iVOD / 159721

Field Value
IVOD_ID 159721
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159721
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-26-4
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議
影片種類 Clip
開始時間 2025-03-27T11:54:20+08:00
結束時間 2025-03-27T12:03:06+08:00
影片長度 00:08:46
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db9000dcd8b53b8c85f8e7648dfe0a0275fc59b62a44c83059aaf34c2034a5d6bfafb5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 11:54:20 - 12:03:06
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第4次全體委員會議(事由:邀請衛生福利部、勞動部、國家發展委員會、教育部、法務部針對「少子女化衝擊,如何營造友善托育環境」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.77346875
transcript.pyannote[0].end 1.11096875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 2.22471875
transcript.pyannote[1].end 3.64221875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 4.73909375
transcript.pyannote[2].end 5.90346875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 13.88534375
transcript.pyannote[3].end 16.65284375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 16.65284375
transcript.pyannote[4].end 16.87221875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 16.87221875
transcript.pyannote[5].end 19.43721875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 19.89284375
transcript.pyannote[6].end 23.70659375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 23.70659375
transcript.pyannote[7].end 23.79096875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 23.79096875
transcript.pyannote[8].end 23.84159375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 24.21284375
transcript.pyannote[9].end 27.03096875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 27.03096875
transcript.pyannote[10].end 34.23659375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 31.11471875
transcript.pyannote[11].end 31.55346875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 33.37596875
transcript.pyannote[12].end 36.07596875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 36.56534375
transcript.pyannote[13].end 37.45971875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 38.20221875
transcript.pyannote[14].end 39.63659375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 40.42971875
transcript.pyannote[15].end 42.20159375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 42.43784375
transcript.pyannote[16].end 43.75409375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 43.93971875
transcript.pyannote[17].end 44.12534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 44.12534375
transcript.pyannote[18].end 44.32784375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 44.32784375
transcript.pyannote[19].end 44.46284375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 44.46284375
transcript.pyannote[20].end 44.96909375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 44.96909375
transcript.pyannote[21].end 45.03659375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 45.03659375
transcript.pyannote[22].end 45.40784375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 45.40784375
transcript.pyannote[23].end 46.57221875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 46.57221875
transcript.pyannote[24].end 46.58909375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 46.85909375
transcript.pyannote[25].end 48.02346875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 48.02346875
transcript.pyannote[26].end 49.69409375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 50.62221875
transcript.pyannote[27].end 56.49471875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 56.91659375
transcript.pyannote[28].end 58.43534375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 58.65471875
transcript.pyannote[29].end 60.15659375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 60.57846875
transcript.pyannote[30].end 60.83159375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 61.38846875
transcript.pyannote[31].end 62.97471875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 62.97471875
transcript.pyannote[32].end 63.04221875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 63.04221875
transcript.pyannote[33].end 63.07596875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 63.07596875
transcript.pyannote[34].end 63.31221875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 63.31221875
transcript.pyannote[35].end 65.42159375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 63.39659375
transcript.pyannote[36].end 64.25721875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 65.42159375
transcript.pyannote[37].end 68.13846875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 65.43846875
transcript.pyannote[38].end 66.02909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 68.74596875
transcript.pyannote[39].end 69.89346875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 70.43346875
transcript.pyannote[40].end 71.24346875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 72.66096875
transcript.pyannote[41].end 74.21346875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 74.58471875
transcript.pyannote[42].end 78.97221875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 78.06096875
transcript.pyannote[43].end 79.37721875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 79.37721875
transcript.pyannote[44].end 81.97596875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 81.97596875
transcript.pyannote[45].end 82.02659375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 82.41471875
transcript.pyannote[46].end 89.13096875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 89.55284375
transcript.pyannote[47].end 100.85909375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 101.38221875
transcript.pyannote[48].end 103.74471875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 103.81221875
transcript.pyannote[49].end 104.57159375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 104.57159375
transcript.pyannote[50].end 104.58846875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 104.58846875
transcript.pyannote[51].end 104.68971875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 104.79096875
transcript.pyannote[52].end 104.80784375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 104.80784375
transcript.pyannote[53].end 115.69221875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 116.14784375
transcript.pyannote[54].end 116.63721875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 116.75534375
transcript.pyannote[55].end 119.28659375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 117.07596875
transcript.pyannote[56].end 117.71721875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 119.45534375
transcript.pyannote[57].end 120.68721875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 121.26096875
transcript.pyannote[58].end 121.93596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 122.07096875
transcript.pyannote[59].end 123.70784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 123.70784375
transcript.pyannote[60].end 123.72471875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 125.09159375
transcript.pyannote[61].end 125.14221875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 125.14221875
transcript.pyannote[62].end 125.15909375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 125.15909375
transcript.pyannote[63].end 125.17596875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 125.17596875
transcript.pyannote[64].end 125.26034375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 125.56409375
transcript.pyannote[65].end 125.58096875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 125.58096875
transcript.pyannote[66].end 139.50284375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 137.32596875
transcript.pyannote[67].end 137.96721875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 139.50284375
transcript.pyannote[68].end 139.77284375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 139.77284375
transcript.pyannote[69].end 148.59846875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 149.13846875
transcript.pyannote[70].end 163.76909375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 163.95471875
transcript.pyannote[71].end 173.79284375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 171.24471875
transcript.pyannote[72].end 172.67909375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 173.79284375
transcript.pyannote[73].end 177.08346875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 175.29471875
transcript.pyannote[74].end 176.29034375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 177.74159375
transcript.pyannote[75].end 180.96471875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 183.73221875
transcript.pyannote[76].end 183.76596875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 183.76596875
transcript.pyannote[77].end 183.79971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 183.79971875
transcript.pyannote[78].end 183.85034375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 183.85034375
transcript.pyannote[79].end 190.75221875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 192.30471875
transcript.pyannote[80].end 200.91096875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 201.82221875
transcript.pyannote[81].end 203.56034375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 204.55596875
transcript.pyannote[82].end 206.02409375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 206.02409375
transcript.pyannote[83].end 207.74534375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 208.36971875
transcript.pyannote[84].end 223.60784375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 224.46846875
transcript.pyannote[85].end 226.17284375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 226.66221875
transcript.pyannote[86].end 229.64909375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 229.83471875
transcript.pyannote[87].end 230.50971875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 230.98221875
transcript.pyannote[88].end 235.25159375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 232.75409375
transcript.pyannote[89].end 233.09159375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 235.42034375
transcript.pyannote[90].end 262.20096875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 249.64596875
transcript.pyannote[91].end 250.15221875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 262.70721875
transcript.pyannote[92].end 266.41971875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 266.65596875
transcript.pyannote[93].end 267.70221875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 267.90471875
transcript.pyannote[94].end 271.21221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 271.97159375
transcript.pyannote[95].end 272.44409375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 273.45659375
transcript.pyannote[96].end 275.49846875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 276.32534375
transcript.pyannote[97].end 277.27034375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 277.69221875
transcript.pyannote[98].end 281.03346875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 281.80971875
transcript.pyannote[99].end 283.95284375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 285.25221875
transcript.pyannote[100].end 286.09596875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 286.28159375
transcript.pyannote[101].end 287.02409375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 287.58096875
transcript.pyannote[102].end 289.60596875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 289.15034375
transcript.pyannote[103].end 294.78659375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 294.97221875
transcript.pyannote[104].end 296.23784375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 296.81159375
transcript.pyannote[105].end 299.32596875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 299.96721875
transcript.pyannote[106].end 301.31721875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 301.43534375
transcript.pyannote[107].end 303.71346875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 304.21971875
transcript.pyannote[108].end 304.55721875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 306.24471875
transcript.pyannote[109].end 327.40596875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 328.84034375
transcript.pyannote[110].end 339.65721875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 333.19409375
transcript.pyannote[111].end 333.91971875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 339.53909375
transcript.pyannote[112].end 340.07909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 340.04534375
transcript.pyannote[113].end 344.11221875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 345.00659375
transcript.pyannote[114].end 349.24221875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 349.59659375
transcript.pyannote[115].end 354.54096875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 354.70971875
transcript.pyannote[116].end 361.81409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 361.99971875
transcript.pyannote[117].end 363.68721875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 363.70409375
transcript.pyannote[118].end 363.77159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 363.77159375
transcript.pyannote[119].end 364.86846875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 364.86846875
transcript.pyannote[120].end 367.48409375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 368.41221875
transcript.pyannote[121].end 369.44159375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 370.13346875
transcript.pyannote[122].end 375.12846875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 375.75284375
transcript.pyannote[123].end 381.10221875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 381.13596875
transcript.pyannote[124].end 382.30034375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 382.48596875
transcript.pyannote[125].end 386.28284375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 386.62034375
transcript.pyannote[126].end 389.01659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 390.60284375
transcript.pyannote[127].end 392.49284375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 392.49284375
transcript.pyannote[128].end 395.15909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 395.73284375
transcript.pyannote[129].end 398.02784375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 398.68596875
transcript.pyannote[130].end 402.33096875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 402.87096875
transcript.pyannote[131].end 403.69784375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 404.06909375
transcript.pyannote[132].end 414.76784375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 410.71784375
transcript.pyannote[133].end 411.56159375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 415.32471875
transcript.pyannote[134].end 418.21034375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 418.31159375
transcript.pyannote[135].end 418.36221875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 418.36221875
transcript.pyannote[136].end 419.05409375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 418.85159375
transcript.pyannote[137].end 420.70784375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 420.82596875
transcript.pyannote[138].end 421.23096875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 421.80471875
transcript.pyannote[139].end 422.69909375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 424.43721875
transcript.pyannote[140].end 425.12909375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 425.82096875
transcript.pyannote[141].end 470.03346875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 428.53784375
transcript.pyannote[142].end 428.85846875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 429.92159375
transcript.pyannote[143].end 431.71034375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 432.89159375
transcript.pyannote[144].end 433.31346875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 445.07534375
transcript.pyannote[145].end 446.30721875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 452.71971875
transcript.pyannote[146].end 452.97284375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 470.23596875
transcript.pyannote[147].end 475.66971875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 476.74971875
transcript.pyannote[148].end 477.49221875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 477.94784375
transcript.pyannote[149].end 482.47034375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 483.43221875
transcript.pyannote[150].end 486.75659375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 487.22909375
transcript.pyannote[151].end 490.46909375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 490.60409375
transcript.pyannote[152].end 491.56596875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 492.32534375
transcript.pyannote[153].end 500.44221875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 494.68784375
transcript.pyannote[154].end 495.43034375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 500.13846875
transcript.pyannote[155].end 500.25659375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 500.44221875
transcript.pyannote[156].end 500.72909375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 501.23534375
transcript.pyannote[157].end 509.80784375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 510.53346875
transcript.pyannote[158].end 513.26721875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 511.64721875
transcript.pyannote[159].end 511.95096875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 514.00971875
transcript.pyannote[160].end 515.39346875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 516.25409375
transcript.pyannote[161].end 520.33784375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 519.13971875
transcript.pyannote[162].end 519.49409375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 520.64159375
transcript.pyannote[163].end 520.89471875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 521.72159375
transcript.pyannote[164].end 521.97471875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 521.97471875
transcript.pyannote[165].end 522.56534375
transcript.whisperx[0].start 0.782
transcript.whisperx[0].end 3.252
transcript.whisperx[0].text 好 那我請兩位次長好 請兩位次長
transcript.whisperx[1].start 14.191
transcript.whisperx[1].end 38.532
transcript.whisperx[1].text 我先問這個勞動部啊現在你說育嬰是在家裡六個月嘛他剛才說六個月嘛六個月是多少薪水?是投保薪資?平均投保薪資六成然後我們勞動部還要補助公務預算補助兩成總共八成所以等於是投保薪資的八成領六個月六個月
transcript.whisperx[2].start 40.515
transcript.whisperx[2].end 59.586
transcript.whisperx[2].text 先生領完 太太領 兩個輪流可以嗎也可以 也可以同時工保的也是這樣嗎 公務人員也是這樣嗎公務人員這個可能要 這不是我們勞動部管的但是公務人員的福利向來是比勞工要好一點這可能要問主管機關
transcript.whisperx[3].start 61.431
transcript.whisperx[3].end 70.973
transcript.whisperx[3].text 那現在你說又加一個月是什麼東西也是六個月 歐元也是六個月也是六個月 也是投保薪資的八成 也是這樣嗎還是全新
transcript.whisperx[4].start 72.711
transcript.whisperx[4].end 99.862
transcript.whisperx[4].text 公保是用他們的本縫本縫不是頭髮型是本縫本縫加專業加幾這本縫啦對那你剛剛說又加一個月是什麼意思就我們現在準備要就業保險法要修法因為我們現在就業保險法是法定是六個月法律規定六個月那我們勞動部在110年7月修定了一個我們的補助要點用公務預算補兩個月所以6加2加起來現在是那個
transcript.whisperx[5].start 102.204
transcript.whisperx[5].end 123.337
transcript.whisperx[5].text 八成你後來說六個月之後又給他一個月是第七個月是不是我們準備要修法就是再包一個月那廖偉強委員說希望提高到八個月是嗎廖委員是有這樣提那就來修法吧弄成一年不是更好嗎
transcript.whisperx[6].start 126.326
transcript.whisperx[6].end 142.419
transcript.whisperx[6].text 跟蘇委員說明我們剛剛有講我們就業保險法因為劉庭今天的本意主要的政策目標是希望幫助這些新手幫他不要因為照顧嬰兒而離開職場我們的本意還是希望他回到職場但是根據我們過去這連續7年的追蹤調查大數據 我們是大數據分析發現其實
transcript.whisperx[7].start 149.224
transcript.whisperx[7].end 175.756
transcript.whisperx[7].text 有大概回歸職場大概平均只有82%啦有18%是沒有回歸職場啦那這當然有很多原因所以我們現在老實說內部在討論就是說如果你一下子延長太多太時間太一下延長太久會不會讓這一個回歸職場的那個機率再下降一點我們要求一個平衡啦水收就不敢回來啦是啦是啦好
transcript.whisperx[8].start 177.817
transcript.whisperx[8].end 180.979
transcript.whisperx[8].text 那再來我請我們衛務部 律師長我給你一個問比較大的啦 為什麼現在年輕人不可以帶貨 不可以生孩子啊大家都在市高啊 市高啊 有人在市中心啊 還是在三藝署啊市高啊 市中心啊 市廠房的開銷如果這麼大呢 千萬不可以收
transcript.whisperx[9].start 204.588
transcript.whisperx[9].end 222.158
transcript.whisperx[9].text 那到底是怎樣報告委員這個我以前在中中大學我開過這樣的課那委員報告2000年人口學者有一個最重要的研究是population studies2000年他是用OECD24國去做相關研究我說結論就好結論就是說
transcript.whisperx[10].start 224.942
transcript.whisperx[10].end 249.257
transcript.whisperx[10].text 這個你要解決少子化原因是這樣因為就是說工業社會女性女性她受教育程度提高提高之後她一定要進入職場進入職場之後就會發生蠟燭兩頭燒的那個現象所以這是全世界的問題我如果有人報告瑞典跟歐洲事實上在1970的時候曾經他的TFR就是所謂的總生育率也曾經降到大概1.4左右1.4
transcript.whisperx[11].start 250.618
transcript.whisperx[11].end 275.392
transcript.whisperx[11].text 後來經過一個整個瑞典他們那邊整個總體的一個研究的一個努力之後1970到1995年左右又回到1.8本來是1.4增加0.4很不容易因為OECD那個研究最重要就是我剛才有回覆說四個重點第一個男女性別必須平等
transcript.whisperx[12].start 276.463
transcript.whisperx[12].end 300.931
transcript.whisperx[12].text 這是最重要的啦 第二 最好的是工作家庭平衡就是你有辦法比較輕鬆去做家事 做家事等等這些台灣男女的地位是女性比我們高 我們在我們家女性很高我們在醫院裡面也是女性很高 我們都叫美生的
transcript.whisperx[13].start 301.491
transcript.whisperx[13].end 326.817
transcript.whisperx[13].text 沒有啦 因為我想說 其實如果說第三有效的就是那些child care 兒童照顧 最後其實才是津貼他有研究的說 這要採取多元的策略 多元措施所以這是OECD國家 他們現在普遍研究出來大概就這四個重點 但是要多元但是如果每一位都像委員這麼優秀 我想就掩蓋沒問題啦
transcript.whisperx[14].start 328.951
transcript.whisperx[14].end 343.404
transcript.whisperx[14].text 我們第八屆立委的時候要涉及長照服務法那我帶了一大票的人包括場官學然後到日本去那個時候林叔沒有去那一孫在北海那一孫
transcript.whisperx[15].start 345.049
transcript.whisperx[15].end 369.163
transcript.whisperx[15].text 我去日本的時候 日本的後生省 什麼省都出來說還有我們的駐日大使 沈思純 都安排得很好那個時候日本就講說 他們預計到2050年他們的人口會從一億兩千六百萬 會降到七千萬那七千萬的話 他們就變成二流的國家
transcript.whisperx[16].start 370.203
transcript.whisperx[16].end 388.898
transcript.whisperx[16].text 所以那個時候他們整個卯足全力整個首相辦公室都成立委員會啊危機小組啊然後開始砸錢好像有一點點起色我不曉得日本現在的生意力差不多多少那位記者說大概1.2 1.3左右吧
transcript.whisperx[17].start 390.643
transcript.whisperx[17].end 414.272
transcript.whisperx[17].text 台灣是大概0.89所以日本這個是有效的啊他們是卯足全力喔所以他們的人口我看到現在還是一億兩千多萬如果能升到1.24的話當然是還是會少啦那個時候我去的時候剛好他日本一年
transcript.whisperx[18].start 415.601
transcript.whisperx[18].end 420.491
transcript.whisperx[18].text 死掉的人死了一百零幾萬然後出生九十幾萬那現在
transcript.whisperx[19].start 424.468
transcript.whisperx[19].end 447.203
transcript.whisperx[19].text 台灣去年死了將近二十萬生了十三萬所以會出事了所以這個很嚴重啊那現在我們的外籍的配偶外籍的新住民還有外籍勞工都變成我們的補充人力這個是很危險的事情所以我們現在台灣這裡也沒有主責單位也沒有在搶救
transcript.whisperx[20].start 450.845
transcript.whisperx[20].end 474.019
transcript.whisperx[20].text 我是覺得很糟糕餵物部你自己要扛起來還有勞動部好像今天講一講我今天從早上聽到現在好像本來還有一個行政院的辦公室現在連辦公室都沒了剩下一個陳時中政委在負責這樣是很危險是不是該要振作起來不然的話現在0.8 0.9
transcript.whisperx[21].start 476.789
transcript.whisperx[21].end 494.476
transcript.whisperx[21].text 很嚴重耶我是以生四個 我太太生四個小孩 我不會生啦我生四個 我覺得對國家很有交代了兒子生了兩個 我叫他再生啦 不生啦他說去不去啦所以這是很嚴肅的問題所以這個要搶救 當然砸錢啦 那個就是很重要啦
transcript.whisperx[22].start 501.318
transcript.whisperx[22].end 521.885
transcript.whisperx[22].text 那像這種 我剛剛提這個提案這個像公托 准公托 這個都很重要 這是配套嘛讓年輕人敢承擔啦所以這個我是覺得 部長 次長 你都要看不懂要怎麼 要怎麼看部長要怎麼處理一下 好不好好 感謝委員 謝謝