IVOD_ID |
159440 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/159440 |
日期 |
2025-03-20 |
會議資料.會議代碼 |
委員會-11-3-20-3 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第3次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
3 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第3次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-03-20T10:25:44+08:00 |
結束時間 |
2025-03-20T10:39:18+08:00 |
影片長度 |
00:13:34 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/51071748fba5feb00eb99b65c800f3f9b06f2ced2e0bc090525a0be0b44ec4a374ad0faf363c552f5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鍾佳濱 |
委員發言時間 |
10:25:44 - 10:39:18 |
會議時間 |
2025-03-20T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第3次全體委員會議(事由:一、邀請財政部莊部長翠雲率所屬機關首長暨國營事業董事長、總經理(含各轉投資事業機構公股代表之董、監事)列席業務報告,並備質詢。
二、審查行政院函請審議「海關進口稅則部分稅則修正草案」案。
三、彙總整理提出「中華民國114年度中央政府總預算案附屬單位預算營業及非營業部分審查總報告草案」提報院會案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
10.49346875 |
transcript.pyannote[0].end |
15.47159375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
15.70784375 |
transcript.pyannote[1].end |
21.12471875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
21.49596875 |
transcript.pyannote[2].end |
25.68096875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
25.32659375 |
transcript.pyannote[3].end |
25.63034375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
27.11534375 |
transcript.pyannote[4].end |
27.62159375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
28.22909375 |
transcript.pyannote[5].end |
30.32159375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
30.94596875 |
transcript.pyannote[6].end |
34.57409375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
35.87346875 |
transcript.pyannote[7].end |
49.60971875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
50.50409375 |
transcript.pyannote[8].end |
61.91159375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
62.24909375 |
transcript.pyannote[9].end |
63.98721875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
64.51034375 |
transcript.pyannote[10].end |
65.69159375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
66.67034375 |
transcript.pyannote[11].end |
70.80471875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
70.80471875 |
transcript.pyannote[12].end |
89.08034375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
89.36721875 |
transcript.pyannote[13].end |
91.99971875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
92.08409375 |
transcript.pyannote[14].end |
102.07409375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
102.32721875 |
transcript.pyannote[15].end |
103.37346875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
103.74471875 |
transcript.pyannote[16].end |
107.91284375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
109.75221875 |
transcript.pyannote[17].end |
110.68034375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
110.96721875 |
transcript.pyannote[18].end |
113.54909375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
112.08096875 |
transcript.pyannote[19].end |
114.30846875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
114.59534375 |
transcript.pyannote[20].end |
118.39221875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
118.49346875 |
transcript.pyannote[21].end |
118.98284375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
119.32034375 |
transcript.pyannote[22].end |
122.30721875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
123.57284375 |
transcript.pyannote[23].end |
130.52534375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
129.76596875 |
transcript.pyannote[24].end |
130.57596875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
130.57596875 |
transcript.pyannote[25].end |
148.05846875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
141.15659375 |
transcript.pyannote[26].end |
142.91159375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
148.05846875 |
transcript.pyannote[27].end |
153.07034375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
153.32346875 |
transcript.pyannote[28].end |
180.18846875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
180.49221875 |
transcript.pyannote[29].end |
184.06971875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
185.25096875 |
transcript.pyannote[30].end |
187.51221875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
187.51221875 |
transcript.pyannote[31].end |
189.36846875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
187.91721875 |
transcript.pyannote[32].end |
188.13659375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
189.31784375 |
transcript.pyannote[33].end |
194.86971875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
190.61721875 |
transcript.pyannote[34].end |
192.76034375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
193.03034375 |
transcript.pyannote[35].end |
193.84034375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
194.65034375 |
transcript.pyannote[36].end |
200.38784375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
200.40471875 |
transcript.pyannote[37].end |
208.16721875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
210.00659375 |
transcript.pyannote[38].end |
217.33034375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
214.64721875 |
transcript.pyannote[39].end |
215.98034375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
216.87471875 |
transcript.pyannote[40].end |
217.60034375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
217.60034375 |
transcript.pyannote[41].end |
218.03909375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
217.73534375 |
transcript.pyannote[42].end |
218.84909375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
219.72659375 |
transcript.pyannote[43].end |
223.03409375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
223.28721875 |
transcript.pyannote[44].end |
227.35409375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
227.65784375 |
transcript.pyannote[45].end |
238.99784375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
239.82471875 |
transcript.pyannote[46].end |
243.87471875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
244.16159375 |
transcript.pyannote[47].end |
245.74784375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
245.86596875 |
transcript.pyannote[48].end |
266.08221875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
269.17034375 |
transcript.pyannote[49].end |
269.87909375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
270.23346875 |
transcript.pyannote[50].end |
271.76909375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
272.15721875 |
transcript.pyannote[51].end |
274.43534375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
274.45221875 |
transcript.pyannote[52].end |
274.87409375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
275.12721875 |
transcript.pyannote[53].end |
280.30784375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
282.65346875 |
transcript.pyannote[54].end |
303.19034375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
303.02159375 |
transcript.pyannote[55].end |
306.24471875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
306.98721875 |
transcript.pyannote[56].end |
309.65346875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
309.97409375 |
transcript.pyannote[57].end |
311.29034375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
311.37471875 |
transcript.pyannote[58].end |
314.63159375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
315.15471875 |
transcript.pyannote[59].end |
321.58409375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
321.97221875 |
transcript.pyannote[60].end |
326.42721875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
326.91659375 |
transcript.pyannote[61].end |
328.80659375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
329.05971875 |
transcript.pyannote[62].end |
331.54034375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
332.01284375 |
transcript.pyannote[63].end |
333.49784375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
334.18971875 |
transcript.pyannote[64].end |
339.84284375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
339.97784375 |
transcript.pyannote[65].end |
345.41159375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
347.08221875 |
transcript.pyannote[66].end |
358.42221875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
358.77659375 |
transcript.pyannote[67].end |
359.68784375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
360.07596875 |
transcript.pyannote[68].end |
363.56909375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
363.94034375 |
transcript.pyannote[69].end |
365.02034375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
366.21846875 |
transcript.pyannote[70].end |
367.70346875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
369.07034375 |
transcript.pyannote[71].end |
370.58909375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
370.47096875 |
transcript.pyannote[72].end |
382.63784375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
380.51159375 |
transcript.pyannote[73].end |
385.25346875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
385.74284375 |
transcript.pyannote[74].end |
388.98284375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
389.25284375 |
transcript.pyannote[75].end |
390.41721875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
390.87284375 |
transcript.pyannote[76].end |
392.98221875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
393.31971875 |
transcript.pyannote[77].end |
394.21409375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
394.34909375 |
transcript.pyannote[78].end |
394.68659375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
394.66971875 |
transcript.pyannote[79].end |
396.98159375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
397.04909375 |
transcript.pyannote[80].end |
397.50471875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
397.58909375 |
transcript.pyannote[81].end |
401.84159375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
402.16221875 |
transcript.pyannote[82].end |
402.71909375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
403.10721875 |
transcript.pyannote[83].end |
404.35596875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
404.52471875 |
transcript.pyannote[84].end |
405.62159375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
406.16159375 |
transcript.pyannote[85].end |
406.51596875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
406.68471875 |
transcript.pyannote[86].end |
408.25409375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
408.65909375 |
transcript.pyannote[87].end |
415.47659375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
415.66221875 |
transcript.pyannote[88].end |
420.97784375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
421.72034375 |
transcript.pyannote[89].end |
427.60971875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
427.98096875 |
transcript.pyannote[90].end |
429.55034375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
429.88784375 |
transcript.pyannote[91].end |
431.08596875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
431.25471875 |
transcript.pyannote[92].end |
438.74721875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
439.30409375 |
transcript.pyannote[93].end |
440.77221875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
440.87346875 |
transcript.pyannote[94].end |
442.89846875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
443.35409375 |
transcript.pyannote[95].end |
444.19784375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
444.50159375 |
transcript.pyannote[96].end |
446.49284375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
446.56034375 |
transcript.pyannote[97].end |
451.08284375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
451.42034375 |
transcript.pyannote[98].end |
452.83784375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
452.85471875 |
transcript.pyannote[99].end |
453.95159375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
454.40721875 |
transcript.pyannote[100].end |
478.21784375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
478.53846875 |
transcript.pyannote[101].end |
478.97721875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
478.97721875 |
transcript.pyannote[102].end |
479.02784375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
479.02784375 |
transcript.pyannote[103].end |
483.09471875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
483.26346875 |
transcript.pyannote[104].end |
495.02534375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
495.58221875 |
transcript.pyannote[105].end |
498.51846875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
499.61534375 |
transcript.pyannote[106].end |
500.10471875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
501.55596875 |
transcript.pyannote[107].end |
503.37846875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
503.54721875 |
transcript.pyannote[108].end |
509.04846875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
509.38596875 |
transcript.pyannote[109].end |
510.46596875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
510.78659375 |
transcript.pyannote[110].end |
511.59659375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
511.88346875 |
transcript.pyannote[111].end |
515.14034375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
515.27534375 |
transcript.pyannote[112].end |
515.84909375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
516.03471875 |
transcript.pyannote[113].end |
517.43534375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
517.80659375 |
transcript.pyannote[114].end |
518.44784375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
519.03846875 |
transcript.pyannote[115].end |
519.79784375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
520.15221875 |
transcript.pyannote[116].end |
520.35471875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
520.75971875 |
transcript.pyannote[117].end |
526.44659375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
526.85159375 |
transcript.pyannote[118].end |
527.42534375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
528.31971875 |
transcript.pyannote[119].end |
541.80284375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
533.61846875 |
transcript.pyannote[120].end |
534.04034375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
538.79909375 |
transcript.pyannote[121].end |
549.02534375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
549.26159375 |
transcript.pyannote[122].end |
551.87721875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
551.96159375 |
transcript.pyannote[123].end |
554.29034375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
555.20159375 |
transcript.pyannote[124].end |
556.04534375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
556.19721875 |
transcript.pyannote[125].end |
560.73659375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
560.95596875 |
transcript.pyannote[126].end |
565.59659375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
566.06909375 |
transcript.pyannote[127].end |
567.57096875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
567.72284375 |
transcript.pyannote[128].end |
573.27471875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
574.25346875 |
transcript.pyannote[129].end |
575.33346875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
575.68784375 |
transcript.pyannote[130].end |
576.54846875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
576.54846875 |
transcript.pyannote[131].end |
577.47659375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
577.66221875 |
transcript.pyannote[132].end |
580.85159375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
579.23159375 |
transcript.pyannote[133].end |
593.42346875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
594.75659375 |
transcript.pyannote[134].end |
617.43659375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
596.54534375 |
transcript.pyannote[135].end |
597.05159375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
607.41284375 |
transcript.pyannote[136].end |
609.04971875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
613.82534375 |
transcript.pyannote[137].end |
616.17096875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
616.62659375 |
transcript.pyannote[138].end |
619.00596875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
618.93846875 |
transcript.pyannote[139].end |
619.32659375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
619.25909375 |
transcript.pyannote[140].end |
628.08471875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
628.50659375 |
transcript.pyannote[141].end |
634.15971875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
634.56471875 |
transcript.pyannote[142].end |
636.37034375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
636.79221875 |
transcript.pyannote[143].end |
641.88846875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
641.92221875 |
transcript.pyannote[144].end |
645.78659375 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
647.23784375 |
transcript.pyannote[145].end |
650.00534375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
650.56221875 |
transcript.pyannote[146].end |
652.14846875 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
652.40159375 |
transcript.pyannote[147].end |
652.72221875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
652.60409375 |
transcript.pyannote[148].end |
654.91596875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
655.28721875 |
transcript.pyannote[149].end |
656.01284375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
656.70471875 |
transcript.pyannote[150].end |
657.51471875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
658.56096875 |
transcript.pyannote[151].end |
666.15471875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
665.53034375 |
transcript.pyannote[152].end |
702.79034375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
667.60596875 |
transcript.pyannote[153].end |
668.26409375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
670.25534375 |
transcript.pyannote[154].end |
670.76159375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
674.62596875 |
transcript.pyannote[155].end |
676.19534375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
677.10659375 |
transcript.pyannote[156].end |
678.89534375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
680.90346875 |
transcript.pyannote[157].end |
681.35909375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
689.10471875 |
transcript.pyannote[158].end |
689.52659375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
702.99284375 |
transcript.pyannote[159].end |
721.01534375 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
718.87221875 |
transcript.pyannote[160].end |
733.82346875 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
734.07659375 |
transcript.pyannote[161].end |
734.98784375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
734.36346875 |
transcript.pyannote[162].end |
735.52784375 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
735.52784375 |
transcript.pyannote[163].end |
741.38346875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
740.74221875 |
transcript.pyannote[164].end |
742.46346875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
742.00784375 |
transcript.pyannote[165].end |
748.45409375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
744.11721875 |
transcript.pyannote[166].end |
745.48409375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
748.36971875 |
transcript.pyannote[167].end |
750.64784375 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
749.38221875 |
transcript.pyannote[168].end |
749.98971875 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
750.58034375 |
transcript.pyannote[169].end |
753.56721875 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
751.00221875 |
transcript.pyannote[170].end |
754.17471875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
754.51221875 |
transcript.pyannote[171].end |
763.28721875 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
764.04659375 |
transcript.pyannote[172].end |
766.84784375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
766.45971875 |
transcript.pyannote[173].end |
777.10784375 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
776.14596875 |
transcript.pyannote[174].end |
779.25096875 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
778.57596875 |
transcript.pyannote[175].end |
789.05534375 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
781.20846875 |
transcript.pyannote[176].end |
781.27596875 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
789.27471875 |
transcript.pyannote[177].end |
791.36721875 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
791.78909375 |
transcript.pyannote[178].end |
793.96596875 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
794.16846875 |
transcript.pyannote[179].end |
799.41659375 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
797.27346875 |
transcript.pyannote[180].end |
798.18471875 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
799.73721875 |
transcript.pyannote[181].end |
801.17159375 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
800.53034375 |
transcript.pyannote[182].end |
802.58909375 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
802.87596875 |
transcript.pyannote[183].end |
805.08659375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
804.68159375 |
transcript.pyannote[184].end |
807.65159375 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
805.12034375 |
transcript.pyannote[185].end |
808.29284375 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
807.76971875 |
transcript.pyannote[186].end |
811.26284375 |
transcript.pyannote[187].speaker |
SPEAKER_01 |
transcript.pyannote[187].start |
811.34721875 |
transcript.pyannote[187].end |
811.54971875 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
811.73534375 |
transcript.pyannote[188].end |
812.84909375 |
transcript.pyannote[189].speaker |
SPEAKER_01 |
transcript.pyannote[189].start |
812.96721875 |
transcript.pyannote[189].end |
813.96284375 |
transcript.whisperx[0].start |
10.509 |
transcript.whisperx[0].end |
34.395 |
transcript.whisperx[0].text |
主席在場委員先進列席政府機關社長官員會長工作夥伴媒體記者女士先生有請財政部莊部長和國庫署陳署長以及負稅署的宋署長好財政部部長還有陳署長還有宋委員好部長好兩位署長好部長我們賴總統要推亞洲資產管理中心你支持不支持 |
transcript.whisperx[1].start |
35.936 |
transcript.whisperx[1].end |
65.402 |
transcript.whisperx[1].text |
支持這當中的主責是金管會金管會說他希望能夠亞太資產管理中心當中優先要來一個公司協辦的TISATISA制度 你知道吧我知道那麼他也要由當時發肌膚通的吉寶公司來協助那請問要推動TISA跟亞洲資產管理中心有相關您願意在全程範圍內來幫忙推動TISA增加國民的推銷保障嗎 |
transcript.whisperx[2].start |
67.016 |
transcript.whisperx[2].end |
83.994 |
transcript.whisperx[2].text |
這個是國家狀況政策當然財政部會跟金管會都會一起努力好那麼在這財政部可以提供的優惠我也私下先請教過宋署長了說現行的所得稅法對於投資稅制優惠這跟TISA息息相關因為TISA就是一種投資除了所得稅法當中 |
transcript.whisperx[3].start |
84.875 |
transcript.whisperx[3].end |
107.72 |
transcript.whisperx[3].text |
我們8萬元個人直接買股票或存款的利息可以抵減之外在特別扣除的部分我們如果投資基金這些利息信託基金的利息或股利呢是有27萬元的那麼署長跟我說這些呢是足夠提供民眾投資的誘因優惠請問你所知道國人使用這27萬或這8萬用的多不多普普普遍 |
transcript.whisperx[4].start |
110.093 |
transcript.whisperx[4].end |
121.7 |
transcript.whisperx[4].text |
應該不少不少的所以老闆告訴大家不少啊你說現行的報稅系統直接變名就直接帶入所以民眾不曉得他有投資抵稅優惠不知是這樣子的嗎 |
transcript.whisperx[5].start |
123.595 |
transcript.whisperx[5].end |
140.93 |
transcript.whisperx[5].text |
委員報告有的時候您剛剛講就是說我們這些相關的租稅優惠可是民眾不見得都知道那他又想說不知道對但是在TISA的時候我們也跟金管會說我們會跟你合作對於現行有關的租稅優惠我們會陳列出來而且協助去做說明讓民眾可以知道 |
transcript.whisperx[6].start |
143.672 |
transcript.whisperx[6].end |
161.003 |
transcript.whisperx[6].text |
對 協助 我們甚至可以有同仁去協助說明說我們現有的租稅優惠有這麼多那我們來看看這個DISA下一頁好 我們來先看一下台灣的退休金指數排名不如越南和中國很可怕喔倒數第十 不如新加入平等的越南 為什麼 |
transcript.whisperx[7].start |
161.923 |
transcript.whisperx[7].end |
183.818 |
transcript.whisperx[7].text |
我們從公務人員退伍基金管理局來看第一層強制性的社會安全保險像勞保國民年金保險第二層強制的員工退休制度由雇主提撥還有第三層自願性的商業保險儲蓄制度請問我們所說的TISA是不是就是這個第三層就是你去購買投資對你的未來的退休產生一種儲蓄保障是不是這樣 |
transcript.whisperx[8].start |
185.882 |
transcript.whisperx[8].end |
207.976 |
transcript.whisperx[8].text |
應該 除此之外還有其他的對 我說TISA是屬於第三層嘛TISA對對對 是這樣嘛它可以去投資 循序投資的概念好 這三大指標當中充足性 永續性跟完整性當中全眾最高充足性台灣只得到46分表示台灣在第三層的部分有很大的成長空間你認為 是不是認為TISA可以有助於國民退休的第三層保障 |
transcript.whisperx[9].start |
210.409 |
transcript.whisperx[9].end |
238.749 |
transcript.whisperx[9].text |
我想這個部分對於這樣的規劃運用是有幫助的對於民眾未來退休生活的一個...是的那往下看那國人對於退休儲備不足感到憂慮他說我們的壓力來源是生活成本增加退休儲蓄不足最高擔心生活成本不斷提高的六成擔心退休儲備不足的是七成跟六成然後呢把退休儲蓄視為首要的財務目標佔九成還不是財富自由喔那麼 |
transcript.whisperx[10].start |
239.861 |
transcript.whisperx[10].end |
264.506 |
transcript.whisperx[10].text |
民眾就必須透過長期投資跟及早規劃退休那剛剛你也同意了TESA跟這個目前呢息息相關它可以幫助民眾來達成它的首要財務目標可是呢目前金管會檢視啊沒有額外新增個人投資的扣除額在TESA的部分那有沒有考慮財政部來新增投資稅制的優惠來幫助TESA推動 |
transcript.whisperx[11].start |
269.209 |
transcript.whisperx[11].end |
279.971 |
transcript.whisperx[11].text |
我再講一次現在TESA這麼重要能夠有助於國人解決他的財務目標那財政部願不願意新增個人的投資額來協助TESA的推動 |
transcript.whisperx[12].start |
283.432 |
transcript.whisperx[12].end |
304.491 |
transcript.whisperx[12].text |
剛剛委員也羅列了很多我們現有的一些租稅優惠我們也對照過日本也好還有其他國家的租稅優惠其實我們更優於他們所以這個部分事實上是目前來說我們應該是讓民眾知道我們已經有現在有這麼多優惠而民眾不清楚的部分我們可以加強來說明部長因為你這道說詞我聽過宋蘇長講過但我不認同 |
transcript.whisperx[13].start |
307.045 |
transcript.whisperx[13].end |
333.255 |
transcript.whisperx[13].text |
我這樣講好了 我們去住那些高級飯店他們有健身中心 裡面有蒸汽室 有游泳池 有重量訓練結果我們問說 旅客為什麼不去使用健身中心旅客很想要什麼 超慢跑要跑步機啊你說我們這些都可以涵蓋在內 你知道健身中心什麼都有啊可是實況上就是什麼我們國人使用這些租稅優惠的意願跟強度不高 |
transcript.whisperx[14].start |
334.226 |
transcript.whisperx[14].end |
342.893 |
transcript.whisperx[14].text |
那我先問你那如果有人說好因為現在超慢跑很流行我們的健身中心飯店增加一個專區就是跑步機專區你會反對嗎會增加成本嗎 |
transcript.whisperx[15].start |
347.128 |
transcript.whisperx[15].end |
364.688 |
transcript.whisperx[15].text |
本來你說你的健身中心什麼都有就像你說的不管是你的股息你的利息我健身中心的這些項目通通都要來享受可是旅客使用的率不高啊他得到的好處也不多啊但是你說現在旅客喜歡超慢跑我增設一個慢跑機專區可以嗎 |
transcript.whisperx[16].start |
369.093 |
transcript.whisperx[16].end |
396.187 |
transcript.whisperx[16].text |
我幫你們理解到這個比喻我想這個租稅的部分必須涉及的層面比較廣我覺得跟一個飯店裡面去偵測一個跑步機應該是不太一樣我用比喻 你用比喻回答來 我就直接知道你會這樣回答請你們現期內把目前國民使用現期投資稅制當中 優惠當中各個項目的比例 使用率還有金額的區間分布告訴我譬如說27萬國人有多少人在使用這27萬 |
transcript.whisperx[17].start |
397.648 |
transcript.whisperx[17].end |
418.356 |
transcript.whisperx[17].text |
第二 他從不到一萬的到使用滿27萬的 分布是多少第三 他使用哪些項目 是鼓勵鼓息 是鼓勵還是利息這些把它調查出來 我們就知道 是不是像財政部說的我什麼都有 我有27萬讓你用 我不需要再設一個專區專門來針對TESA來提供租稅優惠 |
transcript.whisperx[18].start |
421.935 |
transcript.whisperx[18].end |
434.119 |
transcript.whisperx[18].text |
請你把它調查出來我們再來個輸贏好的我們可以把這個資料可以做統計好我們來看一看現在日本的NISA對照於台灣的TISA日本的舊置它從40萬120萬提高到120萬240萬投資總額從800萬600萬提高到1800萬 |
transcript.whisperx[19].start |
439.361 |
transcript.whisperx[19].end |
466.677 |
transcript.whisperx[19].text |
而我們台灣呢完全沒有增額外的稅務優惠然而日本從舊製到新製他把他的投資的商品從共同基金都弄出來了我們還特定基金喔所以你看日本的結果怎麼樣日本一炮而紅所以從NISA一開始呢他創新高啊是上年同期的3.2倍新開戶超買的就是說我們如果能夠新增額外的稅務優惠來推動TISA |
transcript.whisperx[20].start |
467.197 |
transcript.whisperx[20].end |
477.882 |
transcript.whisperx[20].text |
就可以充足我們國民退休的第三層保障而且國家也沒有增加額外支出這是我的結論您回去研究一下剛剛保障的那三點要求把它統計出來可以嗎 |
transcript.whisperx[21].start |
480.143 |
transcript.whisperx[21].end |
498.42 |
transcript.whisperx[21].text |
好 我們來看一下 2024年金控員工的平均年薪排行榜我注意到這14家大型金控只有第三名的兆豐 第五名的第一金還有第八名的和庫金 還有第九名的華南金我們的飯宮股只有這四家入榜 是不是這樣 |
transcript.whisperx[22].start |
504.605 |
transcript.whisperx[22].end |
525.973 |
transcript.whisperx[22].text |
這些都是金飯碗民間的金控員工薪資是比較高的但是國營的我們怎麼樣跟飯工股跟民營徵財這裡面有沒有國營的沒有飯工股的有4家是不是這樣子請問一下怎麼樣來讓我們的飯工股或者我們的國營金融機構可以跟民股來徵財 |
transcript.whisperx[23].start |
528.619 |
transcript.whisperx[23].end |
554.102 |
transcript.whisperx[23].text |
我想這個泛公股的部分因為它是泛公股算是一個泛民營化那它可以用公司治理以及自己按自己他們自己的內規定來做處理薪水最直接嘛對 薪水最直接待遇最明顯嘛為什麼人家連排行榜出來我是一個大學出來的畢業生我看一看我會選擇泛公股嗎我會選擇國營的金融機構嗎榜上無名啊那我們往下看 |
transcript.whisperx[24].start |
555.393 |
transcript.whisperx[24].end |
572.449 |
transcript.whisperx[24].text |
為什麼會這樣子 我們立法院也是始終的之一第八屆第四會期 那時候立法委員包括李桂民 翁崇勳 費鴻泰提議要求限制我們這些財政部所屬的國營事業金融機構的績效獎金最多只能到4.4 |
transcript.whisperx[25].start |
574.298 |
transcript.whisperx[25].end |
593.232 |
transcript.whisperx[25].text |
是不是目前的限制沒錯這是誰的限制立法院立法院而且很清楚是第八屆國民黨幾位委員所提的我個人認為要調整要思考一下你限制這些就限制了我們飯工股跟我們的國營金融機構去跟民營的來競爭人才你同不同意 |
transcript.whisperx[26].start |
594.873 |
transcript.whisperx[26].end |
597.858 |
transcript.whisperx[26].text |
是的我就跟委員報告為了這個有關我們的國營金融事業能夠更有一個更強的競爭力能夠 |
transcript.whisperx[27].start |
606.278 |
transcript.whisperx[27].end |
627.692 |
transcript.whisperx[27].text |
攬財 留財能夠做得更好我們已經有了五個方案謝謝委員對我們國營金融事業的一個關心那五個方案也可以跟委員報告你要報告之前我先問一下我們來看看現有的方案譬如說一個很簡單的伙食費三千元你看看目前我們金控的資產台銀金是排名第一 |
transcript.whisperx[28].start |
628.773 |
transcript.whisperx[28].end |
645.619 |
transcript.whisperx[28].text |
結果後面的趙鋒鑫 第一金 何庫鑫 華南鑫他的薪資在14名之內台銀金控是沒有欸他們目前台土輸啊對不起喔 這樣講有點不好聽喔台灣金控 土銀跟輸銀簡稱台土輸這國營事業輸添添嘛是不是這樣子好 同時我們再往下看還有什麼生育補助是不是也是一樣相較之下台土輸也是輸添添再往下看下一個 |
transcript.whisperx[29].start |
658.858 |
transcript.whisperx[29].end |
684.01 |
transcript.whisperx[29].text |
我們的就是說不管是伙食費還是生育補助都是不如人家那請問你說有哪五大方案很快的簡單講一下第一個就是生育補助費的我們五大方案已經抱怨第一個就是生育補助費每一胎十萬塊然後不管是他自己或者是他的配偶十萬塊跟第一金差不多每一胎十萬好不錯跟第一金變沒有了那第二項就是伙食費您剛才列出來我們希望以外加伙食費的話是每個月三千塊 |
transcript.whisperx[30].start |
684.83 |
transcript.whisperx[30].end |
710.429 |
transcript.whisperx[30].text |
第三個是經營績效獎金從4.4個月我們希望恢復到4.6個月這個部分那第二個對於激勵員工的部分我們認為應該在決算稅前營運裡面要提撥1%到8%按照員工的一些績效他的一個KPI達成等等給予做一些激勵的效果另外一個就是員工福利信託也就是剛剛委員提到就是讓他的退休生活更優化所以我們認為可以 |
transcript.whisperx[31].start |
711.67 |
transcript.whisperx[31].end |
733.389 |
transcript.whisperx[31].text |
他每個月從薪水出一千銀行相對出一千然後讓他做信託那未來退休可以有一個好的收穫既然你對台土書對我們國營金融事業都這麼好TESA也可以對我們一般國民好吧TESA也是退休儲蓄的一種啊回去研究一下好很好這些我都樂見與財政部跟國庫總統來推動目前推動上有沒有障礙 |
transcript.whisperx[32].start |
734.43 |
transcript.whisperx[32].end |
763.067 |
transcript.whisperx[32].text |
有沒有立法院在反對目前來說是我們報行政院由仁總在邀請相關機關延伤當中仁總的態度是支持還反對仁總第一個先就生育補助所我倒帶回去問仁總好您可以再跟仁總我幫忙你問仁總請他支持可以嗎謝謝委員最後主席站起來了我三個結論請第一請統計國民使用現行投資稅制優惠中各項目之比例使用率及金額的區間分布之數據並分期成效一個月內提出公民報告可以嗎 |
transcript.whisperx[33].start |
767.85 |
transcript.whisperx[33].end |
774.114 |
transcript.whisperx[33].text |
請評估新增額外的稅務優惠推動TISA以充足國民退休的第三層保障的可行應 |
transcript.whisperx[34].start |
794.808 |
transcript.whisperx[34].end |
807.019 |
transcript.whisperx[34].text |
行政院能不能在一個月內完成我們不敢把握但是一個月內我們一定提書面報告我反過來 你希望我多久幫你推動成那我當然希望委員越快越好啊我都給你兩個月 要不然給我兩個月你希望委員 立法委員兩個月幫你推動成功好不好好謝謝謝謝委員 |