iVOD / 159694

Field Value
IVOD_ID 159694
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159694
日期 2025-03-27
會議資料.會議代碼 委員會-11-3-20-5
會議資料.會議代碼:str 第11屆第3會期財政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-03-27T10:28:21+08:00
結束時間 2025-03-27T10:39:41+08:00
影片長度 00:11:20
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ae27c1b40c0db900366387216513ab761a80f058510e45acb9e3eaef4bc790334a16c5dc7554018e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李彥秀
委員發言時間 10:28:21 - 10:39:41
會議時間 2025-03-27T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第5次全體委員會議(事由:邀請財政部莊部長翠雲、中央銀行楊總裁金龍、金融監督管理委員會彭主任委員金隆、國家發展委員會劉主任委員鏡清、經濟部郭部長智輝、農業部陳部長駿季就「因應美國川普政府對等關稅策略與我國被列入骯髒十五國名單,我國政府財經相關單位因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 3.08534375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 3.70971875
transcript.pyannote[1].end 5.41409375
transcript.pyannote[2].speaker SPEAKER_06
transcript.pyannote[2].start 4.89096875
transcript.pyannote[2].end 5.00909375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 6.52784375
transcript.pyannote[3].end 7.74284375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 8.78909375
transcript.pyannote[4].end 11.33721875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 10.86471875
transcript.pyannote[5].end 11.40471875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 12.43409375
transcript.pyannote[6].end 18.07034375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 12.46784375
transcript.pyannote[7].end 12.92346875
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 13.61534375
transcript.pyannote[8].end 14.17221875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 19.26846875
transcript.pyannote[9].end 20.85471875
transcript.pyannote[10].speaker SPEAKER_06
transcript.pyannote[10].start 22.99784375
transcript.pyannote[10].end 24.09471875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 25.61346875
transcript.pyannote[11].end 25.64721875
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 25.64721875
transcript.pyannote[12].end 26.08596875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 27.36846875
transcript.pyannote[13].end 28.75221875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 29.17409375
transcript.pyannote[14].end 29.88284375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 30.28784375
transcript.pyannote[15].end 32.07659375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 32.63346875
transcript.pyannote[16].end 33.37596875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 33.98346875
transcript.pyannote[17].end 36.54846875
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 37.20659375
transcript.pyannote[18].end 38.05034375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 38.79284375
transcript.pyannote[19].end 39.43409375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 39.67034375
transcript.pyannote[20].end 40.90221875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 41.79659375
transcript.pyannote[21].end 46.23471875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 46.26846875
transcript.pyannote[22].end 53.96346875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 54.26721875
transcript.pyannote[23].end 62.21534375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 62.53596875
transcript.pyannote[24].end 65.48909375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 65.37096875
transcript.pyannote[25].end 65.45534375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 65.48909375
transcript.pyannote[26].end 67.12596875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 68.61096875
transcript.pyannote[27].end 71.90159375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 72.39096875
transcript.pyannote[28].end 73.43721875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 73.70721875
transcript.pyannote[29].end 74.65221875
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 75.79971875
transcript.pyannote[30].end 77.23409375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 78.14534375
transcript.pyannote[31].end 79.24221875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 80.87909375
transcript.pyannote[32].end 98.91846875
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 84.77721875
transcript.pyannote[33].end 86.73471875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 95.84721875
transcript.pyannote[34].end 98.90159375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 98.91846875
transcript.pyannote[35].end 98.93534375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 98.93534375
transcript.pyannote[36].end 99.15471875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 99.15471875
transcript.pyannote[37].end 99.17159375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 99.17159375
transcript.pyannote[38].end 99.54284375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 99.54284375
transcript.pyannote[39].end 103.47471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 104.79096875
transcript.pyannote[40].end 108.72284375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 108.87471875
transcript.pyannote[41].end 112.06409375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 112.48596875
transcript.pyannote[42].end 118.96596875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 118.96596875
transcript.pyannote[43].end 120.48471875
transcript.pyannote[44].speaker SPEAKER_05
transcript.pyannote[44].start 121.90221875
transcript.pyannote[44].end 135.62159375
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 135.53721875
transcript.pyannote[45].end 138.22034375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 138.32159375
transcript.pyannote[46].end 141.51096875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 142.21971875
transcript.pyannote[47].end 143.60346875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 144.83534375
transcript.pyannote[48].end 146.20221875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 146.70846875
transcript.pyannote[49].end 147.48471875
transcript.pyannote[50].speaker SPEAKER_05
transcript.pyannote[50].start 149.17221875
transcript.pyannote[50].end 155.21346875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 155.21346875
transcript.pyannote[51].end 173.20221875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 173.50596875
transcript.pyannote[52].end 176.40846875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 177.33659375
transcript.pyannote[53].end 182.16284375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 183.46221875
transcript.pyannote[54].end 183.47909375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 183.47909375
transcript.pyannote[55].end 183.88409375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 183.52971875
transcript.pyannote[56].end 183.76596875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 183.88409375
transcript.pyannote[57].end 185.57159375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 184.52534375
transcript.pyannote[58].end 189.65534375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 190.04346875
transcript.pyannote[59].end 191.78159375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 192.82784375
transcript.pyannote[60].end 200.38784375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 202.02471875
transcript.pyannote[61].end 213.33096875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 213.65159375
transcript.pyannote[62].end 215.49096875
transcript.pyannote[63].speaker SPEAKER_04
transcript.pyannote[63].start 217.44846875
transcript.pyannote[63].end 221.38034375
transcript.pyannote[64].speaker SPEAKER_04
transcript.pyannote[64].start 221.53221875
transcript.pyannote[64].end 223.72596875
transcript.pyannote[65].speaker SPEAKER_04
transcript.pyannote[65].start 224.18159375
transcript.pyannote[65].end 230.98221875
transcript.pyannote[66].speaker SPEAKER_04
transcript.pyannote[66].start 231.57284375
transcript.pyannote[66].end 231.64034375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 231.64034375
transcript.pyannote[67].end 249.44346875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 250.37159375
transcript.pyannote[68].end 262.03221875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 262.18409375
transcript.pyannote[69].end 265.32284375
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 265.76159375
transcript.pyannote[70].end 268.52909375
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 269.22096875
transcript.pyannote[71].end 277.18596875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 277.97909375
transcript.pyannote[72].end 283.37909375
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 283.91909375
transcript.pyannote[73].end 287.14221875
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 287.81721875
transcript.pyannote[74].end 292.91346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 295.20846875
transcript.pyannote[75].end 313.65284375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 303.94971875
transcript.pyannote[76].end 305.08034375
transcript.pyannote[77].speaker SPEAKER_05
transcript.pyannote[77].start 305.08034375
transcript.pyannote[77].end 305.13096875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 313.21409375
transcript.pyannote[78].end 313.63596875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 313.65284375
transcript.pyannote[79].end 328.72221875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 328.08096875
transcript.pyannote[80].end 328.45221875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 328.80659375
transcript.pyannote[81].end 329.78534375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 330.61221875
transcript.pyannote[82].end 334.99971875
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 335.65784375
transcript.pyannote[83].end 337.02471875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 340.04534375
transcript.pyannote[84].end 345.02346875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 346.89659375
transcript.pyannote[85].end 348.98909375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 349.12409375
transcript.pyannote[86].end 349.14096875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 349.14096875
transcript.pyannote[87].end 349.96784375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 350.33909375
transcript.pyannote[88].end 350.35596875
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 350.35596875
transcript.pyannote[89].end 375.95534375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 376.47846875
transcript.pyannote[90].end 377.25471875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 379.17846875
transcript.pyannote[91].end 381.67596875
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 382.09784375
transcript.pyannote[92].end 383.11034375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 387.12659375
transcript.pyannote[93].end 406.83659375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 396.99846875
transcript.pyannote[94].end 397.43721875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 401.23409375
transcript.pyannote[95].end 402.95534375
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 404.13659375
transcript.pyannote[96].end 404.65971875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 406.36409375
transcript.pyannote[97].end 409.95846875
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 410.22846875
transcript.pyannote[98].end 415.40909375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 415.96596875
transcript.pyannote[99].end 424.69034375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 425.53409375
transcript.pyannote[100].end 431.89596875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 433.22909375
transcript.pyannote[101].end 435.47346875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 436.85721875
transcript.pyannote[102].end 437.31284375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 437.31284375
transcript.pyannote[103].end 437.36346875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 437.36346875
transcript.pyannote[104].end 437.39721875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 437.39721875
transcript.pyannote[105].end 438.02159375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 440.46846875
transcript.pyannote[106].end 441.46409375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 441.80159375
transcript.pyannote[107].end 448.39971875
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 448.39971875
transcript.pyannote[108].end 454.30596875
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 455.55471875
transcript.pyannote[109].end 462.03471875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 462.49034375
transcript.pyannote[110].end 468.81846875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 469.35846875
transcript.pyannote[111].end 471.34971875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 472.14284375
transcript.pyannote[112].end 478.11659375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 479.88846875
transcript.pyannote[113].end 480.36096875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 480.69846875
transcript.pyannote[114].end 482.52096875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 483.16221875
transcript.pyannote[115].end 484.10721875
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 484.44471875
transcript.pyannote[116].end 485.59221875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 488.20784375
transcript.pyannote[117].end 489.27096875
transcript.pyannote[118].speaker SPEAKER_05
transcript.pyannote[118].start 490.43534375
transcript.pyannote[118].end 490.78971875
transcript.pyannote[119].speaker SPEAKER_05
transcript.pyannote[119].start 491.21159375
transcript.pyannote[119].end 497.53971875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 495.66659375
transcript.pyannote[120].end 501.48846875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 502.11284375
transcript.pyannote[121].end 511.10721875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 512.11971875
transcript.pyannote[122].end 517.55346875
transcript.pyannote[123].speaker SPEAKER_05
transcript.pyannote[123].start 518.44784375
transcript.pyannote[123].end 520.91159375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 521.36721875
transcript.pyannote[124].end 522.22784375
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 522.24471875
transcript.pyannote[125].end 522.26159375
transcript.pyannote[126].speaker SPEAKER_05
transcript.pyannote[126].start 522.26159375
transcript.pyannote[126].end 523.96596875
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 523.22346875
transcript.pyannote[127].end 528.72471875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 529.45034375
transcript.pyannote[128].end 537.39846875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 538.36034375
transcript.pyannote[129].end 540.18284375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 540.95909375
transcript.pyannote[130].end 541.38096875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 542.20784375
transcript.pyannote[131].end 543.79409375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 544.85721875
transcript.pyannote[132].end 547.74284375
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 548.46846875
transcript.pyannote[133].end 555.38721875
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 556.39971875
transcript.pyannote[134].end 562.01909375
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 562.49159375
transcript.pyannote[135].end 563.06534375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 563.31846875
transcript.pyannote[136].end 564.14534375
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 564.38159375
transcript.pyannote[137].end 581.37471875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 582.08346875
transcript.pyannote[138].end 585.18846875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 586.55534375
transcript.pyannote[139].end 590.43659375
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 591.44909375
transcript.pyannote[140].end 599.31284375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 599.61659375
transcript.pyannote[141].end 603.19409375
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 604.42596875
transcript.pyannote[142].end 607.24409375
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 608.42534375
transcript.pyannote[143].end 609.58971875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 610.02846875
transcript.pyannote[144].end 611.22659375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 611.54721875
transcript.pyannote[145].end 612.76221875
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 612.88034375
transcript.pyannote[146].end 614.21346875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 615.19221875
transcript.pyannote[147].end 616.05284375
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 619.22534375
transcript.pyannote[148].end 620.13659375
transcript.pyannote[149].speaker SPEAKER_04
transcript.pyannote[149].start 620.94659375
transcript.pyannote[149].end 629.72159375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 628.42221875
transcript.pyannote[150].end 631.72971875
transcript.pyannote[151].speaker SPEAKER_04
transcript.pyannote[151].start 632.38784375
transcript.pyannote[151].end 639.91409375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 632.43846875
transcript.pyannote[152].end 632.89409375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 639.71159375
transcript.pyannote[153].end 642.04034375
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 642.27659375
transcript.pyannote[154].end 643.52534375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 643.86284375
transcript.pyannote[155].end 645.06096875
transcript.pyannote[156].speaker SPEAKER_04
transcript.pyannote[156].start 644.11596875
transcript.pyannote[156].end 649.81971875
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 649.81971875
transcript.pyannote[157].end 651.67596875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 651.70971875
transcript.pyannote[158].end 657.46409375
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 658.22346875
transcript.pyannote[159].end 658.99971875
transcript.pyannote[160].speaker SPEAKER_04
transcript.pyannote[160].start 659.82659375
transcript.pyannote[160].end 660.34971875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 663.85971875
transcript.pyannote[161].end 663.87659375
transcript.pyannote[162].speaker SPEAKER_06
transcript.pyannote[162].start 663.87659375
transcript.pyannote[162].end 666.54284375
transcript.pyannote[163].speaker SPEAKER_06
transcript.pyannote[163].start 666.88034375
transcript.pyannote[163].end 668.77034375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 675.08159375
transcript.pyannote[164].end 675.95909375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 676.81971875
transcript.pyannote[165].end 678.76034375
transcript.whisperx[0].start 0.549
transcript.whisperx[0].end 14.174
transcript.whisperx[0].text 我是不是可以邀請部長 莊部長來 莊部長請朱副總裁國發會的高副主委副總裁經濟部正式請假經濟部的江次長江次長農業部的杜長次農業部長次來
transcript.whisperx[1].start 25.689
transcript.whisperx[1].end 40.271
transcript.whisperx[1].text 好 今天這個議題從川普當選之後我覺得我們跨部會在高層的會議照理說應該有很多的討論
transcript.whisperx[2].start 41.833
transcript.whisperx[2].end 66.323
transcript.whisperx[2].text 部長你可不可以先回應我你們有沒有跨部會的會議討論過這些議題跟委員報告確實有因為行政院有一個台美經貿工作小組的會議因為這個幕僚作業是由經貿辦公室在這邊在做幕僚作業討論過幾次次數可能經貿辦會比較清楚好部長我再問一個問題
transcript.whisperx[3].start 68.649
transcript.whisperx[3].end 71.635
transcript.whisperx[3].text 有可能我們會被列入1315有可能還不曉得如果我們被列入的話你覺得公不公平
transcript.whisperx[4].start 80.862
transcript.whisperx[4].end 103.072
transcript.whisperx[4].text 我想這個部分當然我們從美國追求貿易你覺得公不公平這個國際間怎麼講公平或不公平因為美國有美國的立場我想這個部分我們會就你不知道公不公平你心裡有沒有想法好那我問央行的副總裁你覺得公平嗎
transcript.whisperx[5].start 105.1
transcript.whisperx[5].end 117.004
transcript.whisperx[5].text 我覺得貿易是要講究對等的那公平這個意義其實基本上是比較那我再請問我們經濟部公不公平
transcript.whisperx[6].start 122.063
transcript.whisperx[6].end 147.228
transcript.whisperx[6].text 報告委員美國之所以要採取這個對等的關稅它是利用關稅做一個手段最主要的目的呢它還是希望能夠減少貿易逆差以及讓更多的國外企業到美國投資我知道但是我們真的很骯髒嗎把我們列入骯髒15國我們真的很骯髒嗎你覺得委不委屈站在你的位置立場委不委屈
transcript.whisperx[7].start 149.209
transcript.whisperx[7].end 174.766
transcript.whisperx[7].text 我想第一個,這15國包括哪些,目前並不知道好,不知道,我們覺得,我個人覺得很委屈因為這是我們共同創造拼產業、拼經濟、拼努力民間跟政府一起努力的結果我個人會覺得很委屈但是我很遺憾你們說不出委屈兩個字喔那好,假設最壞的狀況,我要請問部長如果我們真的被列為骯髒15國的話
transcript.whisperx[8].start 177.355
transcript.whisperx[8].end 200.166
transcript.whisperx[8].text 我們會不會跟其他14國聯合起來跟WTO申訴部長還是經濟辦事處你回答我我們有沒有這樣的劇本就是說我覺得接下來各式各樣的狀況可能發生加拿大跟墨西哥他們事前也跟川普做了談判後來他們還是被突襲了
transcript.whisperx[9].start 202.079
transcript.whisperx[9].end 215.268
transcript.whisperx[9].text 我們也沒有各式各樣版本的準備甚至是假使我們真的被列為骯髒15國我們會不會跟其他14個國家跟WTO申訴有沒有這樣的準備誰可以回答我
transcript.whisperx[10].start 217.909
transcript.whisperx[10].end 232.382
transcript.whisperx[10].text 謝謝委員我是行政院經貿辦我想針對這個議題我們現在不排除就是我們需要去評估4月2號我們所看到的這個關稅的結果然後我們才會通盤的去思考才要通盤的檢討你們有版本嗎
transcript.whisperx[11].start 234.244
transcript.whisperx[11].end 248.72
transcript.whisperx[11].text 我們做一件事情最好最壞有可能發生狀況你沒有版本你到時候才要知道嗎剛才你回答那個中加兵委員說最大宗的我們出口的美國可以進口你們現在才要盤點
transcript.whisperx[12].start 250.404
transcript.whisperx[12].end 276.887
transcript.whisperx[12].text 我都覺得很訝異這哪些東西我們可以進口去平衡貿易的順差的跟美國貿易順差的部分早就應該知道我們怎麼去做處理如果還要四個月才可以盤點那我覺得你們前面開的會對不起我叫做白開因為顯然你跟美國沒有辦法談判談判就是有東西拿來換拿來去做籌吧我有什麼他有什麼我們可能談的結果有可能聚焦大家可以接受
transcript.whisperx[13].start 278.041
transcript.whisperx[13].end 292.613
transcript.whisperx[13].text 如果回答前一位委員質詢的說還要四個月才知道怎麼樣平衡貿易順暢有哪些項目的話我跟你講你一定被納入15國之一我這樣講不過分合理因為這是我在看談判過程這是標準ABC
transcript.whisperx[14].start 295.834
transcript.whisperx[14].end 304.485
transcript.whisperx[14].text 跟委員報告,其實行政院的台美經貿工作小組的開會其實是非常的密集那對於各種方案都有研擬不會等到4月2號宣布的時候我們才去討論後面的東西
transcript.whisperx[15].start 313.337
transcript.whisperx[15].end 336.788
transcript.whisperx[15].text 那所以幹嘛回答人家說要四個月照理說你現在都已經知道說有哪些項目我們可以平衡貿易的順差其實不用四個月你照理說你應該非常的清楚才對好 不講我要問另外一個問題我非常遺憾的是你們在呼嚨立法院我們今年對美的貿易順差你預估大概會多少
transcript.whisperx[16].start 340.665
transcript.whisperx[16].end 344.758
transcript.whisperx[16].text 去年美國是739億美元嘛那今年會有多少
transcript.whisperx[17].start 347.303
transcript.whisperx[17].end 373.29
transcript.whisperx[17].text 進出口值有預估吧如果接下來每一年都還是750、800、900、1000億我們當然很高興站在產業的立場稅收的立場我們很高興但是在跟美國談判在川普接下來三年半之內你根本不可能你根本要各式各樣手法的準備嘛所以今年你沒有預估貿易順差是多少還是誰可以回應我經貿辦還是誰應該回應我
transcript.whisperx[18].start 376.531
transcript.whisperx[18].end 382.901
transcript.whisperx[18].text 那我們今年到底應該是多少 有沒有預估過沒有 不知道
transcript.whisperx[19].start 387.117
transcript.whisperx[19].end 414.269
transcript.whisperx[19].text 跟委員報告我們還是跟委員報告在我們的行政院的財美經貿工作小都有各種方案也提到貿易平衡貿易平衡是互相追求的一個目標我們也會擴大對美國的進口那這個數值就會變嘛好我知道部長你還是沒有回應到我我支持採購軍購我支持買黃小玉我支持採購能源
transcript.whisperx[20].start 416.07
transcript.whisperx[20].end 434.939
transcript.whisperx[20].text 那你今年不管買什麼東西你到底可以平衡多少的貿易順差你們有沒有一個預估的數字你要買這些我都不反對買能源買軍購買黃小玉農產品央行這樣我都支持那你目標是多少數字是多少有沒有數字出來
transcript.whisperx[21].start 441.874
transcript.whisperx[21].end 461.355
transcript.whisperx[21].text 我們的方向很確定但是很多事情是要在談判的時候大家再來談的是吧好不能講那我接下來再問兩個問題經貿辦應該也很清楚經濟部也應該回應我我們接下來台積電接下來三四年雖然台積電到美國去設廠也不是這兩年馬上就可以出口生產
transcript.whisperx[22].start 462.574
transcript.whisperx[22].end 478.027
transcript.whisperx[22].text 接下來這兩年台積電的複合成長率兩三年還是高達44到46%也是台積電還是持續的賺錢所以也代表著我們跟美國的貿易順差會持續的加大那要買什麼接下來這幾年怎麼去控制我們貿易順差有誰可以回應我
transcript.whisperx[23].start 491.315
transcript.whisperx[23].end 517.305
transcript.whisperx[23].text 二位委員所以台積電它現在已經開始全球佈局我知道但是它全球佈局但是我從台積電我從媒體新聞報表它接下來這幾年它還是44到46%數字擺在眼前川普還有三年所以你們貿易順差的手段平衡貿易順差的手段是什麼
transcript.whisperx[24].start 518.513
transcript.whisperx[24].end 547.16
transcript.whisperx[24].text 所以我們必須要加大對美的採購採購什麼農產品黃小玉台灣就兩千三百多萬人吃也吃不了這麼多軍備我也沒有反對三趴我也支持我個人可以支持黨團當然各政黨還要再討論但是我們的貿易順差是三趴是一千多億但是距離平衡也還有一段數字
transcript.whisperx[25].start 548.533
transcript.whisperx[25].end 551.161
transcript.whisperx[25].text 包括達到川普的目標他均夠達10%739億相當是兩兆多嘛
transcript.whisperx[26].start 556.451
transcript.whisperx[26].end 584.713
transcript.whisperx[26].text 那我們即便買三趴的軍購也才一千多億那個數字差距還很大所以我們今天辦這個專案報告我聽不到對不起我聽不到什麼具體的內容我們可以平衡你有什麼手段包括如果剛回答前議員的我們怎麼大中的經濟的產業要買哪些東西平衡順差你還要四個月評估那我都很懷疑我們怎麼去跟人家做談判
transcript.whisperx[27].start 586.601
transcript.whisperx[27].end 615.935
transcript.whisperx[27].text 我這個質詢白白坐在這邊質詢但是我聽不到任何的答案如果我們有具體的手段包括最壞的打算要跟WTO如果假設最壞的狀況我們跟也被列為骯髒15國之一我們有沒有跟其他國家有做好準備有沒有在溝通如果這也是劇本之一這有沒有這是不是劇本之一這是不是劇本之一跟其他14國跟WTO申訴有沒有這樣的劇本存在誰可以回應我
transcript.whisperx[28].start 619.364
transcript.whisperx[28].end 631.272
transcript.whisperx[28].text 有沒有討論過我想我們針對每一個國家現在在因應美國的這些政策上面我們都有在掌握因為畢竟大家跟美國那有沒有跟他們聯繫過他們會怎麼做你們清楚嗎
transcript.whisperx[29].start 632.518
transcript.whisperx[29].end 657.196
transcript.whisperx[29].text 我們有看到有一些有展開制裁有一些在評估做自主的調整那我們都持續在掌握這些國家的因應那其他14國的聯合申訴有沒有做這樣的思考有沒有可能做這樣的思考因為我們實際上不知道實際上這55國是哪些國家所以我們現在不知道但可以猜得出來嘛看數字就可以猜得出來嘛我也不知道坐在這個位置不知道那也很奇怪啊對不對好 謝謝謝謝
transcript.whisperx[30].start 663.885
transcript.whisperx[30].end 666.267
transcript.whisperx[30].text 謝謝議員的質詢 下面請林思明委員質詢好 謝謝主席我們首先