iVOD / 159573

Field Value
IVOD_ID 159573
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159573
日期 2025-03-24
會議資料.會議代碼 委員會-11-3-15-5
會議資料.會議代碼:str 第11屆第3會期內政委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 15
會議資料.委員會代碼:str[0] 內政委員會
會議資料.標題 第11屆第3會期內政委員會第5次全體委員會議
影片種類 Clip
開始時間 2025-03-24T12:21:46+08:00
結束時間 2025-03-24T12:32:32+08:00
影片長度 00:10:46
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/01f072357e67ffc090fc34d94117753f8313c4daf57d80ad1d241b1dc2f533058053b69fbe3a03365ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 12:21:46 - 12:32:32
會議時間 2025-03-24T09:00:00+08:00
會議名稱 立法院第11屆第3會期內政委員會第5次全體委員會議(事由:邀請內政部部長、行政院消費者保護處處長、財政部就「租賃住宅市場透明化之現況及展望」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 13.95284375
transcript.pyannote[0].end 24.43221875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 24.71909375
transcript.pyannote[1].end 26.25471875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 26.76096875
transcript.pyannote[2].end 27.50346875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 27.50346875
transcript.pyannote[3].end 29.27534375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 29.39346875
transcript.pyannote[4].end 38.01659375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 38.47221875
transcript.pyannote[5].end 44.95221875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 42.21846875
transcript.pyannote[6].end 42.50534375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 45.08721875
transcript.pyannote[7].end 45.30659375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 45.71159375
transcript.pyannote[8].end 48.32721875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 47.28096875
transcript.pyannote[9].end 47.83784375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 48.15846875
transcript.pyannote[10].end 52.12409375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 52.64721875
transcript.pyannote[11].end 55.11096875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 55.56659375
transcript.pyannote[12].end 59.39721875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 59.76846875
transcript.pyannote[13].end 63.97034375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 64.76346875
transcript.pyannote[14].end 75.98534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 76.18784375
transcript.pyannote[15].end 82.44846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 82.60034375
transcript.pyannote[16].end 88.06784375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 88.23659375
transcript.pyannote[17].end 93.80534375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 93.87284375
transcript.pyannote[18].end 101.28096875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 101.28096875
transcript.pyannote[19].end 109.73534375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 106.51221875
transcript.pyannote[20].end 107.60909375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 107.69346875
transcript.pyannote[21].end 113.11034375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 109.76909375
transcript.pyannote[22].end 111.30471875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 112.70534375
transcript.pyannote[23].end 115.65846875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 116.16471875
transcript.pyannote[24].end 119.32034375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 122.39159375
transcript.pyannote[25].end 123.06659375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 123.42096875
transcript.pyannote[26].end 126.27284375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 126.32346875
transcript.pyannote[27].end 129.58034375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 129.66471875
transcript.pyannote[28].end 135.41909375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 133.95096875
transcript.pyannote[29].end 142.89471875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 139.43534375
transcript.pyannote[30].end 141.47721875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 141.47721875
transcript.pyannote[31].end 141.49409375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 143.77221875
transcript.pyannote[32].end 144.41346875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 145.74659375
transcript.pyannote[33].end 155.78721875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 152.64846875
transcript.pyannote[34].end 153.98159375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 155.73659375
transcript.pyannote[35].end 169.43909375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 169.96221875
transcript.pyannote[36].end 170.36721875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 170.58659375
transcript.pyannote[37].end 173.23596875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 173.50596875
transcript.pyannote[38].end 177.48846875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 179.83409375
transcript.pyannote[39].end 183.12471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 181.72409375
transcript.pyannote[40].end 197.94096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 199.27409375
transcript.pyannote[41].end 202.12596875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 202.10909375
transcript.pyannote[42].end 203.62784375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 204.16784375
transcript.pyannote[43].end 206.68221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 205.56846875
transcript.pyannote[44].end 214.47846875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 214.74846875
transcript.pyannote[45].end 216.82409375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 217.00971875
transcript.pyannote[46].end 220.03034375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 220.31721875
transcript.pyannote[47].end 225.10971875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 225.17721875
transcript.pyannote[48].end 245.47784375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 245.73096875
transcript.pyannote[49].end 247.24971875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 247.60409375
transcript.pyannote[50].end 249.84846875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 251.50221875
transcript.pyannote[51].end 251.67096875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 252.04221875
transcript.pyannote[52].end 253.72971875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 253.72971875
transcript.pyannote[53].end 253.74659375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 254.23596875
transcript.pyannote[54].end 254.25284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 254.25284375
transcript.pyannote[55].end 254.52284375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 254.52284375
transcript.pyannote[56].end 254.57346875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 254.89409375
transcript.pyannote[57].end 266.43659375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 263.68596875
transcript.pyannote[58].end 263.82096875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 264.10784375
transcript.pyannote[59].end 265.18784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 266.43659375
transcript.pyannote[60].end 266.50409375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 266.50409375
transcript.pyannote[61].end 270.18284375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 266.77409375
transcript.pyannote[62].end 267.26346875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 269.18721875
transcript.pyannote[63].end 278.65409375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 279.09284375
transcript.pyannote[64].end 279.70034375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 280.10534375
transcript.pyannote[65].end 305.92409375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 306.07596875
transcript.pyannote[66].end 308.42159375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 308.48909375
transcript.pyannote[67].end 310.10909375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 310.41284375
transcript.pyannote[68].end 312.69096875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 312.85971875
transcript.pyannote[69].end 314.68221875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 315.18846875
transcript.pyannote[70].end 317.28096875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 317.78721875
transcript.pyannote[71].end 332.11409375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 334.94909375
transcript.pyannote[72].end 337.27784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 337.61534375
transcript.pyannote[73].end 354.57471875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 353.89971875
transcript.pyannote[74].end 355.04721875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 355.04721875
transcript.pyannote[75].end 355.14846875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 355.14846875
transcript.pyannote[76].end 359.13096875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 357.07221875
transcript.pyannote[77].end 357.62909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 359.68784375
transcript.pyannote[78].end 363.68721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 363.95721875
transcript.pyannote[79].end 367.68659375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 368.17596875
transcript.pyannote[80].end 373.57596875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 373.84596875
transcript.pyannote[81].end 376.83284375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 377.15346875
transcript.pyannote[82].end 381.84471875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 381.91221875
transcript.pyannote[83].end 395.71596875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 395.95221875
transcript.pyannote[84].end 402.39846875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 403.22534375
transcript.pyannote[85].end 404.91284375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 405.13221875
transcript.pyannote[86].end 406.54971875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 406.70159375
transcript.pyannote[87].end 412.27034375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 412.54034375
transcript.pyannote[88].end 423.17159375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 423.44159375
transcript.pyannote[89].end 423.94784375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 424.33596875
transcript.pyannote[90].end 425.02784375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 425.33159375
transcript.pyannote[91].end 428.26784375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 428.74034375
transcript.pyannote[92].end 431.64284375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 432.16596875
transcript.pyannote[93].end 436.40159375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 432.21659375
transcript.pyannote[94].end 432.55409375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 435.84471875
transcript.pyannote[95].end 437.76846875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 437.39721875
transcript.pyannote[96].end 446.40846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 443.38784375
transcript.pyannote[97].end 444.36659375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 444.36659375
transcript.pyannote[98].end 444.38346875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 446.42534375
transcript.pyannote[99].end 448.31534375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 448.63596875
transcript.pyannote[100].end 455.35221875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 455.84159375
transcript.pyannote[101].end 457.20846875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 457.51221875
transcript.pyannote[102].end 458.03534375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 458.57534375
transcript.pyannote[103].end 462.59159375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 463.03034375
transcript.pyannote[104].end 478.03221875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 478.03221875
transcript.pyannote[105].end 478.96034375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 478.96034375
transcript.pyannote[106].end 479.17971875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 479.17971875
transcript.pyannote[107].end 480.88409375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 481.27221875
transcript.pyannote[108].end 482.25096875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 482.48721875
transcript.pyannote[109].end 483.78659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 484.09034375
transcript.pyannote[110].end 487.98846875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 488.37659375
transcript.pyannote[111].end 490.67159375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 490.67159375
transcript.pyannote[112].end 527.61096875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 507.93471875
transcript.pyannote[113].end 508.08659375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 515.12346875
transcript.pyannote[114].end 515.88284375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 527.88096875
transcript.pyannote[115].end 532.08284375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 532.08284375
transcript.pyannote[116].end 538.63034375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 532.09971875
transcript.pyannote[117].end 532.16721875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 539.08596875
transcript.pyannote[118].end 542.03909375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 542.10659375
transcript.pyannote[119].end 547.48971875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 547.70909375
transcript.pyannote[120].end 561.42846875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 561.81659375
transcript.pyannote[121].end 563.72346875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 564.24659375
transcript.pyannote[122].end 566.94659375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 567.41909375
transcript.pyannote[123].end 568.85346875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 568.97159375
transcript.pyannote[124].end 581.66159375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 582.75846875
transcript.pyannote[125].end 583.07909375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 583.16346875
transcript.pyannote[126].end 583.56846875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 584.83409375
transcript.pyannote[127].end 587.23034375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 586.45409375
transcript.pyannote[128].end 587.16284375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 587.87159375
transcript.pyannote[129].end 589.23846875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 588.14159375
transcript.pyannote[130].end 591.04409375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 591.04409375
transcript.pyannote[131].end 597.72659375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 593.71034375
transcript.pyannote[132].end 599.11034375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 597.81096875
transcript.pyannote[133].end 599.05971875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 599.11034375
transcript.pyannote[134].end 599.27909375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 599.27909375
transcript.pyannote[135].end 599.29596875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 599.63346875
transcript.pyannote[136].end 605.79284375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 606.28221875
transcript.pyannote[137].end 606.38346875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 606.38346875
transcript.pyannote[138].end 608.44221875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 608.44221875
transcript.pyannote[139].end 613.35284375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 608.47596875
transcript.pyannote[140].end 609.67409375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 611.61471875
transcript.pyannote[141].end 611.71596875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 611.71596875
transcript.pyannote[142].end 611.91846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 611.91846875
transcript.pyannote[143].end 611.98596875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 613.35284375
transcript.pyannote[144].end 613.36971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 614.77034375
transcript.pyannote[145].end 619.46159375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 619.79909375
transcript.pyannote[146].end 625.36784375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 625.97534375
transcript.pyannote[147].end 629.70471875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 626.04284375
transcript.pyannote[148].end 628.06784375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 628.47284375
transcript.pyannote[149].end 631.69596875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 630.53159375
transcript.pyannote[150].end 638.59784375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 637.61909375
transcript.pyannote[151].end 639.99846875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 639.39096875
transcript.pyannote[152].end 641.66909375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 642.69846875
transcript.pyannote[153].end 644.30159375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 644.57159375
transcript.pyannote[154].end 645.80346875
transcript.whisperx[0].start 14.433
transcript.whisperx[0].end 24.102
transcript.whisperx[0].text 謝謝主席 再當委員先進列席的政府經商署長 官員會長 工作夥伴媒體記者女士先生有請內政部劉部長 地政司林司長還有國土署的吳署長劉部長 林司長 吳署長有請
transcript.whisperx[1].start 26.972
transcript.whisperx[1].end 31.857
transcript.whisperx[1].text 中委員好部長好 署長好 市長好我們比較輕鬆的補充是我們行政院團隊裡面三聲帶朱祁鈴我演繹不來 演繹不來我請教一下 他們那時候我聽到老闆在說手腳跟脖子結這是什麼意思 你知道嗎手腳跟脖子結
transcript.whisperx[2].start 45.785
transcript.whisperx[2].end 63.717
transcript.whisperx[2].text 我真的不知道 拜託都議員跟我說好來 首開就是屬於老一輩在日治時代呢都市居民的疏散那暴擊呢就是轟炸的意思啦好 那我想這個是一個比較緩和氣氛來 下一個部長呢在不久前來到我們屏東江華義那時候我們的興建
transcript.whisperx[3].start 65.15
transcript.whisperx[3].end 75.417
transcript.whisperx[3].text 部立屏東醫院的醫療大樓原來是地下一層 地上七層後來院長 蘇院長支持改成地下三層 地上十二層部長也特別強調這一點那是什麼原因 保廷 部長第一個當然是要這個造福我們在屏東地區的廣大的這個居民讓他在醫療品質上面可以提升那非常謝謝我們的蘇前院長的幫忙那另外一個就是我們希望能夠結合那個衛福部的一個韌性醫療計畫裡面
transcript.whisperx[4].start 94.028
transcript.whisperx[4].end 118.882
transcript.whisperx[4].text 把這個地下三層樓的部分變成是一個符合現代功能而且有具有戰備功能的一個災害規劃的院區就是平時是當停車場然後有緊急災難的時候會變成手術跟病房或者是大規模譬如說我們有COVID-19這種大規模的災害會變成手術病房然後下面的病床會增加相當多好那現在跟內政部的又有關我們看下一頁就是說什麼時候台灣的建築物開始要設防空避難室
transcript.whisperx[5].start 122.641
transcript.whisperx[5].end 143.036
transcript.whisperx[5].text 其實在63年以前這開始其實都有啦那其實就這個部分來講現在也它是一個標示性但是這個部分其實在規劃上都還保持著都還保留嘛所以原來我們看到的公寓大樓底下不是最早不是停車場喔它是讓你做防空避難部長那當初防空避難的目的是什麼就是如果
transcript.whisperx[6].start 145.819
transcript.whisperx[6].end 168.836
transcript.whisperx[6].text 如果有任何需要防空避難的部分當然就是找防空避難設施但是現在有加入就是如果有重大天災也是把它列進去裡面也是疏散撤離也放在這裡面所以都市的防災這些規劃都要有部長請繼續這邊有個新聞美蘇冷戰期間有一個防空避難的設計有人到家裡打開以前家裡的後院挖了一個防空壕在美國加州的西岸有這種東西
transcript.whisperx[7].start 170.717
transcript.whisperx[7].end 197.534
transcript.whisperx[7].text 挖這個黃宮都是害怕戰爭那現在呢現在如果想要在家裡後院弄一個這樣的設施你覺得是基於什麼樣的心態這個要警國員指教我不曉得他們是基於什麼心態好我們來看一下我不在推銷啦現在特斯拉他說一個迷你屋啊只要台幣不到25萬元他有太陽能還有儲能的設施還可以污水處理假設部長如果你剛好住在鄉下有個空間你想不想擺一個在後花園
transcript.whisperx[8].start 199.324
transcript.whisperx[8].end 217.817
transcript.whisperx[8].text 因為我剛好就沒有啊所以這個假設一直不成立啊那25萬你買得起嗎25萬台幣買得起啊買得起嗎如果是美金買不起好那我現在告訴你一個情況來往下看其實呢現在很多的都會上班族呢他們其實在鄉下有買了一塊地那農地農用這沒有問題但是呢他會怎麼樣他會當假日農夫
transcript.whisperx[9].start 220.379
transcript.whisperx[9].end 249.569
transcript.whisperx[9].text 他中午假日呢就去那個地方種種菜啦看看這個養養這個爬藤啦什麼之類的就鄉村田園生活但是他有在做農業生產所以內政部呢根據農業用地農業設施的容許使用審查辦法然後說只要你超過300坪有農用的適時但是如果有農舍就不能限制裁市因為這個大部分都當制裁市的名義然後呢農業主人不需要有農民的身份假如啦部長你具備這樣的身份你會不會想要弄一個
transcript.whisperx[10].start 252.25
transcript.whisperx[10].end 278.447
transcript.whisperx[10].text 還是我們署長你想要弄一個各位報告其實在鄉下要蓋這一類的其實大部分還不需要用到這個組合其實它通常會用貨櫃屋的形式但是貨櫃屋是不合屋所以其實概念是都一致所以說馬克思推出這個組合屋這種屋子可不可以成為農業生產設施的一部分部長請你來我要跟你說一下要拜託你跟農業部長思考一下
transcript.whisperx[11].start 279.167
transcript.whisperx[11].end 297.205
transcript.whisperx[11].text 其實部長因為呢其實這樣的一個像那麼先進的像太空艙的東西其實在我們的農村它如果有太陽能的光電板它有儲能設施加上它有簡單的污水排放處理其實呢它的農民的供糧會改善很多
transcript.whisperx[12].start 297.685
transcript.whisperx[12].end 301.549
transcript.whisperx[12].text 現在如果你去農村看 蜜蜂餅啦 蟬蝦餅啦 還有羊尿啦放煮食的羊都很簡陋其實我相信如果給農民一個許可他弄一個漂漂亮亮的 平常農業使用的時候呢 他符合但是最終是什麼時候 部長你看
transcript.whisperx[13].start 315.242
transcript.whisperx[13].end 331.798
transcript.whisperx[13].text 在都會的空地或農地他平常是這樣的使用但是遇到了有大型災害發生大地震啊什麼的防災任性這個地方很快的就會可能成為這些避難小屋的放置場所部長你覺得可以想像嗎
transcript.whisperx[14].start 335.24
transcript.whisperx[14].end 357.415
transcript.whisperx[14].text 委員非常有創意但是我在想像就是說如果在假設有大地震發生這樣的狀況不是用所謂的我們的衛福部所說的這個臨時組合的方式的話會造成說如果這個大地震在災後復原的時候變成一大堆都是屬於違章建築說得很好這個反而是更難處理這就是921留給我們的印象因為過去台灣沒有想過這個問題
transcript.whisperx[15].start 359.736
transcript.whisperx[15].end 381.036
transcript.whisperx[15].text 但是你看看馬斯克那個東西,它其實是移動式的而且它是一個量產的,是一個商業化的,平常就可以用組合屋,現在我們看到市面上的組合屋,有固定在生產的廠商嗎?大部分都是在做公寮使用但是如果它成為一個家庭裡面,大家好像旅行拖車一樣,常常就會構置放在三分地那裡放一下
transcript.whisperx[16].start 382.077
transcript.whisperx[16].end 400.95
transcript.whisperx[16].text 那他會覺得呢又有市場就有產線就有產能遇到需要大量擴充的時候可以馬上的生產製造而且不會是減肉的而且到時候符合有儲能可以自給自足還有污水處理然後平常的時候呢因為有平常的用途在必要的時候他就可以發揮這樣的作用而且
transcript.whisperx[17].start 403.271
transcript.whisperx[17].end 429.717
transcript.whisperx[17].text 空地要擺放很快要移除也很快這裡面都涉及到什麼法規包括我們的農地的農業設施容許跟以及我們目前地政司我們的國土署你們在做都市空間規劃的時候防災空間的思維你們會看到公園必要的時候我可以放很多這個對不對農地也可以放很多這個要疏散大家去那裡疏散來署長那麼署長簡單講你覺得有哪些法規要修改
transcript.whisperx[18].start 432.416
transcript.whisperx[18].end 457.641
transcript.whisperx[18].text 跟委員報告啦 其實因為就暫時的話 我想我沒有講暫時啦 重大災害那樣重大災害的時候 其實相關的災防法裡面其實我是覺得可以去討論這件事情第二個就是說 那憑這個配方我說明一下好了 其實我們像很多是屬於像過去災害發生以後 我們大概適用最多就是像類似有一些搶救災的重機具那我們過去的重機具在
transcript.whisperx[19].start 458.661
transcript.whisperx[19].end 475.779
transcript.whisperx[19].text 在分區裡面是找不到的重機具的停放場所是找不到的那我們最近跟交通部有在討論修法因為你這些重機具它還是要找到合法的地方可以去施作去放那但是這一類的它是屬於臨時性的生產它不像重機具我平常也要用
transcript.whisperx[20].start 476.42
transcript.whisperx[20].end 496.605
transcript.whisperx[20].text 那所以我的意思就是平常就要能用才會有生產就要平常可以放需要的時候才大量的可以安放如果你沒有災防法不到災防法的啟動條件他不能放就沒有市場我會說明一下好了因為事實上國內不管是做小型的預住業者跟
transcript.whisperx[21].start 498.667
transcript.whisperx[21].end 515.406
transcript.whisperx[21].text 這個貨櫃物業者其實他們平常就已經有能力在做這件事情了他們我們有看過很多的規格品他們只是在分區上面他如果有適合的現在都違法的啊不 我說明一下其實現在的資材市或小型的農舍其實也有類似用玉柱瓶去做的
transcript.whisperx[22].start 516.027
transcript.whisperx[22].end 538.356
transcript.whisperx[22].text 那所以其實我的意思是說國內的相關的業者其實他是有這方面的能力的那大概委員所在意的說我們如果因應緊急狀態的時候我們以防災的概念或是災後復原的概念那其實允許他做更多的話那其實或許是在災防法裡面去討論就可以剛好相反我還在不斷的提你腦筋你又轉過來如果只有災防的時候可以用他平常不會使用
transcript.whisperx[23].start 539.176
transcript.whisperx[23].end 563.466
transcript.whisperx[23].text 像這樣的貨櫃屋它現在都存在灰色地帶內政部不准許 農業部不准許但是如果你們明確的把它的功能面積 大小 重量固定裝置的要求設定進去那麼只要符合這些功能它就可以允許使用那它平常就有市場平常有市場的產品你需要的時候才有可能大量的擴充平常就可能擺放的地方
transcript.whisperx[24].start 564.326
transcript.whisperx[24].end 581.611
transcript.whisperx[24].text 需要的時候就能夠大量排放 平常只能放一個需要的時候可以放很多個這個法規的調適 請部長 拜託最後一個結論請部長的內政部協同農業部來研議調整法規就空地農地設置容許設施沖弱避難儲存空間之用進行一個研究 可以嗎 部長指示一下可不可以
transcript.whisperx[25].start 584.827
transcript.whisperx[25].end 605.564
transcript.whisperx[25].text 我們要跟農業部一起來討論我想不只吧可能國防部也要吧我沒有只上國防部的要求國土署其實目前防災的主政是內政部我知道災有很多種災但是國土署所處理的有關土地的管制規範會碰觸到這個問題裡面的限制很大
transcript.whisperx[26].start 606.537
transcript.whisperx[26].end 625.325
transcript.whisperx[26].text 通道國防部的用地嗎?沒有通道農地跟工地國土署的土地使用的規範那就是內政部啊沒有應該是這麼說啦我知道委員的意思啦但是應該是這麼說因為土地使用管制規則是剛性的它一旦開放了就開放了
transcript.whisperx[27].start 626.084
transcript.whisperx[27].end 640.271
transcript.whisperx[27].text 所以你們要設計一個專案容許或者特案容許或者容許沒有嘛所以你們要有一個容許的概念審查容許的概念好不好你們可以去研議可不可以答應去研議一下只是研議啊好我找你就是原因謝謝部長謝謝署長好謝謝宗家兵委員這個高金素美委員