iVOD / 159605

Field Value
IVOD_ID 159605
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159605
日期 2025-03-26
會議資料.會議代碼 委員會-11-3-20-4
會議資料.會議代碼:str 第11屆第3會期財政委員會第4次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第4次全體委員會議
影片種類 Clip
開始時間 2025-03-26T09:43:57+08:00
結束時間 2025-03-26T09:55:51+08:00
影片長度 00:11:54
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8cb7ec0b2cd1ea349bb8e4ce9c3709ec9336bc333af6bdb0c80eeefacbca121b87ea78fc2deb64d35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 09:43:57 - 09:55:51
會議時間 2025-03-26T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第4次全體委員會議(事由:邀請金融監督管理委員會彭主任委員金隆率所屬機關首長暨中央存款保險股份有限公司、監管相關機構有關之財團法人、臺灣證券交易所股份有限公司、臺灣期貨交易所股份有限公司、臺灣集中保管結算所股份有限公司等董事長、總經理列席業務報告,並備質詢。 【3月24日及26日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.30096875
transcript.pyannote[0].end 1.44846875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.71846875
transcript.pyannote[1].end 2.20784375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 3.70971875
transcript.pyannote[2].end 5.49846875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 5.78534375
transcript.pyannote[3].end 6.67971875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 7.55721875
transcript.pyannote[4].end 8.99159375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 12.68721875
transcript.pyannote[5].end 12.88971875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 12.88971875
transcript.pyannote[6].end 12.90659375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 12.90659375
transcript.pyannote[7].end 12.92346875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 12.92346875
transcript.pyannote[8].end 13.07534375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 13.68284375
transcript.pyannote[9].end 14.18909375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 14.20596875
transcript.pyannote[10].end 14.44221875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 14.44221875
transcript.pyannote[11].end 14.45909375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 14.88096875
transcript.pyannote[12].end 19.25159375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 19.69034375
transcript.pyannote[13].end 21.19221875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 21.68159375
transcript.pyannote[14].end 38.03346875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 38.06721875
transcript.pyannote[15].end 39.24846875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 39.51846875
transcript.pyannote[16].end 41.27346875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 41.72909375
transcript.pyannote[17].end 43.83846875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 44.47971875
transcript.pyannote[18].end 46.08284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 46.42034375
transcript.pyannote[19].end 52.98471875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 53.67659375
transcript.pyannote[20].end 63.07596875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 63.46409375
transcript.pyannote[21].end 66.45096875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 66.68721875
transcript.pyannote[22].end 72.96471875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 70.65284375
transcript.pyannote[23].end 71.04096875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 72.96471875
transcript.pyannote[24].end 93.51846875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 93.87284375
transcript.pyannote[25].end 95.30721875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 96.06659375
transcript.pyannote[26].end 99.61034375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 98.73284375
transcript.pyannote[27].end 117.31221875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 106.44471875
transcript.pyannote[28].end 106.66409375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 116.87346875
transcript.pyannote[29].end 119.75909375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 119.79284375
transcript.pyannote[30].end 124.63596875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 124.88909375
transcript.pyannote[31].end 126.35721875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 126.62721875
transcript.pyannote[32].end 127.20096875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 127.72409375
transcript.pyannote[33].end 128.56784375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 127.79159375
transcript.pyannote[34].end 129.15846875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 128.83784375
transcript.pyannote[35].end 133.49534375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 132.48284375
transcript.pyannote[36].end 133.42784375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 134.42346875
transcript.pyannote[37].end 138.81096875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 134.54159375
transcript.pyannote[38].end 137.42721875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 139.62096875
transcript.pyannote[39].end 140.36346875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 140.88659375
transcript.pyannote[40].end 146.20221875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 146.60721875
transcript.pyannote[41].end 148.04159375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 148.04159375
transcript.pyannote[42].end 148.22721875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 148.22721875
transcript.pyannote[43].end 148.37909375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 148.37909375
transcript.pyannote[44].end 150.25221875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 148.90221875
transcript.pyannote[45].end 150.77534375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 150.77534375
transcript.pyannote[46].end 154.30221875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 154.72409375
transcript.pyannote[47].end 163.68471875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 162.03096875
transcript.pyannote[48].end 163.75221875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 163.70159375
transcript.pyannote[49].end 164.03909375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 164.03909375
transcript.pyannote[50].end 167.97096875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 168.22409375
transcript.pyannote[51].end 176.83034375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 177.48846875
transcript.pyannote[52].end 184.57596875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 185.14971875
transcript.pyannote[53].end 185.85846875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 186.04409375
transcript.pyannote[54].end 186.93846875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 187.41096875
transcript.pyannote[55].end 190.63409375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 191.15721875
transcript.pyannote[56].end 193.03034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 194.14409375
transcript.pyannote[57].end 196.79346875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 197.23221875
transcript.pyannote[58].end 201.06284375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 201.72096875
transcript.pyannote[59].end 202.41284375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 202.68284375
transcript.pyannote[60].end 207.25596875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 206.68221875
transcript.pyannote[61].end 208.08284375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 208.11659375
transcript.pyannote[62].end 222.78096875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 216.77346875
transcript.pyannote[63].end 217.12784375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 221.09346875
transcript.pyannote[64].end 222.44346875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 223.10159375
transcript.pyannote[65].end 229.02471875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 229.02471875
transcript.pyannote[66].end 242.81159375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 239.41971875
transcript.pyannote[67].end 240.88784375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 240.88784375
transcript.pyannote[68].end 240.92159375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 244.07721875
transcript.pyannote[69].end 245.02221875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 245.35971875
transcript.pyannote[70].end 255.38346875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 246.64221875
transcript.pyannote[71].end 247.01346875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 248.12721875
transcript.pyannote[72].end 248.48159375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 251.89034375
transcript.pyannote[73].end 252.71721875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 255.78846875
transcript.pyannote[74].end 256.22721875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 256.81784375
transcript.pyannote[75].end 258.13409375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 258.57284375
transcript.pyannote[76].end 261.25596875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 261.76221875
transcript.pyannote[77].end 265.54221875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 265.67721875
transcript.pyannote[78].end 270.41909375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 270.63846875
transcript.pyannote[79].end 271.88721875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 272.07284375
transcript.pyannote[80].end 276.78096875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 276.78096875
transcript.pyannote[81].end 293.20034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 293.60534375
transcript.pyannote[82].end 305.16471875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 305.40096875
transcript.pyannote[83].end 317.02784375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 317.02784375
transcript.pyannote[84].end 322.90034375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 322.95096875
transcript.pyannote[85].end 330.46034375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 330.46034375
transcript.pyannote[86].end 335.84346875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 336.55221875
transcript.pyannote[87].end 348.97221875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 336.87284375
transcript.pyannote[88].end 338.44221875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 348.97221875
transcript.pyannote[89].end 353.95034375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 353.95034375
transcript.pyannote[90].end 361.08846875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 361.49346875
transcript.pyannote[91].end 372.51284375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 371.11221875
transcript.pyannote[92].end 372.85034375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 373.74471875
transcript.pyannote[93].end 378.03096875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 378.11534375
transcript.pyannote[94].end 381.08534375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 381.33846875
transcript.pyannote[95].end 382.33409375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 382.84034375
transcript.pyannote[96].end 383.29596875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 383.29596875
transcript.pyannote[97].end 383.31284375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 384.00471875
transcript.pyannote[98].end 384.03846875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 384.03846875
transcript.pyannote[99].end 385.23659375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 385.81034375
transcript.pyannote[100].end 386.18159375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 386.41784375
transcript.pyannote[101].end 389.96159375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 390.33284375
transcript.pyannote[102].end 392.27346875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 392.34096875
transcript.pyannote[103].end 398.23034375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 398.23034375
transcript.pyannote[104].end 398.41596875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 398.41596875
transcript.pyannote[105].end 398.97284375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 398.97284375
transcript.pyannote[106].end 400.47471875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 400.94721875
transcript.pyannote[107].end 407.39346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 407.39346875
transcript.pyannote[108].end 420.25221875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 407.42721875
transcript.pyannote[109].end 408.10221875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 420.65721875
transcript.pyannote[110].end 427.30596875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 425.58471875
transcript.pyannote[111].end 427.37346875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 427.37346875
transcript.pyannote[112].end 427.39034375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 428.45346875
transcript.pyannote[113].end 432.21659375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 432.45284375
transcript.pyannote[114].end 434.12346875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 433.17846875
transcript.pyannote[115].end 434.03909375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 435.05159375
transcript.pyannote[116].end 436.60409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 435.69284375
transcript.pyannote[117].end 436.46909375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 437.41409375
transcript.pyannote[118].end 458.89596875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 439.47284375
transcript.pyannote[119].end 440.01284375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 441.56534375
transcript.pyannote[120].end 441.61596875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 447.13409375
transcript.pyannote[121].end 447.55596875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 450.37409375
transcript.pyannote[122].end 452.50034375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 455.92596875
transcript.pyannote[123].end 457.25909375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 459.46971875
transcript.pyannote[124].end 463.38471875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 462.43971875
transcript.pyannote[125].end 462.70971875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 463.55346875
transcript.pyannote[126].end 463.80659375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 464.39721875
transcript.pyannote[127].end 464.41409375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 464.41409375
transcript.pyannote[128].end 467.26596875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 467.85659375
transcript.pyannote[129].end 481.81221875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 478.03221875
transcript.pyannote[130].end 481.32284375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 489.92909375
transcript.pyannote[131].end 489.94596875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 489.94596875
transcript.pyannote[132].end 489.96284375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 489.96284375
transcript.pyannote[133].end 492.94971875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 490.11471875
transcript.pyannote[134].end 491.68409375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 492.94971875
transcript.pyannote[135].end 493.50659375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 493.70909375
transcript.pyannote[136].end 496.42596875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 496.51034375
transcript.pyannote[137].end 497.42159375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 497.72534375
transcript.pyannote[138].end 499.02471875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 499.02471875
transcript.pyannote[139].end 499.04159375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 499.04159375
transcript.pyannote[140].end 499.48034375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 499.73346875
transcript.pyannote[141].end 500.15534375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 500.25659375
transcript.pyannote[142].end 501.16784375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 500.47596875
transcript.pyannote[143].end 501.21846875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 501.91034375
transcript.pyannote[144].end 508.57596875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 506.56784375
transcript.pyannote[145].end 507.41159375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 508.57596875
transcript.pyannote[146].end 508.87971875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 508.87971875
transcript.pyannote[147].end 508.96409375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 508.96409375
transcript.pyannote[148].end 515.30909375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 515.22471875
transcript.pyannote[149].end 520.00034375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 520.64159375
transcript.pyannote[150].end 520.74284375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 520.74284375
transcript.pyannote[151].end 528.91034375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 529.24784375
transcript.pyannote[152].end 534.22596875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 534.44534375
transcript.pyannote[153].end 538.03971875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 539.03534375
transcript.pyannote[154].end 542.19096875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 542.66346875
transcript.pyannote[155].end 545.73471875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 546.67971875
transcript.pyannote[156].end 551.13471875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 551.64096875
transcript.pyannote[157].end 558.71159375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 552.90659375
transcript.pyannote[158].end 553.90221875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 554.77971875
transcript.pyannote[159].end 556.02846875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 559.20096875
transcript.pyannote[160].end 562.81221875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 563.16659375
transcript.pyannote[161].end 564.16221875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 564.53346875
transcript.pyannote[162].end 570.00096875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 570.28784375
transcript.pyannote[163].end 575.73846875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 575.73846875
transcript.pyannote[164].end 575.77221875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 576.24471875
transcript.pyannote[165].end 597.50721875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 578.50596875
transcript.pyannote[166].end 579.90659375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 596.32596875
transcript.pyannote[167].end 597.91221875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 598.21596875
transcript.pyannote[168].end 603.56534375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 602.09721875
transcript.pyannote[169].end 603.48096875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 603.80159375
transcript.pyannote[170].end 605.59034375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 606.34971875
transcript.pyannote[171].end 608.71221875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 606.65346875
transcript.pyannote[172].end 609.70784375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 610.31534375
transcript.pyannote[173].end 610.33221875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 610.33221875
transcript.pyannote[174].end 616.32284375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 616.89659375
transcript.pyannote[175].end 618.71909375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 619.19159375
transcript.pyannote[176].end 621.43596875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 621.60471875
transcript.pyannote[177].end 621.84096875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 622.33034375
transcript.pyannote[178].end 623.86596875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 624.70971875
transcript.pyannote[179].end 626.19471875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 626.83596875
transcript.pyannote[180].end 628.37159375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 628.74284375
transcript.pyannote[181].end 630.04221875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 630.53159375
transcript.pyannote[182].end 631.83096875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 631.83096875
transcript.pyannote[183].end 631.84784375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 632.60721875
transcript.pyannote[184].end 633.02909375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 633.02909375
transcript.pyannote[185].end 633.23159375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 633.60284375
transcript.pyannote[186].end 703.97159375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 652.16534375
transcript.pyannote[187].end 653.31284375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 667.47096875
transcript.pyannote[188].end 667.90971875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 689.00346875
transcript.pyannote[189].end 694.21784375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 702.43596875
transcript.pyannote[190].end 702.57096875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 706.09784375
transcript.pyannote[191].end 708.93284375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 710.01284375
transcript.pyannote[192].end 712.39221875
transcript.whisperx[0].start 0.69
transcript.whisperx[0].end 8.562
transcript.whisperx[0].text 類似法委員質詢謝謝主席及哥欣靜有請崩諸位有請金管會崩諸位委員好
transcript.whisperx[1].start 15.157
transcript.whisperx[1].end 38.803
transcript.whisperx[1].text 這個大家都知道啊川普上任之後搞得全世界這個天翻地覆他一下子要課關稅然後股市就哇啦哇啦哇這個爆跌啊都有美股台股都一樣然後現在又暫緩一下暫緩一下現在開始又對這個半導體對汽車又暫緩然後股市又漲了所以這感覺啊這個
transcript.whisperx[2].start 40.384
transcript.whisperx[2].end 52.723
transcript.whisperx[2].text 這感覺這個因為川普的一個他的個人的特質啊讓全世界金融市場都在做雲霄飛車我這樣的statement對不對
transcript.whisperx[3].start 53.717
transcript.whisperx[3].end 70.207
transcript.whisperx[3].text 我想這個從過去從美國總統新當選以後到現在的政策不斷的成為國際上討論的話題每一個當然都會引起國際上面的一些很大的震動我是蠻同意委員剛才講的就是全世界都有一些蠻明顯的反應
transcript.whisperx[4].start 71.508
transcript.whisperx[4].end 94.84
transcript.whisperx[4].text 川普的2.0是跟過去歷屆的總統美國總統是不一樣的即使他的川普1.0都沒有這樣子但是2.0讓全世界的金融市場特別是台灣幾乎都做雲霄飛車所以你同意不同意可以把說川普的關稅政策因為他最喜歡關稅嘛是變成我們未來要面對的
transcript.whisperx[5].start 96.121
transcript.whisperx[5].end 118.894
transcript.whisperx[5].text 一頭很大的灰犀牛因為作為一個以出口為導向為主的我們的台灣那當然關稅的議題一定是我們大家很關注的其實比如說我們大概很多是資通訊產業半導體如果針對某些特定的產業剛好是我們最大的一個出口那當然對我們的影響是大的我們統一不統一會講它是灰犀牛
transcript.whisperx[6].start 120.375
transcript.whisperx[6].end 136.948
transcript.whisperx[6].text 這個每個人對灰犀牛的定義不一樣啦那我覺得絕對是個重大的影響因素啦所以差不多嘛就是你不否定我的這樣嗎應該就是我剛才講我的灰犀牛跟委員的灰犀牛可能長不一樣我的黑天鵝你覺得是犀牛還是天鵝的犀牛比較好
transcript.whisperx[7].start 139.67
transcript.whisperx[7].end 154.127
transcript.whisperx[7].text 我覺得牠在我心目中不是個動物牠就是個重大的我們要考慮的因素啦所以都不要考慮這個外面都形容是灰犀牛啊灰犀牛可是好用啊黑天鵝比較scare比較小啊
transcript.whisperx[8].start 155.215
transcript.whisperx[8].end 156.637
transcript.whisperx[8].text 賴清德總統就在前幾天賴17條正式把中國道路界定為境外敵對勢力
transcript.whisperx[9].start 177.538
transcript.whisperx[9].end 181.603
transcript.whisperx[9].text 我們看一下金融機構到大陸去了有16家如果數字有錯就請你指針
transcript.whisperx[10].start 194.235
transcript.whisperx[10].end 216.867
transcript.whisperx[10].text 只分87家總部選金額多少我不要講比例 我講金額多少金額多少現在假設不同業別不同銀行我剛剛報告過全部三頁加起來三頁加起來的話我先跟委員說明銀行大概8000億保險大概1270億左右證券大概只有十幾億而已所以加起來大概就是9000多億左右
transcript.whisperx[11].start 223.15
transcript.whisperx[11].end 239.508
transcript.whisperx[11].text 因為我根據你們的數字在去年底是九千多億曝洩那請問他們的NPL多高NPL的話其實上我們看到應該還是在大概應該是一點多吧那還是很低啊很低很低我們國內的話只有0.15
transcript.whisperx[12].start 244.133
transcript.whisperx[12].end 253.259
transcript.whisperx[12].text 這比國內的低對 而且我們對國內的控制比台灣好喔不是不是 我說我們國內0.15% 他們大概一點多但是我們對他的那個提撥有加成
transcript.whisperx[13].start 256.857
transcript.whisperx[13].end 276.636
transcript.whisperx[13].text 我請問你啊我請問你啊總統做這個宣誓以後有沒有這個長官告訴你啊比如院長告訴你未來要盯這個這一塊市場要讓他緊縮這個因為敵外軍這個境外敵對勢力啊所以當然要緊縮有沒有這樣的指示
transcript.whisperx[14].start 277.156
transcript.whisperx[14].end 304.417
transcript.whisperx[14].text 其實我想我在立法院這個快一年以來幾乎每一次都有委員關注這一題我想從過去來講我們的國營從開始他們的嗅覺也非常敏銳所以一路下來其實我覺得他們已經感受到機會跟不同點的分散比如說我們很明顯看到從對岸的投資他們在減少當中但是他把這個移動到比如說南向還有比如說到澳洲
transcript.whisperx[15].start 305.878
transcript.whisperx[15].end 323.257
transcript.whisperx[15].text 歐洲到美國去這非常非常明顯就跟我們很多的廠商也移動到那邊我們的金融服務業是跟隨這些廠商移動的所以我想這部分不是我的問題這個我知道啦但是我的問題是說總統這番話以後會不會加速你剛才提到的可能會我們叫OOC吧是不是
transcript.whisperx[16].start 326.16
transcript.whisperx[16].end 353.496
transcript.whisperx[16].text 這個離開中國大陸然後去南下會不會這樣連包括銀行也會不會這樣其實我覺得金融業特別是銀行在這一波的過程當中他已經做了很好的調整比較沒有OO型的問題他本來就一向就是跟隨著市場其實我們的產業的移動他就跟隨著移動其實我覺得這部分可是就你的預估未來還是持續的在減少在中國大陸的一些的活動是不是可以這樣講
transcript.whisperx[17].start 354.116
transcript.whisperx[17].end 381.967
transcript.whisperx[17].text 其實這取決一個因素我們的國營我們從他過去的營業範圍裡面他們大部分都是服務台商為主台商的移動還有外資企業的移動就決定了他們未來的比重我想這部分就要看這個因為金融服務就像我們去日本設廠我們的金融機構就過去我請問你因為我實際有限這些國營的或者不知道是不是國營的在大陸服務台商這些銀行他們的獲利情況跟在台灣這個
transcript.whisperx[18].start 384.199
transcript.whisperx[18].end 398.834
transcript.whisperx[18].text 裡面來比的話怎麼樣我們各家情況不同平均平均比較好還是比較不好這我沒有具體的數字啦因為各家一樣不一樣不過我覺得會後我會提供給委員好請問這個台積電
transcript.whisperx[19].start 402.296
transcript.whisperx[19].end 427.142
transcript.whisperx[19].text 這個要去美國投資一千億美金算不算重大事件他們當然是台積電是國內在公司治理上非常非常優異的公司是我想他們在比如說很多重大訊息的時候他都有依規定發布重大訊息的對外發重訊你什麼時候知道他3月4號的時候早上6點多就發了這個重訊也在符合我們這所有的所以你知道時間跟我一樣
transcript.whisperx[20].start 428.734
transcript.whisperx[20].end 435.592
transcript.whisperx[20].text 重訓就是這樣因為我們是資本市場的管理機構阿你都沒事先找到一個所以你跟我一樣
transcript.whisperx[21].start 437.458
transcript.whisperx[21].end 461.817
transcript.whisperx[21].text 我們的執掌就是在金融市場裡面我都認為你應該比我們早一點知道才對啊就像我們所有的公司他們在發重訊之前他就按照我們的規定來做他有沒有跟你們打招呼我們有不需要 有沒有我們就按照規定來做就像我們這麼多的上千家兩家他發布重訊之前有沒有跟你們報告 有沒有重訊的部分我想主要是跟交易所這邊來處理 對
transcript.whisperx[22].start 468.809
transcript.whisperx[22].end 480.158
transcript.whisperx[22].text 至少我覺得在過去不管哪家公司我們都是按照這個規定來辦理他們就是他是跟交易所之間的關係他們是跟上市就是跟交易所之間的氣氛請交易所的董事長來一下好不好時間暫停一下謝謝
transcript.whisperx[23].start 490.449
transcript.whisperx[23].end 513.829
transcript.whisperx[23].text 請問他們發佈中訊之前是有沒有跟你們打招呼?一般發佈中訊之前他們不會跟我們打招呼會不會?不會都不會?對直接發佈?對他們按照中訊發佈要求的規定新管會請教編輯會因為它是這麼大的一個事情你們的角色扮演是什麼?
transcript.whisperx[24].start 515.29
transcript.whisperx[24].end 537.893
transcript.whisperx[24].text 其實台積電之於金管會 他就是我們所轄的上市櫃公司的議員沒有特殊的情況我們對所有上市櫃公司 我們是主管機關 是主政在這個部分那比如說他今天可能牽涉到其他部分 其他部會的執掌比如他未來假設在那投資 那是經濟部投審會他會來做決定 但是我們就是一個一般的上市公司
transcript.whisperx[25].start 538.646
transcript.whisperx[25].end 543.713
transcript.whisperx[25].text 好 再來我再請教你這個川普把加密貨幣當作戰略儲備
transcript.whisperx[26].start 546.741
transcript.whisperx[26].end 575.633
transcript.whisperx[26].text 外界以為不得了可以自由買賣其實不是的啦他是把他是把這個把這個洗錢的這些扣押住了然後但是他當作戰略儲備台灣不是啊台灣是把這些洗錢的加密貨幣加一加就放充公放國庫裡面的賣掉了變成這個樣子啦不一樣兩者不一樣我就請問你我就請問你我們要不要也follow美國做法當作戰略儲備要不要請問你
transcript.whisperx[27].start 576.328
transcript.whisperx[27].end 604.913
transcript.whisperx[27].text 第一個先跟委員報告這不是我們金管會的對那我想說美國會這樣做法呢其實上市場有很多的討論本來市場預期說他們會加購結果他沒有他就把現有在司法部扣押的這20萬顆當作儲備所以市場呢就感覺也就是一個重分類的這個戰略儲備是什麼意思這個部分可能要問其他我不敢這個做你是專家不敢講沒有沒有這部分真的
transcript.whisperx[28].start 606.74
transcript.whisperx[28].end 623.625
transcript.whisperx[28].text 好 因為我時間快到了 最後一個問題問你了你們剛好看今天最新的一個報導是同義醫療發行穩定幣所以提出了虛擬資產服務法要求所有的
transcript.whisperx[29].start 625.162
transcript.whisperx[29].end 640.523
transcript.whisperx[29].text 合法的交易合法的交易所都要跟你們登記禁止私人交易你要不要講一下就是在我們的草案裡面既然我們要立這個專法一定才特許制
transcript.whisperx[30].start 641.244
transcript.whisperx[30].end 667.519
transcript.whisperx[30].text 所有特許制一定是你沒有取得特許當然是不能經營這個業務這當然是那否則特許就沒有意義了所以未來呢我們要納管保護國人交易人的權益這未來都一直要你你你立法稽查禁止私人交易那當然就是接下來我們會跟司法單位就像我們現在所有的特許特許業務一樣我們就是一定有我們主政單位跟我們的司法檢調機構呢就會同步來做這些事
transcript.whisperx[31].start 667.839
transcript.whisperx[31].end 694.029
transcript.whisperx[31].text 你會不會讓電子支付也參與可以交易當然這個我們講穩定幣有四種不同的東西一個就是電子支付的可以不可以電子支付可以不可以這未來也是我們討論穩定幣的類型的其中之一有沒有可以變成所謂的代幣化這樣一個過程所以你的意思就是可以就看未來我們在討論的時候那這樣一來的話那個現在有的在AppleAndroid的有些要下架好不好
transcript.whisperx[32].start 694.809
transcript.whisperx[32].end 711.534
transcript.whisperx[32].text 這些我們未來穩定 譬如說在台灣要上街 按照我們現在草案的規劃是要經過我們的許可 我們是follow全世界各國都是相同的規定謝謝謝謝委員好 謝謝彭主委 謝謝賴世保委員接下來請郭國文委員質詢