後他們的社宅的誘因誘高沒錯還有嗎
transcript.whisperx[6].start 152.771
transcript.whisperx[6].end 165.364
transcript.whisperx[6].text 還是我這裡還有一個問題就是因為只有一年啦所以也不見得因為他大概就是只有去年才開始所以可能可能還需要長期觀察那你提的
transcript.whisperx[7].start 169.688
transcript.whisperx[7].end 191.477
transcript.whisperx[7].text 那公托的部分零到二歲是你對 我們的分工是這樣你要不要也直接講一下就是好 各位委員包括我們現在目前有關公托的部分我們現在目前主要就是有一些一些托育方面的一些設施那這裡面包括就是說我們現在目前各位委員包括我們現在目前有總共497
transcript.whisperx[8].start 193.979
transcript.whisperx[8].end 206.748
transcript.whisperx[8].text 497的這個托林中心嘛那我們現在目前接下來我們會來趕快來做這個積極的佈建那今年應該會再多增加46處嘛還會增加大概94處那預計可以再多增加3000名的這個小朋友
transcript.whisperx[9].start 220.298
transcript.whisperx[9].end 222.721
transcript.whisperx[9].text 那也就是說現在497我們就算500啦那你們在多久之內會再增加這個
transcript.whisperx[10].start 233.331
transcript.whisperx[10].end 260.701
transcript.whisperx[10].text 大概時程大概多久一般我們大概到一個據點的推估大概都在兩年左右那但是其實大概到即使到今年都一直陸陸續續各縣市政府還有在額外再申請的所以這個數字還在持續的增加當中對因為托嬰中心除了其他的配備以外便利性也是一個很重要的就是怎麼讓怎麼廣布據點
transcript.whisperx[11].start 263.631
transcript.whisperx[11].end 284.968
transcript.whisperx[11].text 當然啦 要廣佈據點拖延人力的還是有問題啦所以整個政策其實我們不能只看一個點啦只看一個點都會覺得好像很容易啦不過不管怎麼樣就是
transcript.whisperx[12].start 287.149
transcript.whisperx[12].end 312.018
transcript.whisperx[12].text 很感謝次長大概也就之前的經歷所以剛好有外國的朋友可以跟我做溝通今天也就很快速的回答了這兩個你剛才說是三個可是我聽是一個托育一個是托育另外一個是住宅就兩個嘛
transcript.whisperx[13].start 315.69
transcript.whisperx[13].end 333.449
transcript.whisperx[13].text 因為還有一個就補貼啦他們也一樣跟台灣也有這一個因為補貼好像也都比我們高這個數字我必須要再來這邊認一下我們現在目前大概就是一五六七我這邊有資料啦不過就是
transcript.whisperx[14].start 335.05
transcript.whisperx[14].end 362.496
transcript.whisperx[14].text 時間的關係所以我可能不那個就是確實他們的補貼也比我們高不過各類補貼也是要看政府的整體財政那我也希望因為我們常常講說少子女化其實是一個國安的危機沒錯這個我們確實就是盡可能的我們把別人
transcript.whisperx[15].start 363.516
transcript.whisperx[15].end 384.64
transcript.whisperx[15].text 別人在推的好的政策好像剛剛次長講的涉災的部分我們可能也會跟內政部來做一個討論那托育的部分不管0到2歲或者是以上的是屬於教育部我也都希望能夠趕快去廣布據點培養人力讓年輕的父母其實確實是
transcript.whisperx[16].start 394.022
transcript.whisperx[16].end 411.47
transcript.whisperx[16].text 職業家庭兩頭燒有它一定的困難點太困難它就越不想生嘛所以我們還是盡可能用政府的力量來協助他們好謝謝次長次長請回感謝委員謝謝主席我請一下勞動部理事長
transcript.whisperx[17].start 419.7
transcript.whisperx[17].end 445.804
transcript.whisperx[17].text 養委員好市長好市長我因為時間的關係所以我就簡單問一個問題你們現在在研議要修正就業保險法就是讓雙清假如領滿6個月的育嬰留職停薪的可以再增加一個月這是你們的方向是不是可是每年我們大概有9萬個人來
transcript.whisperx[18].start 449.29
transcript.whisperx[18].end 476.87
transcript.whisperx[18].text 來申請一因留職去年是九萬三千對不對那假如按照你們現在的規定就是雙親都要滿六個月才各加一個月是不是這樣子對方向是這樣那這樣子可以受惠的是只有兩萬一千人左右我們的資料是大概這樣子我提一個建議是
transcript.whisperx[19].start 478.547
transcript.whisperx[19].end 487.446
transcript.whisperx[19].text 你們要不要 因為我們現在是一流值可以申請勞保投保薪資的八成的津貼嘛
transcript.whisperx[20].start 488.001
transcript.whisperx[20].end 514.793
transcript.whisperx[20].text 六成然後補貼兩成六成補貼兩成那能不能就是不要用六個月來算因為六個月來算就是只有大概兩成多一點的人有申請育嬰留職的人數裡面只有大概兩成多一點點的人可以享受到政府的這一項鼓勵
transcript.whisperx[21].start 516.153
transcript.whisperx[21].end 534.707
transcript.whisperx[21].text 能不能從勤領的部分譬如說政府勤領六成嘛政府補貼兩成嘛能不能直接就是政府補貼兩成五或者是三成市長懂我的意思嗎
transcript.whisperx[22].start 535.68
transcript.whisperx[22].end 549.932
transcript.whisperx[22].text 用公務預算是不是不是你們現在這兩層是用公務預算多這個月你們也是有兩層是公務預算六層是基金那就是公務預算的部分
transcript.whisperx[23].start 558.043
transcript.whisperx[23].end 578.596
transcript.whisperx[23].text 你們應該要去思考看看,能不能不要用各滿六個月,各加一個月。就是有請領的,就直接是基金負擔六成,然後公務預算負擔兩成五到三成。
transcript.whisperx[24].start 579.281
transcript.whisperx[24].end 601.929
transcript.whisperx[24].text 了解我的意思這樣子可以受惠的人數比較多其實我時間的關係因為雙親都必須要滿12個月對很多家庭其實是有譬如說父母親離異的啦比較會有一些
transcript.whisperx[25].start 606.246
transcript.whisperx[25].end 630.481
transcript.whisperx[25].text 困難出來所以就直接假如說我們有打算要多鼓勵就直接是在經營的層數上做增加是了解委員的意思我沒有要你在這邊直接回答不過你們這個真的可以回去做個思考謝謝主席