iVOD / 159564

Field Value
IVOD_ID 159564
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159564
日期 2025-03-24
會議資料.會議代碼 委員會-11-3-20-4
會議資料.會議代碼:str 第11屆第3會期財政委員會第4次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第4次全體委員會議
影片種類 Clip
開始時間 2025-03-24T11:43:53+08:00
結束時間 2025-03-24T11:54:22+08:00
影片長度 00:10:29
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/01f072357e67ffc047ccb15e8ef953aabe2be2b26df085f9e5f5281f5900dffb18318873d924b4585ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:43:53 - 11:54:22
會議時間 2025-03-24T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第4次全體委員會議(事由:一、邀請行政院主計總處陳主計長淑姿、審計部陳審計長瑞敏率所屬單位主管列席業務報告,並備質詢。 二、審查本院委員王鴻薇等26人、委員林德福等20人、委員賴士葆等20人分別擬具「預算法增訂第八十一條之一條文草案」等3案。 【3月24日及26日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.38534375
transcript.pyannote[0].end 1.51596875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 6.74721875
transcript.pyannote[1].end 7.42221875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 8.01284375
transcript.pyannote[2].end 11.16846875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 11.42159375
transcript.pyannote[3].end 27.13221875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 20.23034375
transcript.pyannote[4].end 21.71534375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 27.65534375
transcript.pyannote[5].end 38.43846875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 36.93659375
transcript.pyannote[6].end 37.32471875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 37.37534375
transcript.pyannote[7].end 40.02471875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 38.64096875
transcript.pyannote[8].end 39.55221875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 40.49721875
transcript.pyannote[9].end 42.91034375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 43.14659375
transcript.pyannote[10].end 43.56846875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 43.56846875
transcript.pyannote[11].end 44.26034375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 44.44596875
transcript.pyannote[12].end 56.73096875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 57.77721875
transcript.pyannote[13].end 61.60784375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 61.60784375
transcript.pyannote[14].end 64.94909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 62.23221875
transcript.pyannote[15].end 63.91971875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 64.07159375
transcript.pyannote[16].end 65.60721875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 66.33284375
transcript.pyannote[17].end 67.59846875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 69.30284375
transcript.pyannote[18].end 72.82971875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 73.69034375
transcript.pyannote[19].end 75.90096875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 77.43659375
transcript.pyannote[20].end 80.08596875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 80.45721875
transcript.pyannote[21].end 81.58784375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 82.33034375
transcript.pyannote[22].end 83.93346875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 83.95034375
transcript.pyannote[23].end 85.26659375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 85.75596875
transcript.pyannote[24].end 88.74284375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 90.63284375
transcript.pyannote[25].end 91.84784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 92.67471875
transcript.pyannote[26].end 92.89409375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 93.45096875
transcript.pyannote[27].end 94.46346875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 94.75034375
transcript.pyannote[28].end 95.25659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 95.64471875
transcript.pyannote[29].end 97.90596875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 98.59784375
transcript.pyannote[30].end 99.07034375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 99.71159375
transcript.pyannote[31].end 100.97721875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 102.19221875
transcript.pyannote[32].end 114.05534375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 115.05096875
transcript.pyannote[33].end 122.18909375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 122.27346875
transcript.pyannote[34].end 122.74596875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 122.79659375
transcript.pyannote[35].end 145.27409375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 145.61159375
transcript.pyannote[36].end 148.31159375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 148.96971875
transcript.pyannote[37].end 151.87221875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 152.47971875
transcript.pyannote[38].end 153.94784375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 154.65659375
transcript.pyannote[39].end 160.32659375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 161.05221875
transcript.pyannote[40].end 161.79471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 162.82409375
transcript.pyannote[41].end 163.43159375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 163.98846875
transcript.pyannote[42].end 164.52846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 165.20346875
transcript.pyannote[43].end 165.59159375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 166.31721875
transcript.pyannote[44].end 166.78971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 167.41409375
transcript.pyannote[45].end 171.73409375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 171.95346875
transcript.pyannote[46].end 175.80096875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 176.84721875
transcript.pyannote[47].end 178.11284375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 178.41659375
transcript.pyannote[48].end 181.57221875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 182.11221875
transcript.pyannote[49].end 183.68159375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 183.86721875
transcript.pyannote[50].end 184.81221875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 185.28471875
transcript.pyannote[51].end 186.41534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 187.39409375
transcript.pyannote[52].end 189.72284375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 190.76909375
transcript.pyannote[53].end 191.96721875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 192.45659375
transcript.pyannote[54].end 201.23159375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 201.85596875
transcript.pyannote[55].end 202.49721875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 203.42534375
transcript.pyannote[56].end 203.89784375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 204.57284375
transcript.pyannote[57].end 205.26471875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 205.48409375
transcript.pyannote[58].end 217.80284375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 218.24159375
transcript.pyannote[59].end 233.81721875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 234.62721875
transcript.pyannote[60].end 235.58909375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 235.82534375
transcript.pyannote[61].end 237.64784375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 238.30596875
transcript.pyannote[62].end 255.07971875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 255.16409375
transcript.pyannote[63].end 269.01846875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 269.55846875
transcript.pyannote[64].end 270.03096875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 270.25034375
transcript.pyannote[65].end 271.34721875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 271.78596875
transcript.pyannote[66].end 272.79846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 273.42284375
transcript.pyannote[67].end 275.05971875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 275.43096875
transcript.pyannote[68].end 276.03846875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 276.20721875
transcript.pyannote[69].end 277.16909375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 277.62471875
transcript.pyannote[70].end 279.68346875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 280.96596875
transcript.pyannote[71].end 285.30284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 286.63596875
transcript.pyannote[72].end 287.20971875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 287.47971875
transcript.pyannote[73].end 288.55971875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 289.69034375
transcript.pyannote[74].end 291.02346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 291.27659375
transcript.pyannote[75].end 291.98534375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 293.13284375
transcript.pyannote[76].end 294.48284375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 294.93846875
transcript.pyannote[77].end 297.11534375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 297.58784375
transcript.pyannote[78].end 307.35846875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 307.79721875
transcript.pyannote[79].end 329.04284375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 330.13971875
transcript.pyannote[80].end 330.20721875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 330.44346875
transcript.pyannote[81].end 332.41784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 333.05909375
transcript.pyannote[82].end 333.76784375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 334.27409375
transcript.pyannote[83].end 335.62409375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 336.26534375
transcript.pyannote[84].end 336.99096875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 338.99909375
transcript.pyannote[85].end 339.82596875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 340.88909375
transcript.pyannote[86].end 351.09846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 351.16596875
transcript.pyannote[87].end 362.82659375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 358.52346875
transcript.pyannote[88].end 358.84409375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 363.38346875
transcript.pyannote[89].end 374.06534375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 374.50409375
transcript.pyannote[90].end 388.61159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 387.32909375
transcript.pyannote[91].end 388.35846875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 388.61159375
transcript.pyannote[92].end 393.92721875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 391.07534375
transcript.pyannote[93].end 391.71659375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 393.16784375
transcript.pyannote[94].end 400.40721875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 399.68159375
transcript.pyannote[95].end 412.62471875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 413.08034375
transcript.pyannote[96].end 424.31909375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 424.67346875
transcript.pyannote[97].end 434.88284375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 434.59596875
transcript.pyannote[98].end 435.84471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 435.03471875
transcript.pyannote[99].end 438.57846875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 438.88221875
transcript.pyannote[100].end 440.94096875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 441.44721875
transcript.pyannote[101].end 454.03596875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 454.47471875
transcript.pyannote[102].end 458.45721875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 459.26721875
transcript.pyannote[103].end 474.42096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 474.67409375
transcript.pyannote[104].end 483.43221875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 484.00596875
transcript.pyannote[105].end 486.09846875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 486.09846875
transcript.pyannote[106].end 486.50346875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 486.65534375
transcript.pyannote[107].end 488.19096875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 488.79846875
transcript.pyannote[108].end 498.58596875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 498.90659375
transcript.pyannote[109].end 502.02846875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 502.63596875
transcript.pyannote[110].end 503.24346875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 503.91846875
transcript.pyannote[111].end 506.39909375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 506.56784375
transcript.pyannote[112].end 507.02346875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 507.02346875
transcript.pyannote[113].end 510.78659375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 511.15784375
transcript.pyannote[114].end 517.31721875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 517.53659375
transcript.pyannote[115].end 520.00034375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 520.00034375
transcript.pyannote[116].end 520.87784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 520.57409375
transcript.pyannote[117].end 522.56534375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 523.24034375
transcript.pyannote[118].end 528.08346875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 528.48846875
transcript.pyannote[119].end 532.53846875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 532.53846875
transcript.pyannote[120].end 533.88846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 533.02784375
transcript.pyannote[121].end 534.85034375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 535.54221875
transcript.pyannote[122].end 537.19596875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 537.85409375
transcript.pyannote[123].end 543.03471875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 543.22034375
transcript.pyannote[124].end 545.24534375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 546.19034375
transcript.pyannote[125].end 553.15971875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 553.24409375
transcript.pyannote[126].end 555.89346875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 556.65284375
transcript.pyannote[127].end 565.17471875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 565.86659375
transcript.pyannote[128].end 578.50596875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 579.23159375
transcript.pyannote[129].end 581.62784375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 582.21846875
transcript.pyannote[130].end 582.92721875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 583.11284375
transcript.pyannote[131].end 584.96909375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 585.39096875
transcript.pyannote[132].end 585.94784375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 586.26846875
transcript.pyannote[133].end 586.53846875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 586.50471875
transcript.pyannote[134].end 587.46659375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 587.58471875
transcript.pyannote[135].end 588.81659375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 589.37346875
transcript.pyannote[136].end 591.34784375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 591.34784375
transcript.pyannote[137].end 591.78659375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 591.36471875
transcript.pyannote[138].end 591.41534375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 591.75284375
transcript.pyannote[139].end 595.73534375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 596.69721875
transcript.pyannote[140].end 600.40971875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 600.57846875
transcript.pyannote[141].end 601.64159375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 600.96659375
transcript.pyannote[142].end 601.00034375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 601.67534375
transcript.pyannote[143].end 605.37096875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 605.86034375
transcript.pyannote[144].end 606.28221875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 606.28221875
transcript.pyannote[145].end 606.31596875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 606.40034375
transcript.pyannote[146].end 608.47596875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 606.90659375
transcript.pyannote[147].end 607.05846875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 607.05846875
transcript.pyannote[148].end 607.21034375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 607.21034375
transcript.pyannote[149].end 607.24409375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 607.24409375
transcript.pyannote[150].end 607.27784375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 607.27784375
transcript.pyannote[151].end 607.36221875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 608.52659375
transcript.pyannote[152].end 609.75846875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 610.39971875
transcript.pyannote[153].end 611.22659375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 612.08721875
transcript.pyannote[154].end 612.71159375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 613.26846875
transcript.pyannote[155].end 614.56784375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 613.31909375
transcript.pyannote[156].end 613.42034375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 615.36096875
transcript.pyannote[157].end 616.96409375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 615.49596875
transcript.pyannote[158].end 615.59721875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 616.20471875
transcript.pyannote[159].end 616.25534375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 616.59284375
transcript.pyannote[160].end 617.80784375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 617.21721875
transcript.pyannote[161].end 617.97659375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 617.97659375
transcript.pyannote[162].end 618.21284375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 618.21284375
transcript.pyannote[163].end 618.22971875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 618.49971875
transcript.pyannote[164].end 618.51659375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 618.51659375
transcript.pyannote[165].end 620.10284375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 628.38846875
transcript.pyannote[166].end 629.28284375
transcript.whisperx[0].start 0.967
transcript.whisperx[0].end 26.722
transcript.whisperx[0].text 陳主席長委員好主席長剛才新聞在我們質詢前你在回答前幾位委員的時候你等於就新聞做的解釋就是說大概就是確定要普發現金一萬元所以我不懂我們後續還要質詢你什麼我覺得那樣子的報導如果
transcript.whisperx[1].start 27.742
transcript.whisperx[1].end 56.556
transcript.whisperx[1].text 曲解了你的意思我認為你應該適度的澄清剛才幾家主流媒體都已經這樣報導我希望你如果啦我簡單講如果都要發現金那主席黨我現在就可以告訴你那乾脆三兆一千億就普發給兩千三百萬人民政府解散算了嘛不是嗎解散算了啊
transcript.whisperx[2].start 57.83
transcript.whisperx[2].end 66.834
transcript.whisperx[2].text 那不是全民皆大歡喜 可以這樣子嗎我跟你講 我認為啦推行有效益的政策才是還稅於民不是這樣嗎所以我今天跟你要求的第一點
transcript.whisperx[3].start 82.386
transcript.whisperx[3].end 88.77
transcript.whisperx[3].text 我要求你主祭處 你要有擔當 不要再講一些不痛不癢的話不要認為說 啊 發發現金 好啦 這個也無傷大雅錯了 要發現金可以
transcript.whisperx[4].start 102.25
transcript.whisperx[4].end 113.587
transcript.whisperx[4].text 那要特別條例而不是設在預算法去把整個預算法是把我們所有收入預算常態化耶你看過去
transcript.whisperx[5].start 115.1
transcript.whisperx[5].end 138.397
transcript.whisperx[5].text 蔡英文總統的時候發了幾次人家是因為有疫情疫後有特別條例也經過全民多數的民眾的民意不是這樣嗎那如果今天我們是要修預算法增加這個條例基本上常態化就是不對了嘛這一點你一定要堅持啊
transcript.whisperx[6].start 138.797
transcript.whisperx[6].end 161.684
transcript.whisperx[6].text 是所以我希望你有擔當擔起來而且最短時間內做出決策不要讓在這個事情讓大家政府也好民間也好心裡有疙瘩啊大家為了這個事情爭論不休忐忑不安我認為不要這個樣子第二點我要告訴你的就是說倒是倒是我們要來
transcript.whisperx[7].start 167.995
transcript.whisperx[7].end 186.267
transcript.whisperx[7].text 這個推動有益的政策啦我認為應該編列特別條例特別預算來針對貼補台電貼補勞健保的缺口貼補長照基金這才是有意義的啊不是這樣嗎我舉勞保就好勞保預估2070年
transcript.whisperx[8].start 190.834
transcript.whisperx[8].end 203.736
transcript.whisperx[8].text 我們的基金總數將是餘額將是負的71.4兆那將就我們國家EDB的三倍天啊天啊
transcript.whisperx[9].start 204.633
transcript.whisperx[9].end 233.227
transcript.whisperx[9].text 所以這個貼補勞保健保這才是應當貼補台電這一次給他們台電一千億這樣免於電價漲價如果政府吸收一千億給台電那就是一千億如果政府不貼補不吸收放給民間去漲的話那就不會是一千億那會變成兩千億三千億的社會負擔所以這個
transcript.whisperx[10].start 234.668
transcript.whisperx[10].end 237.518
transcript.whisperx[10].text 非常要緊不是嗎 還有我們長照基金啊
transcript.whisperx[11].start 238.659
transcript.whisperx[11].end 256.408
transcript.whisperx[11].text 長照基金 哇 也是一個非常大的缺口啦我相信你已經知道嘛長照基金去年的基金來源 欸 入不敷出啊去年基金來源776億結果實際支出高達828億今年你們預估基金來源752億但是用途支出更高達879億不是這樣嗎
transcript.whisperx[12].start 266.573
transcript.whisperx[12].end 291.629
transcript.whisperx[12].text 所以如果照這個預算的話那2028年長照基金就完全用完不是嗎所以我認為這些有意義的政策才是真的環碎於民這也是我們設政府的目的是不是那你的看法呢第一點我真的你剛才
transcript.whisperx[13].start 293.151
transcript.whisperx[13].end 298.916
transcript.whisperx[13].text 其實我們原則上我們都是不支持他發放現金常態化依照發放現金他有特殊的目的所以以往都是定
transcript.whisperx[14].start 316.952
transcript.whisperx[14].end 339.702
transcript.whisperx[14].text 特別條例然後之後通過之後才編列預算所以這個部分如果常態化的話他整個影響整個預算的一個執行的彈性所以我們原則上我們是不支持的對那所以你公正囉所謂的九月可能發放現金你的看法呢
transcript.whisperx[15].start 340.953
transcript.whisperx[15].end 362.606
transcript.whisperx[15].text 你要講得更明確一點啊我知道當然不支持啊常態化就我剛剛講嘛常態化無法保持政府對預算運用的彈性嘛我們會碰到很多社會經濟情勢的變化碰到重大的災情啊等等啊不是嗎疫情啊所以當然不要常態化這是一定的
transcript.whisperx[16].start 363.624
transcript.whisperx[16].end 373.964
transcript.whisperx[16].text 是但是你要針對我說你今天上午剛才被報導的這個啦九月講得很明九月就要發放現金你的看法呢
transcript.whisperx[17].start 374.551
transcript.whisperx[17].end 400.431
transcript.whisperx[17].text 不是 因為我們是說整個一個政策一個優先順序的排列必須由各部會來跟院長報告由院長來做裁示我們當時的部分是說這整個的一個政策是不是要列入政策還是那發放現金一萬元也是你們要跟院長報告的所謂政策之一囉你們決定的因為發放現金不是我們在負責主導但是他現在要修改一個預算法我們是認為我跟你講喔
transcript.whisperx[18].start 400.971
transcript.whisperx[18].end 411.019
transcript.whisperx[18].text 那個主技術還有幾項其實我就舉你們很多預估其實錯誤你們預估去年的GDP最早在前年底的時候你們最早預估的時候說3.35%
transcript.whisperx[19].start 413.411
transcript.whisperx[19].end 440.717
transcript.whisperx[19].text 結果幾次修正以後有提高去年GDP多少4.59%跟你原始的預估差了一點多那我為什麼提這件事情那個主計處我為什麼提這個事情你說三減預算導致政府支出減少導致我們GDP可能下降但是那個差0點多而已所以我是要告訴你第一點我們政府現在財政部
transcript.whisperx[20].start 441.536
transcript.whisperx[20].end 457.209
transcript.whisperx[20].text 我先前質詢之後人家財政部已經積極去推動乙類公債要把我們在海外的授權資金引進回台灣加速台灣的公共建設第二點金管會也通過了不動產證券化REACH
transcript.whisperx[21].start 459.59
transcript.whisperx[21].end 483.09
transcript.whisperx[21].text 歷史這個已經條例也通過要這麼做 也是引進民間資金當有這兩大民間資金的來源進駐到 溢出到我們國內建設的時候我相信我們的GDP會更樂觀那更樂觀的結果 那我們就不必發現金不是嗎那是因為疫情導致GDP下降
transcript.whisperx[22].start 484.111
transcript.whisperx[22].end 501.939
transcript.whisperx[22].text 所以政府才發放現金嘛所以你講的這個預算去影響到GDP導致政府支出去下滑影響GDP第一個我認為那個維吾其第二個你的下滑運送的需要需要發現金了嘛不是嗎所以我希望主技術
transcript.whisperx[23].start 503.956
transcript.whisperx[23].end 519.346
transcript.whisperx[23].text 你不必做任何遮掩你不必為任何已經既定的方向不必你就據實以告好不好因為我看你的個性你也是一個很坦然的人啊我看你先前的做事也是這樣嘛
transcript.whisperx[24].start 520.927
transcript.whisperx[24].end 536.86
transcript.whisperx[24].text 我們就正大光明坦坦然然的面對事實證據還有數據我希望這個數據不要再那麼離譜可不可以你去看一下你前年底你就講3.35你歷來一直修正結果最後4.59差了1.24
transcript.whisperx[25].start 546.523
transcript.whisperx[25].end 564.941
transcript.whisperx[25].text 這個不可謂不大那我希望在這個部分你收回今天早上如果這些媒體的報導是曲解的話我希望待會收回之後你就跟這些媒體溝通希望他們收回這樣子的報導因為事實上
transcript.whisperx[26].start 565.953
transcript.whisperx[26].end 581.249
transcript.whisperx[26].text 沒有這樣子的一回事說確定啦就是要發放啦就是已經作業中啦然後9月要發放這是給我們社會不必要的莫名其妙的額外的一種
transcript.whisperx[27].start 582.327
transcript.whisperx[27].end 610.992
transcript.whisperx[27].text 期待不必要這麼做好不好主計處的任務就是實話實說那精準的數據掌握跟分析然後忠實的向社會大眾報告然後做出應有的政府決策可不可以好不好主計長送你四個字啦認作
transcript.whisperx[28].start 613.295
transcript.whisperx[28].end 614.076
transcript.whisperx[28].text 李昆成議員