iVOD / 159440

Field Value
IVOD_ID 159440
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159440
日期 2025-03-20
會議資料.會議代碼 委員會-11-3-20-3
會議資料.會議代碼:str 第11屆第3會期財政委員會第3次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 3
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第3次全體委員會議
影片種類 Clip
開始時間 2025-03-20T10:25:44+08:00
結束時間 2025-03-20T10:39:18+08:00
影片長度 00:13:34
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/51071748fba5feb00eb99b65c800f3f9b06f2ced2e0bc090525a0be0b44ec4a374ad0faf363c552f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 10:25:44 - 10:39:18
會議時間 2025-03-20T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第3次全體委員會議(事由:一、邀請財政部莊部長翠雲率所屬機關首長暨國營事業董事長、總經理(含各轉投資事業機構公股代表之董、監事)列席業務報告,並備質詢。 二、審查行政院函請審議「海關進口稅則部分稅則修正草案」案。 三、彙總整理提出「中華民國114年度中央政府總預算案附屬單位預算營業及非營業部分審查總報告草案」提報院會案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 10.49346875
transcript.pyannote[0].end 15.47159375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 15.70784375
transcript.pyannote[1].end 21.12471875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 21.49596875
transcript.pyannote[2].end 25.68096875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 25.32659375
transcript.pyannote[3].end 25.63034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 27.11534375
transcript.pyannote[4].end 27.62159375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 28.22909375
transcript.pyannote[5].end 30.32159375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 30.94596875
transcript.pyannote[6].end 34.57409375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 35.87346875
transcript.pyannote[7].end 49.60971875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 50.50409375
transcript.pyannote[8].end 61.91159375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 62.24909375
transcript.pyannote[9].end 63.98721875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 64.51034375
transcript.pyannote[10].end 65.69159375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 66.67034375
transcript.pyannote[11].end 70.80471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 70.80471875
transcript.pyannote[12].end 89.08034375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 89.36721875
transcript.pyannote[13].end 91.99971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 92.08409375
transcript.pyannote[14].end 102.07409375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 102.32721875
transcript.pyannote[15].end 103.37346875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 103.74471875
transcript.pyannote[16].end 107.91284375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 109.75221875
transcript.pyannote[17].end 110.68034375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 110.96721875
transcript.pyannote[18].end 113.54909375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 112.08096875
transcript.pyannote[19].end 114.30846875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 114.59534375
transcript.pyannote[20].end 118.39221875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 118.49346875
transcript.pyannote[21].end 118.98284375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 119.32034375
transcript.pyannote[22].end 122.30721875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 123.57284375
transcript.pyannote[23].end 130.52534375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 129.76596875
transcript.pyannote[24].end 130.57596875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 130.57596875
transcript.pyannote[25].end 148.05846875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 141.15659375
transcript.pyannote[26].end 142.91159375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 148.05846875
transcript.pyannote[27].end 153.07034375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 153.32346875
transcript.pyannote[28].end 180.18846875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 180.49221875
transcript.pyannote[29].end 184.06971875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 185.25096875
transcript.pyannote[30].end 187.51221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 187.51221875
transcript.pyannote[31].end 189.36846875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 187.91721875
transcript.pyannote[32].end 188.13659375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 189.31784375
transcript.pyannote[33].end 194.86971875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 190.61721875
transcript.pyannote[34].end 192.76034375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 193.03034375
transcript.pyannote[35].end 193.84034375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 194.65034375
transcript.pyannote[36].end 200.38784375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 200.40471875
transcript.pyannote[37].end 208.16721875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 210.00659375
transcript.pyannote[38].end 217.33034375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 214.64721875
transcript.pyannote[39].end 215.98034375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 216.87471875
transcript.pyannote[40].end 217.60034375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 217.60034375
transcript.pyannote[41].end 218.03909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 217.73534375
transcript.pyannote[42].end 218.84909375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 219.72659375
transcript.pyannote[43].end 223.03409375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 223.28721875
transcript.pyannote[44].end 227.35409375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 227.65784375
transcript.pyannote[45].end 238.99784375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 239.82471875
transcript.pyannote[46].end 243.87471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 244.16159375
transcript.pyannote[47].end 245.74784375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 245.86596875
transcript.pyannote[48].end 266.08221875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 269.17034375
transcript.pyannote[49].end 269.87909375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 270.23346875
transcript.pyannote[50].end 271.76909375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 272.15721875
transcript.pyannote[51].end 274.43534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 274.45221875
transcript.pyannote[52].end 274.87409375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 275.12721875
transcript.pyannote[53].end 280.30784375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 282.65346875
transcript.pyannote[54].end 303.19034375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 303.02159375
transcript.pyannote[55].end 306.24471875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 306.98721875
transcript.pyannote[56].end 309.65346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 309.97409375
transcript.pyannote[57].end 311.29034375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 311.37471875
transcript.pyannote[58].end 314.63159375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 315.15471875
transcript.pyannote[59].end 321.58409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 321.97221875
transcript.pyannote[60].end 326.42721875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 326.91659375
transcript.pyannote[61].end 328.80659375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 329.05971875
transcript.pyannote[62].end 331.54034375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 332.01284375
transcript.pyannote[63].end 333.49784375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 334.18971875
transcript.pyannote[64].end 339.84284375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 339.97784375
transcript.pyannote[65].end 345.41159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 347.08221875
transcript.pyannote[66].end 358.42221875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 358.77659375
transcript.pyannote[67].end 359.68784375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 360.07596875
transcript.pyannote[68].end 363.56909375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 363.94034375
transcript.pyannote[69].end 365.02034375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 366.21846875
transcript.pyannote[70].end 367.70346875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 369.07034375
transcript.pyannote[71].end 370.58909375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 370.47096875
transcript.pyannote[72].end 382.63784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 380.51159375
transcript.pyannote[73].end 385.25346875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 385.74284375
transcript.pyannote[74].end 388.98284375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 389.25284375
transcript.pyannote[75].end 390.41721875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 390.87284375
transcript.pyannote[76].end 392.98221875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 393.31971875
transcript.pyannote[77].end 394.21409375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 394.34909375
transcript.pyannote[78].end 394.68659375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 394.66971875
transcript.pyannote[79].end 396.98159375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 397.04909375
transcript.pyannote[80].end 397.50471875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 397.58909375
transcript.pyannote[81].end 401.84159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 402.16221875
transcript.pyannote[82].end 402.71909375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 403.10721875
transcript.pyannote[83].end 404.35596875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 404.52471875
transcript.pyannote[84].end 405.62159375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 406.16159375
transcript.pyannote[85].end 406.51596875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 406.68471875
transcript.pyannote[86].end 408.25409375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 408.65909375
transcript.pyannote[87].end 415.47659375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 415.66221875
transcript.pyannote[88].end 420.97784375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 421.72034375
transcript.pyannote[89].end 427.60971875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 427.98096875
transcript.pyannote[90].end 429.55034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 429.88784375
transcript.pyannote[91].end 431.08596875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 431.25471875
transcript.pyannote[92].end 438.74721875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 439.30409375
transcript.pyannote[93].end 440.77221875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 440.87346875
transcript.pyannote[94].end 442.89846875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 443.35409375
transcript.pyannote[95].end 444.19784375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 444.50159375
transcript.pyannote[96].end 446.49284375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 446.56034375
transcript.pyannote[97].end 451.08284375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 451.42034375
transcript.pyannote[98].end 452.83784375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 452.85471875
transcript.pyannote[99].end 453.95159375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 454.40721875
transcript.pyannote[100].end 478.21784375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 478.53846875
transcript.pyannote[101].end 478.97721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 478.97721875
transcript.pyannote[102].end 479.02784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 479.02784375
transcript.pyannote[103].end 483.09471875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 483.26346875
transcript.pyannote[104].end 495.02534375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 495.58221875
transcript.pyannote[105].end 498.51846875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 499.61534375
transcript.pyannote[106].end 500.10471875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 501.55596875
transcript.pyannote[107].end 503.37846875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 503.54721875
transcript.pyannote[108].end 509.04846875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 509.38596875
transcript.pyannote[109].end 510.46596875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 510.78659375
transcript.pyannote[110].end 511.59659375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 511.88346875
transcript.pyannote[111].end 515.14034375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 515.27534375
transcript.pyannote[112].end 515.84909375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 516.03471875
transcript.pyannote[113].end 517.43534375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 517.80659375
transcript.pyannote[114].end 518.44784375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 519.03846875
transcript.pyannote[115].end 519.79784375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 520.15221875
transcript.pyannote[116].end 520.35471875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 520.75971875
transcript.pyannote[117].end 526.44659375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 526.85159375
transcript.pyannote[118].end 527.42534375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 528.31971875
transcript.pyannote[119].end 541.80284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 533.61846875
transcript.pyannote[120].end 534.04034375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 538.79909375
transcript.pyannote[121].end 549.02534375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 549.26159375
transcript.pyannote[122].end 551.87721875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 551.96159375
transcript.pyannote[123].end 554.29034375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 555.20159375
transcript.pyannote[124].end 556.04534375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 556.19721875
transcript.pyannote[125].end 560.73659375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 560.95596875
transcript.pyannote[126].end 565.59659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 566.06909375
transcript.pyannote[127].end 567.57096875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 567.72284375
transcript.pyannote[128].end 573.27471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 574.25346875
transcript.pyannote[129].end 575.33346875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 575.68784375
transcript.pyannote[130].end 576.54846875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 576.54846875
transcript.pyannote[131].end 577.47659375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 577.66221875
transcript.pyannote[132].end 580.85159375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 579.23159375
transcript.pyannote[133].end 593.42346875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 594.75659375
transcript.pyannote[134].end 617.43659375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 596.54534375
transcript.pyannote[135].end 597.05159375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 607.41284375
transcript.pyannote[136].end 609.04971875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 613.82534375
transcript.pyannote[137].end 616.17096875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 616.62659375
transcript.pyannote[138].end 619.00596875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 618.93846875
transcript.pyannote[139].end 619.32659375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 619.25909375
transcript.pyannote[140].end 628.08471875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 628.50659375
transcript.pyannote[141].end 634.15971875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 634.56471875
transcript.pyannote[142].end 636.37034375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 636.79221875
transcript.pyannote[143].end 641.88846875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 641.92221875
transcript.pyannote[144].end 645.78659375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 647.23784375
transcript.pyannote[145].end 650.00534375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 650.56221875
transcript.pyannote[146].end 652.14846875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 652.40159375
transcript.pyannote[147].end 652.72221875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 652.60409375
transcript.pyannote[148].end 654.91596875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 655.28721875
transcript.pyannote[149].end 656.01284375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 656.70471875
transcript.pyannote[150].end 657.51471875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 658.56096875
transcript.pyannote[151].end 666.15471875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 665.53034375
transcript.pyannote[152].end 702.79034375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 667.60596875
transcript.pyannote[153].end 668.26409375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 670.25534375
transcript.pyannote[154].end 670.76159375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 674.62596875
transcript.pyannote[155].end 676.19534375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 677.10659375
transcript.pyannote[156].end 678.89534375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 680.90346875
transcript.pyannote[157].end 681.35909375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 689.10471875
transcript.pyannote[158].end 689.52659375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 702.99284375
transcript.pyannote[159].end 721.01534375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 718.87221875
transcript.pyannote[160].end 733.82346875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 734.07659375
transcript.pyannote[161].end 734.98784375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 734.36346875
transcript.pyannote[162].end 735.52784375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 735.52784375
transcript.pyannote[163].end 741.38346875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 740.74221875
transcript.pyannote[164].end 742.46346875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 742.00784375
transcript.pyannote[165].end 748.45409375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 744.11721875
transcript.pyannote[166].end 745.48409375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 748.36971875
transcript.pyannote[167].end 750.64784375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 749.38221875
transcript.pyannote[168].end 749.98971875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 750.58034375
transcript.pyannote[169].end 753.56721875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 751.00221875
transcript.pyannote[170].end 754.17471875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 754.51221875
transcript.pyannote[171].end 763.28721875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 764.04659375
transcript.pyannote[172].end 766.84784375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 766.45971875
transcript.pyannote[173].end 777.10784375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 776.14596875
transcript.pyannote[174].end 779.25096875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 778.57596875
transcript.pyannote[175].end 789.05534375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 781.20846875
transcript.pyannote[176].end 781.27596875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 789.27471875
transcript.pyannote[177].end 791.36721875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 791.78909375
transcript.pyannote[178].end 793.96596875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 794.16846875
transcript.pyannote[179].end 799.41659375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 797.27346875
transcript.pyannote[180].end 798.18471875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 799.73721875
transcript.pyannote[181].end 801.17159375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 800.53034375
transcript.pyannote[182].end 802.58909375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 802.87596875
transcript.pyannote[183].end 805.08659375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 804.68159375
transcript.pyannote[184].end 807.65159375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 805.12034375
transcript.pyannote[185].end 808.29284375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 807.76971875
transcript.pyannote[186].end 811.26284375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 811.34721875
transcript.pyannote[187].end 811.54971875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 811.73534375
transcript.pyannote[188].end 812.84909375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 812.96721875
transcript.pyannote[189].end 813.96284375
transcript.whisperx[0].start 10.509
transcript.whisperx[0].end 34.395
transcript.whisperx[0].text 主席在場委員先進列席政府機關社長官員會長工作夥伴媒體記者女士先生有請財政部莊部長和國庫署陳署長以及負稅署的宋署長好財政部部長還有陳署長還有宋委員好部長好兩位署長好部長我們賴總統要推亞洲資產管理中心你支持不支持
transcript.whisperx[1].start 35.936
transcript.whisperx[1].end 65.402
transcript.whisperx[1].text 支持這當中的主責是金管會金管會說他希望能夠亞太資產管理中心當中優先要來一個公司協辦的TISATISA制度 你知道吧我知道那麼他也要由當時發肌膚通的吉寶公司來協助那請問要推動TISA跟亞洲資產管理中心有相關您願意在全程範圍內來幫忙推動TISA增加國民的推銷保障嗎
transcript.whisperx[2].start 67.016
transcript.whisperx[2].end 83.994
transcript.whisperx[2].text 這個是國家狀況政策當然財政部會跟金管會都會一起努力好那麼在這財政部可以提供的優惠我也私下先請教過宋署長了說現行的所得稅法對於投資稅制優惠這跟TISA息息相關因為TISA就是一種投資除了所得稅法當中
transcript.whisperx[3].start 84.875
transcript.whisperx[3].end 107.72
transcript.whisperx[3].text 我們8萬元個人直接買股票或存款的利息可以抵減之外在特別扣除的部分我們如果投資基金這些利息信託基金的利息或股利呢是有27萬元的那麼署長跟我說這些呢是足夠提供民眾投資的誘因優惠請問你所知道國人使用這27萬或這8萬用的多不多普普普遍
transcript.whisperx[4].start 110.093
transcript.whisperx[4].end 121.7
transcript.whisperx[4].text 應該不少不少的所以老闆告訴大家不少啊你說現行的報稅系統直接變名就直接帶入所以民眾不曉得他有投資抵稅優惠不知是這樣子的嗎
transcript.whisperx[5].start 123.595
transcript.whisperx[5].end 140.93
transcript.whisperx[5].text 委員報告有的時候您剛剛講就是說我們這些相關的租稅優惠可是民眾不見得都知道那他又想說不知道對但是在TISA的時候我們也跟金管會說我們會跟你合作對於現行有關的租稅優惠我們會陳列出來而且協助去做說明讓民眾可以知道
transcript.whisperx[6].start 143.672
transcript.whisperx[6].end 161.003
transcript.whisperx[6].text 對 協助 我們甚至可以有同仁去協助說明說我們現有的租稅優惠有這麼多那我們來看看這個DISA下一頁好 我們來先看一下台灣的退休金指數排名不如越南和中國很可怕喔倒數第十 不如新加入平等的越南 為什麼
transcript.whisperx[7].start 161.923
transcript.whisperx[7].end 183.818
transcript.whisperx[7].text 我們從公務人員退伍基金管理局來看第一層強制性的社會安全保險像勞保國民年金保險第二層強制的員工退休制度由雇主提撥還有第三層自願性的商業保險儲蓄制度請問我們所說的TISA是不是就是這個第三層就是你去購買投資對你的未來的退休產生一種儲蓄保障是不是這樣
transcript.whisperx[8].start 185.882
transcript.whisperx[8].end 207.976
transcript.whisperx[8].text 應該 除此之外還有其他的對 我說TISA是屬於第三層嘛TISA對對對 是這樣嘛它可以去投資 循序投資的概念好 這三大指標當中充足性 永續性跟完整性當中全眾最高充足性台灣只得到46分表示台灣在第三層的部分有很大的成長空間你認為 是不是認為TISA可以有助於國民退休的第三層保障
transcript.whisperx[9].start 210.409
transcript.whisperx[9].end 238.749
transcript.whisperx[9].text 我想這個部分對於這樣的規劃運用是有幫助的對於民眾未來退休生活的一個...是的那往下看那國人對於退休儲備不足感到憂慮他說我們的壓力來源是生活成本增加退休儲蓄不足最高擔心生活成本不斷提高的六成擔心退休儲備不足的是七成跟六成然後呢把退休儲蓄視為首要的財務目標佔九成還不是財富自由喔那麼
transcript.whisperx[10].start 239.861
transcript.whisperx[10].end 264.506
transcript.whisperx[10].text 民眾就必須透過長期投資跟及早規劃退休那剛剛你也同意了TESA跟這個目前呢息息相關它可以幫助民眾來達成它的首要財務目標可是呢目前金管會檢視啊沒有額外新增個人投資的扣除額在TESA的部分那有沒有考慮財政部來新增投資稅制的優惠來幫助TESA推動
transcript.whisperx[11].start 269.209
transcript.whisperx[11].end 279.971
transcript.whisperx[11].text 我再講一次現在TESA這麼重要能夠有助於國人解決他的財務目標那財政部願不願意新增個人的投資額來協助TESA的推動
transcript.whisperx[12].start 283.432
transcript.whisperx[12].end 304.491
transcript.whisperx[12].text 剛剛委員也羅列了很多我們現有的一些租稅優惠我們也對照過日本也好還有其他國家的租稅優惠其實我們更優於他們所以這個部分事實上是目前來說我們應該是讓民眾知道我們已經有現在有這麼多優惠而民眾不清楚的部分我們可以加強來說明部長因為你這道說詞我聽過宋蘇長講過但我不認同
transcript.whisperx[13].start 307.045
transcript.whisperx[13].end 333.255
transcript.whisperx[13].text 我這樣講好了 我們去住那些高級飯店他們有健身中心 裡面有蒸汽室 有游泳池 有重量訓練結果我們問說 旅客為什麼不去使用健身中心旅客很想要什麼 超慢跑要跑步機啊你說我們這些都可以涵蓋在內 你知道健身中心什麼都有啊可是實況上就是什麼我們國人使用這些租稅優惠的意願跟強度不高
transcript.whisperx[14].start 334.226
transcript.whisperx[14].end 342.893
transcript.whisperx[14].text 那我先問你那如果有人說好因為現在超慢跑很流行我們的健身中心飯店增加一個專區就是跑步機專區你會反對嗎會增加成本嗎
transcript.whisperx[15].start 347.128
transcript.whisperx[15].end 364.688
transcript.whisperx[15].text 本來你說你的健身中心什麼都有就像你說的不管是你的股息你的利息我健身中心的這些項目通通都要來享受可是旅客使用的率不高啊他得到的好處也不多啊但是你說現在旅客喜歡超慢跑我增設一個慢跑機專區可以嗎
transcript.whisperx[16].start 369.093
transcript.whisperx[16].end 396.187
transcript.whisperx[16].text 我幫你們理解到這個比喻我想這個租稅的部分必須涉及的層面比較廣我覺得跟一個飯店裡面去偵測一個跑步機應該是不太一樣我用比喻 你用比喻回答來 我就直接知道你會這樣回答請你們現期內把目前國民使用現期投資稅制當中 優惠當中各個項目的比例 使用率還有金額的區間分布告訴我譬如說27萬國人有多少人在使用這27萬
transcript.whisperx[17].start 397.648
transcript.whisperx[17].end 418.356
transcript.whisperx[17].text 第二 他從不到一萬的到使用滿27萬的 分布是多少第三 他使用哪些項目 是鼓勵鼓息 是鼓勵還是利息這些把它調查出來 我們就知道 是不是像財政部說的我什麼都有 我有27萬讓你用 我不需要再設一個專區專門來針對TESA來提供租稅優惠
transcript.whisperx[18].start 421.935
transcript.whisperx[18].end 434.119
transcript.whisperx[18].text 請你把它調查出來我們再來個輸贏好的我們可以把這個資料可以做統計好我們來看一看現在日本的NISA對照於台灣的TISA日本的舊置它從40萬120萬提高到120萬240萬投資總額從800萬600萬提高到1800萬
transcript.whisperx[19].start 439.361
transcript.whisperx[19].end 466.677
transcript.whisperx[19].text 而我們台灣呢完全沒有增額外的稅務優惠然而日本從舊製到新製他把他的投資的商品從共同基金都弄出來了我們還特定基金喔所以你看日本的結果怎麼樣日本一炮而紅所以從NISA一開始呢他創新高啊是上年同期的3.2倍新開戶超買的就是說我們如果能夠新增額外的稅務優惠來推動TISA
transcript.whisperx[20].start 467.197
transcript.whisperx[20].end 477.882
transcript.whisperx[20].text 就可以充足我們國民退休的第三層保障而且國家也沒有增加額外支出這是我的結論您回去研究一下剛剛保障的那三點要求把它統計出來可以嗎
transcript.whisperx[21].start 480.143
transcript.whisperx[21].end 498.42
transcript.whisperx[21].text 好 我們來看一下 2024年金控員工的平均年薪排行榜我注意到這14家大型金控只有第三名的兆豐 第五名的第一金還有第八名的和庫金 還有第九名的華南金我們的飯宮股只有這四家入榜 是不是這樣
transcript.whisperx[22].start 504.605
transcript.whisperx[22].end 525.973
transcript.whisperx[22].text 這些都是金飯碗民間的金控員工薪資是比較高的但是國營的我們怎麼樣跟飯工股跟民營徵財這裡面有沒有國營的沒有飯工股的有4家是不是這樣子請問一下怎麼樣來讓我們的飯工股或者我們的國營金融機構可以跟民股來徵財
transcript.whisperx[23].start 528.619
transcript.whisperx[23].end 554.102
transcript.whisperx[23].text 我想這個泛公股的部分因為它是泛公股算是一個泛民營化那它可以用公司治理以及自己按自己他們自己的內規定來做處理薪水最直接嘛對 薪水最直接待遇最明顯嘛為什麼人家連排行榜出來我是一個大學出來的畢業生我看一看我會選擇泛公股嗎我會選擇國營的金融機構嗎榜上無名啊那我們往下看
transcript.whisperx[24].start 555.393
transcript.whisperx[24].end 572.449
transcript.whisperx[24].text 為什麼會這樣子 我們立法院也是始終的之一第八屆第四會期 那時候立法委員包括李桂民 翁崇勳 費鴻泰提議要求限制我們這些財政部所屬的國營事業金融機構的績效獎金最多只能到4.4
transcript.whisperx[25].start 574.298
transcript.whisperx[25].end 593.232
transcript.whisperx[25].text 是不是目前的限制沒錯這是誰的限制立法院立法院而且很清楚是第八屆國民黨幾位委員所提的我個人認為要調整要思考一下你限制這些就限制了我們飯工股跟我們的國營金融機構去跟民營的來競爭人才你同不同意
transcript.whisperx[26].start 594.873
transcript.whisperx[26].end 597.858
transcript.whisperx[26].text 是的我就跟委員報告為了這個有關我們的國營金融事業能夠更有一個更強的競爭力能夠
transcript.whisperx[27].start 606.278
transcript.whisperx[27].end 627.692
transcript.whisperx[27].text 攬財 留財能夠做得更好我們已經有了五個方案謝謝委員對我們國營金融事業的一個關心那五個方案也可以跟委員報告你要報告之前我先問一下我們來看看現有的方案譬如說一個很簡單的伙食費三千元你看看目前我們金控的資產台銀金是排名第一
transcript.whisperx[28].start 628.773
transcript.whisperx[28].end 645.619
transcript.whisperx[28].text 結果後面的趙鋒鑫 第一金 何庫鑫 華南鑫他的薪資在14名之內台銀金控是沒有欸他們目前台土輸啊對不起喔 這樣講有點不好聽喔台灣金控 土銀跟輸銀簡稱台土輸這國營事業輸添添嘛是不是這樣子好 同時我們再往下看還有什麼生育補助是不是也是一樣相較之下台土輸也是輸添添再往下看下一個
transcript.whisperx[29].start 658.858
transcript.whisperx[29].end 684.01
transcript.whisperx[29].text 我們的就是說不管是伙食費還是生育補助都是不如人家那請問你說有哪五大方案很快的簡單講一下第一個就是生育補助費的我們五大方案已經抱怨第一個就是生育補助費每一胎十萬塊然後不管是他自己或者是他的配偶十萬塊跟第一金差不多每一胎十萬好不錯跟第一金變沒有了那第二項就是伙食費您剛才列出來我們希望以外加伙食費的話是每個月三千塊
transcript.whisperx[30].start 684.83
transcript.whisperx[30].end 710.429
transcript.whisperx[30].text 第三個是經營績效獎金從4.4個月我們希望恢復到4.6個月這個部分那第二個對於激勵員工的部分我們認為應該在決算稅前營運裡面要提撥1%到8%按照員工的一些績效他的一個KPI達成等等給予做一些激勵的效果另外一個就是員工福利信託也就是剛剛委員提到就是讓他的退休生活更優化所以我們認為可以
transcript.whisperx[31].start 711.67
transcript.whisperx[31].end 733.389
transcript.whisperx[31].text 他每個月從薪水出一千銀行相對出一千然後讓他做信託那未來退休可以有一個好的收穫既然你對台土書對我們國營金融事業都這麼好TESA也可以對我們一般國民好吧TESA也是退休儲蓄的一種啊回去研究一下好很好這些我都樂見與財政部跟國庫總統來推動目前推動上有沒有障礙
transcript.whisperx[32].start 734.43
transcript.whisperx[32].end 763.067
transcript.whisperx[32].text 有沒有立法院在反對目前來說是我們報行政院由仁總在邀請相關機關延伤當中仁總的態度是支持還反對仁總第一個先就生育補助所我倒帶回去問仁總好您可以再跟仁總我幫忙你問仁總請他支持可以嗎謝謝委員最後主席站起來了我三個結論請第一請統計國民使用現行投資稅制優惠中各項目之比例使用率及金額的區間分布之數據並分期成效一個月內提出公民報告可以嗎
transcript.whisperx[33].start 767.85
transcript.whisperx[33].end 774.114
transcript.whisperx[33].text 請評估新增額外的稅務優惠推動TISA以充足國民退休的第三層保障的可行應
transcript.whisperx[34].start 794.808
transcript.whisperx[34].end 807.019
transcript.whisperx[34].text 行政院能不能在一個月內完成我們不敢把握但是一個月內我們一定提書面報告我反過來 你希望我多久幫你推動成那我當然希望委員越快越好啊我都給你兩個月 要不然給我兩個月你希望委員 立法委員兩個月幫你推動成功好不好好謝謝謝謝委員