iVOD / 159193

Field Value
IVOD_ID 159193
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159193
日期 2025-03-14
會議資料.會議代碼 院會-11-3-5
會議資料.會議代碼:str 第11屆第3會期第5次會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 5
會議資料.種類 院會
會議資料.標題 第11屆第3會期第5次會議
影片種類 Clip
開始時間 2025-03-14T15:34:02+08:00
結束時間 2025-03-14T16:04:53+08:00
影片長度 00:30:51
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/7c41c7866a52398ad5dcf61c4b5ac953769f2953f6d3be09d73a7bbe31daea54ccb487e2fda4bc7d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅廷瑋
委員發言時間 15:34:02 - 16:04:53
會議時間 2025-03-14T09:00:00+08:00
會議名稱 第11屆第3會期第5次會議(事由:一、對行政院院長提出施政方針及施政報告繼續質詢。二、3月14日上午9時至10時為國是論壇時間。三、3月18日下午2時15分至2時30分為處理臨時提案時間。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 16.45034375
transcript.pyannote[0].end 18.93096875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 19.23471875
transcript.pyannote[1].end 20.90534375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 30.62534375
transcript.pyannote[2].end 30.81096875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 31.11471875
transcript.pyannote[3].end 32.05971875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 32.48159375
transcript.pyannote[4].end 32.88659375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 33.54471875
transcript.pyannote[5].end 35.75534375
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 36.21096875
transcript.pyannote[6].end 42.64034375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 43.16346875
transcript.pyannote[7].end 47.78721875
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 48.46221875
transcript.pyannote[8].end 50.31846875
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 52.57971875
transcript.pyannote[9].end 53.35596875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 55.51596875
transcript.pyannote[10].end 57.81096875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 58.92471875
transcript.pyannote[11].end 61.30409375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 61.82721875
transcript.pyannote[12].end 62.73846875
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 62.73846875
transcript.pyannote[13].end 62.77221875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 62.77221875
transcript.pyannote[14].end 63.97034375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 63.97034375
transcript.pyannote[15].end 64.81409375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 64.32471875
transcript.pyannote[16].end 71.24346875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 71.37846875
transcript.pyannote[17].end 73.04909375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 72.81284375
transcript.pyannote[18].end 73.26846875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 73.26846875
transcript.pyannote[19].end 73.69034375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 73.69034375
transcript.pyannote[20].end 74.83784375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 75.74909375
transcript.pyannote[21].end 89.21534375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 90.29534375
transcript.pyannote[22].end 90.76784375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 91.20659375
transcript.pyannote[23].end 94.12596875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 94.96971875
transcript.pyannote[24].end 101.50034375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 102.83346875
transcript.pyannote[25].end 106.61346875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 107.06909375
transcript.pyannote[26].end 111.47346875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 109.14471875
transcript.pyannote[27].end 109.76909375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 111.47346875
transcript.pyannote[28].end 111.55784375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 111.55784375
transcript.pyannote[29].end 111.96284375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 111.96284375
transcript.pyannote[30].end 137.66346875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 137.96721875
transcript.pyannote[31].end 143.06346875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 143.06346875
transcript.pyannote[32].end 143.16471875
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 143.16471875
transcript.pyannote[33].end 143.38409375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 143.38409375
transcript.pyannote[34].end 154.97721875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 143.45159375
transcript.pyannote[35].end 144.12659375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 148.53096875
transcript.pyannote[36].end 149.54346875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 150.04971875
transcript.pyannote[37].end 150.62346875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 153.76221875
transcript.pyannote[38].end 179.71596875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 156.74909375
transcript.pyannote[39].end 156.96846875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 164.54534375
transcript.pyannote[40].end 165.05159375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 165.47346875
transcript.pyannote[41].end 166.19909375
transcript.pyannote[42].speaker SPEAKER_04
transcript.pyannote[42].start 172.18971875
transcript.pyannote[42].end 172.25721875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 181.13346875
transcript.pyannote[43].end 181.87596875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 181.87596875
transcript.pyannote[44].end 181.90971875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 182.07846875
transcript.pyannote[45].end 184.18784375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 184.55909375
transcript.pyannote[46].end 188.32221875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 188.32221875
transcript.pyannote[47].end 188.71034375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 188.98034375
transcript.pyannote[48].end 192.28784375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 189.09846875
transcript.pyannote[49].end 190.49909375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 192.76034375
transcript.pyannote[50].end 193.92471875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 194.43096875
transcript.pyannote[51].end 195.30846875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 196.21971875
transcript.pyannote[52].end 198.54846875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 196.27034375
transcript.pyannote[53].end 196.57409375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 198.54846875
transcript.pyannote[54].end 231.97784375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 232.83846875
transcript.pyannote[55].end 233.19284375
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 233.19284375
transcript.pyannote[56].end 235.08284375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 233.47971875
transcript.pyannote[57].end 249.51096875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 249.03846875
transcript.pyannote[58].end 288.74534375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 288.98159375
transcript.pyannote[59].end 301.33409375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 301.70534375
transcript.pyannote[60].end 302.39721875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 302.80221875
transcript.pyannote[61].end 303.02159375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 303.34221875
transcript.pyannote[62].end 303.84846875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 304.25346875
transcript.pyannote[63].end 310.90221875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 311.29034375
transcript.pyannote[64].end 313.12971875
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 313.70346875
transcript.pyannote[65].end 324.16596875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 324.43596875
transcript.pyannote[66].end 325.56659375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 326.05596875
transcript.pyannote[67].end 343.55534375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 344.07846875
transcript.pyannote[68].end 346.44096875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 346.93034375
transcript.pyannote[69].end 348.46596875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 349.03971875
transcript.pyannote[70].end 353.69721875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 353.86596875
transcript.pyannote[71].end 355.28346875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 355.35096875
transcript.pyannote[72].end 356.63346875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 357.19034375
transcript.pyannote[73].end 358.96221875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 359.43471875
transcript.pyannote[74].end 360.97034375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 361.40909375
transcript.pyannote[75].end 362.59034375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 362.80971875
transcript.pyannote[76].end 363.48471875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 364.22721875
transcript.pyannote[77].end 369.62721875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 369.64409375
transcript.pyannote[78].end 374.25096875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 374.16659375
transcript.pyannote[79].end 392.98221875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 393.15096875
transcript.pyannote[80].end 396.47534375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 396.72846875
transcript.pyannote[81].end 397.38659375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 397.38659375
transcript.pyannote[82].end 439.21971875
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 439.55721875
transcript.pyannote[83].end 450.35721875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 450.61034375
transcript.pyannote[84].end 456.68534375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 457.79909375
transcript.pyannote[85].end 458.40659375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 458.67659375
transcript.pyannote[86].end 460.16159375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 460.16159375
transcript.pyannote[87].end 467.41784375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 462.91221875
transcript.pyannote[88].end 462.96284375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 463.41846875
transcript.pyannote[89].end 464.59971875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 466.30409375
transcript.pyannote[90].end 470.97846875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 470.97846875
transcript.pyannote[91].end 476.85096875
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 477.00284375
transcript.pyannote[92].end 483.60096875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 485.17034375
transcript.pyannote[93].end 485.18721875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 485.18721875
transcript.pyannote[94].end 485.65971875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 486.80721875
transcript.pyannote[95].end 486.82409375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 486.82409375
transcript.pyannote[96].end 488.81534375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 489.30471875
transcript.pyannote[97].end 490.97534375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 490.97534375
transcript.pyannote[98].end 491.65034375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 491.78534375
transcript.pyannote[99].end 495.22784375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 495.56534375
transcript.pyannote[100].end 517.30034375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 518.27909375
transcript.pyannote[101].end 520.32096875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 520.60784375
transcript.pyannote[102].end 524.91096875
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 524.91096875
transcript.pyannote[103].end 541.02659375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 541.26284375
transcript.pyannote[104].end 543.27096875
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 544.08096875
transcript.pyannote[105].end 544.89096875
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 545.38034375
transcript.pyannote[106].end 545.76846875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 547.16909375
transcript.pyannote[107].end 551.82659375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 549.70034375
transcript.pyannote[108].end 563.74034375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 564.07784375
transcript.pyannote[109].end 577.32471875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 577.91534375
transcript.pyannote[110].end 580.39596875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 578.03346875
transcript.pyannote[111].end 578.16846875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 580.88534375
transcript.pyannote[112].end 582.77534375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 583.21409375
transcript.pyannote[113].end 585.32346875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 586.36971875
transcript.pyannote[114].end 587.16284375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 587.29784375
transcript.pyannote[115].end 587.65221875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 587.65221875
transcript.pyannote[116].end 587.66909375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 587.98971875
transcript.pyannote[117].end 589.57596875
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 591.33096875
transcript.pyannote[118].end 591.34784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 591.34784375
transcript.pyannote[119].end 593.22096875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 593.44034375
transcript.pyannote[120].end 593.81159375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 594.21659375
transcript.pyannote[121].end 603.41346875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 597.43971875
transcript.pyannote[122].end 598.99221875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 601.20284375
transcript.pyannote[123].end 602.85659375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 603.41346875
transcript.pyannote[124].end 604.18971875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 604.18971875
transcript.pyannote[125].end 604.27409375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 604.27409375
transcript.pyannote[126].end 606.70409375
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 608.03721875
transcript.pyannote[127].end 610.61909375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 611.64846875
transcript.pyannote[128].end 613.11659375
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 613.01534375
transcript.pyannote[129].end 613.89284375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 614.29784375
transcript.pyannote[130].end 615.52971875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 616.32284375
transcript.pyannote[131].end 616.74471875
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 618.17909375
transcript.pyannote[132].end 650.98409375
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 651.33846875
transcript.pyannote[133].end 653.24534375
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 653.43096875
transcript.pyannote[134].end 656.36721875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 657.31221875
transcript.pyannote[135].end 658.22346875
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 658.42596875
transcript.pyannote[136].end 658.44284375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 658.44284375
transcript.pyannote[137].end 658.52721875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 658.52721875
transcript.pyannote[138].end 658.57784375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 658.71284375
transcript.pyannote[139].end 665.20971875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 664.19721875
transcript.pyannote[140].end 681.13971875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 666.93096875
transcript.pyannote[141].end 668.66909375
transcript.pyannote[142].speaker SPEAKER_04
transcript.pyannote[142].start 672.76971875
transcript.pyannote[142].end 673.32659375
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 682.16909375
transcript.pyannote[143].end 701.01846875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 701.89596875
transcript.pyannote[144].end 712.27409375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 712.57784375
transcript.pyannote[145].end 717.65721875
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 717.97784375
transcript.pyannote[146].end 730.63409375
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 731.44409375
transcript.pyannote[147].end 732.37221875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 732.92909375
transcript.pyannote[148].end 733.58721875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 734.38034375
transcript.pyannote[149].end 742.09221875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 742.21034375
transcript.pyannote[150].end 746.05784375
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 747.94784375
transcript.pyannote[151].end 749.44971875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 750.47909375
transcript.pyannote[152].end 755.57534375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 756.14909375
transcript.pyannote[153].end 761.56596875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 761.98784375
transcript.pyannote[154].end 762.35909375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 762.69659375
transcript.pyannote[155].end 767.72534375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 768.06284375
transcript.pyannote[156].end 769.21034375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 769.68284375
transcript.pyannote[157].end 774.79596875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 774.01971875
transcript.pyannote[158].end 785.14034375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 780.01034375
transcript.pyannote[159].end 780.02721875
transcript.pyannote[160].speaker SPEAKER_04
transcript.pyannote[160].start 780.02721875
transcript.pyannote[160].end 780.12846875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 780.12846875
transcript.pyannote[161].end 780.17909375
transcript.pyannote[162].speaker SPEAKER_04
transcript.pyannote[162].start 780.71909375
transcript.pyannote[162].end 782.57534375
transcript.pyannote[163].speaker SPEAKER_04
transcript.pyannote[163].start 785.07284375
transcript.pyannote[163].end 785.44409375
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 785.34284375
transcript.pyannote[164].end 786.25409375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 786.54096875
transcript.pyannote[165].end 793.17284375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 793.71284375
transcript.pyannote[166].end 813.25409375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 814.04721875
transcript.pyannote[167].end 814.84034375
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 816.42659375
transcript.pyannote[168].end 816.86534375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 817.35471875
transcript.pyannote[169].end 818.95784375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 819.98721875
transcript.pyannote[170].end 828.98159375
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 821.53971875
transcript.pyannote[171].end 822.95721875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 822.95721875
transcript.pyannote[172].end 822.99096875
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 827.49659375
transcript.pyannote[173].end 834.55034375
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 835.32659375
transcript.pyannote[174].end 838.34721875
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 839.34284375
transcript.pyannote[175].end 841.03034375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 839.71409375
transcript.pyannote[176].end 845.35034375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 844.87784375
transcript.pyannote[177].end 847.03784375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 847.03784375
transcript.pyannote[178].end 847.22346875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 847.93221875
transcript.pyannote[179].end 856.89284375
transcript.pyannote[180].speaker SPEAKER_03
transcript.pyannote[180].start 849.70409375
transcript.pyannote[180].end 849.90659375
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 850.14284375
transcript.pyannote[181].end 850.19346875
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 850.24409375
transcript.pyannote[182].end 854.59784375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 857.21346875
transcript.pyannote[183].end 860.79096875
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 861.16221875
transcript.pyannote[184].end 861.75284375
transcript.pyannote[185].speaker SPEAKER_03
transcript.pyannote[185].start 863.38971875
transcript.pyannote[185].end 863.42346875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 863.42346875
transcript.pyannote[186].end 874.96596875
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 865.56659375
transcript.pyannote[187].end 866.39346875
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 872.95784375
transcript.pyannote[188].end 873.19409375
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 874.96596875
transcript.pyannote[189].end 878.34096875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 877.36221875
transcript.pyannote[190].end 879.11721875
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 878.52659375
transcript.pyannote[191].end 882.62721875
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 883.63971875
transcript.pyannote[192].end 885.47909375
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 886.23846875
transcript.pyannote[193].end 886.91346875
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 888.22971875
transcript.pyannote[194].end 893.84909375
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 894.49034375
transcript.pyannote[195].end 897.08909375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 895.60409375
transcript.pyannote[196].end 902.45534375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 902.96159375
transcript.pyannote[197].end 904.81784375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 904.93596875
transcript.pyannote[198].end 911.29784375
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 906.67409375
transcript.pyannote[199].end 915.83721875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 917.11971875
transcript.pyannote[200].end 920.93346875
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 922.04721875
transcript.pyannote[201].end 929.03346875
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 929.48909375
transcript.pyannote[202].end 936.40784375
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 937.09971875
transcript.pyannote[203].end 938.04471875
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 938.98971875
transcript.pyannote[204].end 942.02721875
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 942.38159375
transcript.pyannote[205].end 943.15784375
transcript.pyannote[206].speaker SPEAKER_03
transcript.pyannote[206].start 944.20409375
transcript.pyannote[206].end 944.60909375
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 945.92534375
transcript.pyannote[207].end 946.46534375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 947.98409375
transcript.pyannote[208].end 953.28284375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 953.73846875
transcript.pyannote[209].end 955.83096875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 956.89409375
transcript.pyannote[210].end 956.97846875
transcript.pyannote[211].speaker SPEAKER_03
transcript.pyannote[211].start 956.97846875
transcript.pyannote[211].end 957.50159375
transcript.pyannote[212].speaker SPEAKER_03
transcript.pyannote[212].start 957.97409375
transcript.pyannote[212].end 960.37034375
transcript.pyannote[213].speaker SPEAKER_03
transcript.pyannote[213].start 960.99471875
transcript.pyannote[213].end 966.71534375
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 967.72784375
transcript.pyannote[214].end 972.79034375
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 973.53284375
transcript.pyannote[215].end 993.47909375
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 994.10346875
transcript.pyannote[216].end 1014.04971875
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 1014.20159375
transcript.pyannote[217].end 1014.92721875
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 1015.39971875
transcript.pyannote[218].end 1016.85096875
transcript.pyannote[219].speaker SPEAKER_03
transcript.pyannote[219].start 1016.95221875
transcript.pyannote[219].end 1018.43721875
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 1018.75784375
transcript.pyannote[220].end 1019.19659375
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 1019.39909375
transcript.pyannote[221].end 1020.66471875
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 1021.10346875
transcript.pyannote[222].end 1021.69409375
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 1022.57159375
transcript.pyannote[223].end 1025.76096875
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 1027.60034375
transcript.pyannote[224].end 1032.51096875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 1032.62909375
transcript.pyannote[225].end 1039.93596875
transcript.pyannote[226].speaker SPEAKER_03
transcript.pyannote[226].start 1036.94909375
transcript.pyannote[226].end 1040.18909375
transcript.pyannote[227].speaker SPEAKER_03
transcript.pyannote[227].start 1040.77971875
transcript.pyannote[227].end 1042.06221875
transcript.pyannote[228].speaker SPEAKER_03
transcript.pyannote[228].start 1042.28159375
transcript.pyannote[228].end 1042.92284375
transcript.pyannote[229].speaker SPEAKER_03
transcript.pyannote[229].start 1043.09159375
transcript.pyannote[229].end 1044.10409375
transcript.pyannote[230].speaker SPEAKER_03
transcript.pyannote[230].start 1044.28971875
transcript.pyannote[230].end 1049.18346875
transcript.pyannote[231].speaker SPEAKER_03
transcript.pyannote[231].start 1049.40284375
transcript.pyannote[231].end 1056.69284375
transcript.pyannote[232].speaker SPEAKER_03
transcript.pyannote[232].start 1057.92471875
transcript.pyannote[232].end 1059.46034375
transcript.pyannote[233].speaker SPEAKER_03
transcript.pyannote[233].start 1059.74721875
transcript.pyannote[233].end 1064.74221875
transcript.pyannote[234].speaker SPEAKER_03
transcript.pyannote[234].start 1064.80971875
transcript.pyannote[234].end 1066.53096875
transcript.pyannote[235].speaker SPEAKER_03
transcript.pyannote[235].start 1066.78409375
transcript.pyannote[235].end 1099.09971875
transcript.pyannote[236].speaker SPEAKER_03
transcript.pyannote[236].start 1099.38659375
transcript.pyannote[236].end 1100.61846875
transcript.pyannote[237].speaker SPEAKER_03
transcript.pyannote[237].start 1101.12471875
transcript.pyannote[237].end 1106.67659375
transcript.pyannote[238].speaker SPEAKER_03
transcript.pyannote[238].start 1106.89596875
transcript.pyannote[238].end 1108.06034375
transcript.pyannote[239].speaker SPEAKER_03
transcript.pyannote[239].start 1108.83659375
transcript.pyannote[239].end 1109.78159375
transcript.pyannote[240].speaker SPEAKER_03
transcript.pyannote[240].start 1110.97971875
transcript.pyannote[240].end 1115.53596875
transcript.pyannote[241].speaker SPEAKER_03
transcript.pyannote[241].start 1115.90721875
transcript.pyannote[241].end 1120.15971875
transcript.pyannote[242].speaker SPEAKER_03
transcript.pyannote[242].start 1121.13846875
transcript.pyannote[242].end 1123.46721875
transcript.pyannote[243].speaker SPEAKER_03
transcript.pyannote[243].start 1123.99034375
transcript.pyannote[243].end 1125.08721875
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 1126.01534375
transcript.pyannote[244].end 1130.62221875
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 1131.02721875
transcript.pyannote[245].end 1131.95534375
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 1132.17471875
transcript.pyannote[246].end 1134.48659375
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 1134.65534375
transcript.pyannote[247].end 1137.28784375
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 1137.42284375
transcript.pyannote[248].end 1141.69221875
transcript.pyannote[249].speaker SPEAKER_04
transcript.pyannote[249].start 1141.03409375
transcript.pyannote[249].end 1141.45596875
transcript.pyannote[250].speaker SPEAKER_03
transcript.pyannote[250].start 1141.45596875
transcript.pyannote[250].end 1141.47284375
transcript.pyannote[251].speaker SPEAKER_03
transcript.pyannote[251].start 1141.69221875
transcript.pyannote[251].end 1141.74284375
transcript.pyannote[252].speaker SPEAKER_03
transcript.pyannote[252].start 1141.87784375
transcript.pyannote[252].end 1141.96221875
transcript.pyannote[253].speaker SPEAKER_00
transcript.pyannote[253].start 1141.96221875
transcript.pyannote[253].end 1142.97471875
transcript.pyannote[254].speaker SPEAKER_03
transcript.pyannote[254].start 1142.97471875
transcript.pyannote[254].end 1180.80846875
transcript.pyannote[255].speaker SPEAKER_03
transcript.pyannote[255].start 1181.09534375
transcript.pyannote[255].end 1182.02346875
transcript.pyannote[256].speaker SPEAKER_01
transcript.pyannote[256].start 1182.02346875
transcript.pyannote[256].end 1183.54221875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 1184.25096875
transcript.pyannote[257].end 1190.69721875
transcript.pyannote[258].speaker SPEAKER_03
transcript.pyannote[258].start 1189.71846875
transcript.pyannote[258].end 1211.75721875
transcript.pyannote[259].speaker SPEAKER_01
transcript.pyannote[259].start 1191.10221875
transcript.pyannote[259].end 1193.68409375
transcript.pyannote[260].speaker SPEAKER_03
transcript.pyannote[260].start 1212.09471875
transcript.pyannote[260].end 1218.00096875
transcript.pyannote[261].speaker SPEAKER_03
transcript.pyannote[261].start 1218.62534375
transcript.pyannote[261].end 1219.63784375
transcript.pyannote[262].speaker SPEAKER_03
transcript.pyannote[262].start 1220.14409375
transcript.pyannote[262].end 1227.28221875
transcript.pyannote[263].speaker SPEAKER_03
transcript.pyannote[263].start 1227.68721875
transcript.pyannote[263].end 1240.41096875
transcript.pyannote[264].speaker SPEAKER_03
transcript.pyannote[264].start 1240.61346875
transcript.pyannote[264].end 1241.13659375
transcript.pyannote[265].speaker SPEAKER_03
transcript.pyannote[265].start 1241.81159375
transcript.pyannote[265].end 1242.45284375
transcript.pyannote[266].speaker SPEAKER_03
transcript.pyannote[266].start 1243.21221875
transcript.pyannote[266].end 1262.43284375
transcript.pyannote[267].speaker SPEAKER_03
transcript.pyannote[267].start 1262.95596875
transcript.pyannote[267].end 1267.12409375
transcript.pyannote[268].speaker SPEAKER_03
transcript.pyannote[268].start 1267.81596875
transcript.pyannote[268].end 1269.28409375
transcript.pyannote[269].speaker SPEAKER_03
transcript.pyannote[269].start 1269.67221875
transcript.pyannote[269].end 1293.58409375
transcript.pyannote[270].speaker SPEAKER_01
transcript.pyannote[270].start 1292.62221875
transcript.pyannote[270].end 1299.81096875
transcript.pyannote[271].speaker SPEAKER_01
transcript.pyannote[271].start 1300.30034375
transcript.pyannote[271].end 1304.08034375
transcript.pyannote[272].speaker SPEAKER_03
transcript.pyannote[272].start 1300.31721875
transcript.pyannote[272].end 1330.69221875
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 1310.76284375
transcript.pyannote[273].end 1321.12409375
transcript.pyannote[274].speaker SPEAKER_01
transcript.pyannote[274].start 1328.39721875
transcript.pyannote[274].end 1330.10159375
transcript.pyannote[275].speaker SPEAKER_01
transcript.pyannote[275].start 1330.69221875
transcript.pyannote[275].end 1330.92846875
transcript.pyannote[276].speaker SPEAKER_03
transcript.pyannote[276].start 1330.92846875
transcript.pyannote[276].end 1354.28346875
transcript.pyannote[277].speaker SPEAKER_01
transcript.pyannote[277].start 1330.99596875
transcript.pyannote[277].end 1333.05471875
transcript.pyannote[278].speaker SPEAKER_03
transcript.pyannote[278].start 1354.77284375
transcript.pyannote[278].end 1354.80659375
transcript.pyannote[279].speaker SPEAKER_00
transcript.pyannote[279].start 1354.80659375
transcript.pyannote[279].end 1354.82346875
transcript.pyannote[280].speaker SPEAKER_03
transcript.pyannote[280].start 1354.82346875
transcript.pyannote[280].end 1355.21159375
transcript.pyannote[281].speaker SPEAKER_00
transcript.pyannote[281].start 1355.56596875
transcript.pyannote[281].end 1362.80534375
transcript.pyannote[282].speaker SPEAKER_00
transcript.pyannote[282].start 1363.04159375
transcript.pyannote[282].end 1364.47596875
transcript.pyannote[283].speaker SPEAKER_03
transcript.pyannote[283].start 1363.07534375
transcript.pyannote[283].end 1367.27721875
transcript.pyannote[284].speaker SPEAKER_00
transcript.pyannote[284].start 1365.23534375
transcript.pyannote[284].end 1376.18721875
transcript.pyannote[285].speaker SPEAKER_03
transcript.pyannote[285].start 1372.66034375
transcript.pyannote[285].end 1394.61471875
transcript.pyannote[286].speaker SPEAKER_00
transcript.pyannote[286].start 1383.67971875
transcript.pyannote[286].end 1384.03409375
transcript.pyannote[287].speaker SPEAKER_04
transcript.pyannote[287].start 1384.03409375
transcript.pyannote[287].end 1385.14784375
transcript.pyannote[288].speaker SPEAKER_00
transcript.pyannote[288].start 1385.14784375
transcript.pyannote[288].end 1385.19846875
transcript.pyannote[289].speaker SPEAKER_00
transcript.pyannote[289].start 1394.02409375
transcript.pyannote[289].end 1394.44596875
transcript.pyannote[290].speaker SPEAKER_00
transcript.pyannote[290].start 1394.61471875
transcript.pyannote[290].end 1394.76659375
transcript.pyannote[291].speaker SPEAKER_03
transcript.pyannote[291].start 1394.76659375
transcript.pyannote[291].end 1394.78346875
transcript.pyannote[292].speaker SPEAKER_00
transcript.pyannote[292].start 1394.78346875
transcript.pyannote[292].end 1396.70721875
transcript.pyannote[293].speaker SPEAKER_03
transcript.pyannote[293].start 1396.70721875
transcript.pyannote[293].end 1398.39471875
transcript.pyannote[294].speaker SPEAKER_00
transcript.pyannote[294].start 1396.74096875
transcript.pyannote[294].end 1398.22596875
transcript.pyannote[295].speaker SPEAKER_01
transcript.pyannote[295].start 1398.39471875
transcript.pyannote[295].end 1398.46221875
transcript.pyannote[296].speaker SPEAKER_03
transcript.pyannote[296].start 1398.46221875
transcript.pyannote[296].end 1398.49596875
transcript.pyannote[297].speaker SPEAKER_01
transcript.pyannote[297].start 1398.49596875
transcript.pyannote[297].end 1398.63096875
transcript.pyannote[298].speaker SPEAKER_03
transcript.pyannote[298].start 1398.63096875
transcript.pyannote[298].end 1409.07659375
transcript.pyannote[299].speaker SPEAKER_00
transcript.pyannote[299].start 1399.72784375
transcript.pyannote[299].end 1400.65596875
transcript.pyannote[300].speaker SPEAKER_01
transcript.pyannote[300].start 1400.65596875
transcript.pyannote[300].end 1400.68971875
transcript.pyannote[301].speaker SPEAKER_00
transcript.pyannote[301].start 1409.46471875
transcript.pyannote[301].end 1410.93284375
transcript.pyannote[302].speaker SPEAKER_00
transcript.pyannote[302].start 1411.32096875
transcript.pyannote[302].end 1411.52346875
transcript.pyannote[303].speaker SPEAKER_00
transcript.pyannote[303].start 1411.94534375
transcript.pyannote[303].end 1417.10909375
transcript.pyannote[304].speaker SPEAKER_03
transcript.pyannote[304].start 1416.16409375
transcript.pyannote[304].end 1426.03596875
transcript.pyannote[305].speaker SPEAKER_00
transcript.pyannote[305].start 1417.75034375
transcript.pyannote[305].end 1418.18909375
transcript.pyannote[306].speaker SPEAKER_00
transcript.pyannote[306].start 1420.58534375
transcript.pyannote[306].end 1421.71596875
transcript.pyannote[307].speaker SPEAKER_03
transcript.pyannote[307].start 1426.57596875
transcript.pyannote[307].end 1428.88784375
transcript.pyannote[308].speaker SPEAKER_03
transcript.pyannote[308].start 1429.14096875
transcript.pyannote[308].end 1434.40596875
transcript.pyannote[309].speaker SPEAKER_01
transcript.pyannote[309].start 1430.52471875
transcript.pyannote[309].end 1434.70971875
transcript.pyannote[310].speaker SPEAKER_01
transcript.pyannote[310].start 1435.48596875
transcript.pyannote[310].end 1440.41346875
transcript.pyannote[311].speaker SPEAKER_03
transcript.pyannote[311].start 1438.77659375
transcript.pyannote[311].end 1455.60096875
transcript.pyannote[312].speaker SPEAKER_02
transcript.pyannote[312].start 1440.41346875
transcript.pyannote[312].end 1440.43034375
transcript.pyannote[313].speaker SPEAKER_01
transcript.pyannote[313].start 1440.43034375
transcript.pyannote[313].end 1440.44721875
transcript.pyannote[314].speaker SPEAKER_03
transcript.pyannote[314].start 1456.32659375
transcript.pyannote[314].end 1458.72284375
transcript.pyannote[315].speaker SPEAKER_03
transcript.pyannote[315].start 1459.17846875
transcript.pyannote[315].end 1459.90409375
transcript.pyannote[316].speaker SPEAKER_03
transcript.pyannote[316].start 1460.54534375
transcript.pyannote[316].end 1476.34034375
transcript.pyannote[317].speaker SPEAKER_00
transcript.pyannote[317].start 1460.73096875
transcript.pyannote[317].end 1460.91659375
transcript.pyannote[318].speaker SPEAKER_04
transcript.pyannote[318].start 1460.91659375
transcript.pyannote[318].end 1460.96721875
transcript.pyannote[319].speaker SPEAKER_00
transcript.pyannote[319].start 1460.96721875
transcript.pyannote[319].end 1460.98409375
transcript.pyannote[320].speaker SPEAKER_00
transcript.pyannote[320].start 1461.60846875
transcript.pyannote[320].end 1461.62534375
transcript.pyannote[321].speaker SPEAKER_02
transcript.pyannote[321].start 1461.62534375
transcript.pyannote[321].end 1462.97534375
transcript.pyannote[322].speaker SPEAKER_00
transcript.pyannote[322].start 1462.97534375
transcript.pyannote[322].end 1463.29596875
transcript.pyannote[323].speaker SPEAKER_03
transcript.pyannote[323].start 1477.01534375
transcript.pyannote[323].end 1479.49596875
transcript.pyannote[324].speaker SPEAKER_01
transcript.pyannote[324].start 1479.02346875
transcript.pyannote[324].end 1484.96346875
transcript.pyannote[325].speaker SPEAKER_03
transcript.pyannote[325].start 1481.20034375
transcript.pyannote[325].end 1488.27096875
transcript.pyannote[326].speaker SPEAKER_02
transcript.pyannote[326].start 1484.96346875
transcript.pyannote[326].end 1487.00534375
transcript.pyannote[327].speaker SPEAKER_03
transcript.pyannote[327].start 1488.86159375
transcript.pyannote[327].end 1490.92034375
transcript.pyannote[328].speaker SPEAKER_03
transcript.pyannote[328].start 1491.84846875
transcript.pyannote[328].end 1493.60346875
transcript.pyannote[329].speaker SPEAKER_03
transcript.pyannote[329].start 1493.92409375
transcript.pyannote[329].end 1494.78471875
transcript.pyannote[330].speaker SPEAKER_03
transcript.pyannote[330].start 1495.34159375
transcript.pyannote[330].end 1498.22721875
transcript.pyannote[331].speaker SPEAKER_03
transcript.pyannote[331].start 1498.48034375
transcript.pyannote[331].end 1513.81971875
transcript.pyannote[332].speaker SPEAKER_03
transcript.pyannote[332].start 1514.62971875
transcript.pyannote[332].end 1528.02846875
transcript.pyannote[333].speaker SPEAKER_00
transcript.pyannote[333].start 1528.02846875
transcript.pyannote[333].end 1528.65284375
transcript.pyannote[334].speaker SPEAKER_03
transcript.pyannote[334].start 1528.65284375
transcript.pyannote[334].end 1528.92284375
transcript.pyannote[335].speaker SPEAKER_00
transcript.pyannote[335].start 1528.92284375
transcript.pyannote[335].end 1533.85034375
transcript.pyannote[336].speaker SPEAKER_00
transcript.pyannote[336].start 1534.35659375
transcript.pyannote[336].end 1547.95784375
transcript.pyannote[337].speaker SPEAKER_03
transcript.pyannote[337].start 1542.37221875
transcript.pyannote[337].end 1554.47159375
transcript.pyannote[338].speaker SPEAKER_00
transcript.pyannote[338].start 1550.40471875
transcript.pyannote[338].end 1550.97846875
transcript.pyannote[339].speaker SPEAKER_04
transcript.pyannote[339].start 1550.97846875
transcript.pyannote[339].end 1551.02909375
transcript.pyannote[340].speaker SPEAKER_02
transcript.pyannote[340].start 1551.02909375
transcript.pyannote[340].end 1551.97409375
transcript.pyannote[341].speaker SPEAKER_04
transcript.pyannote[341].start 1551.97409375
transcript.pyannote[341].end 1552.02471875
transcript.pyannote[342].speaker SPEAKER_02
transcript.pyannote[342].start 1552.02471875
transcript.pyannote[342].end 1554.38721875
transcript.pyannote[343].speaker SPEAKER_03
transcript.pyannote[343].start 1554.72471875
transcript.pyannote[343].end 1555.28159375
transcript.pyannote[344].speaker SPEAKER_03
transcript.pyannote[344].start 1556.32784375
transcript.pyannote[344].end 1556.74971875
transcript.pyannote[345].speaker SPEAKER_03
transcript.pyannote[345].start 1561.00221875
transcript.pyannote[345].end 1563.46596875
transcript.pyannote[346].speaker SPEAKER_03
transcript.pyannote[346].start 1563.75284375
transcript.pyannote[346].end 1568.86596875
transcript.pyannote[347].speaker SPEAKER_03
transcript.pyannote[347].start 1569.32159375
transcript.pyannote[347].end 1570.06409375
transcript.pyannote[348].speaker SPEAKER_00
transcript.pyannote[348].start 1570.68846875
transcript.pyannote[348].end 1571.75159375
transcript.pyannote[349].speaker SPEAKER_03
transcript.pyannote[349].start 1572.17346875
transcript.pyannote[349].end 1572.19034375
transcript.pyannote[350].speaker SPEAKER_01
transcript.pyannote[350].start 1572.19034375
transcript.pyannote[350].end 1572.91596875
transcript.pyannote[351].speaker SPEAKER_03
transcript.pyannote[351].start 1572.91596875
transcript.pyannote[351].end 1572.93284375
transcript.pyannote[352].speaker SPEAKER_03
transcript.pyannote[352].start 1573.33784375
transcript.pyannote[352].end 1573.35471875
transcript.pyannote[353].speaker SPEAKER_01
transcript.pyannote[353].start 1573.35471875
transcript.pyannote[353].end 1574.21534375
transcript.pyannote[354].speaker SPEAKER_01
transcript.pyannote[354].start 1575.51471875
transcript.pyannote[354].end 1576.64534375
transcript.pyannote[355].speaker SPEAKER_01
transcript.pyannote[355].start 1577.23596875
transcript.pyannote[355].end 1578.09659375
transcript.pyannote[356].speaker SPEAKER_01
transcript.pyannote[356].start 1579.24409375
transcript.pyannote[356].end 1588.30596875
transcript.pyannote[357].speaker SPEAKER_03
transcript.pyannote[357].start 1580.22284375
transcript.pyannote[357].end 1583.00721875
transcript.pyannote[358].speaker SPEAKER_03
transcript.pyannote[358].start 1584.23909375
transcript.pyannote[358].end 1586.14596875
transcript.pyannote[359].speaker SPEAKER_03
transcript.pyannote[359].start 1586.31471875
transcript.pyannote[359].end 1600.82721875
transcript.pyannote[360].speaker SPEAKER_01
transcript.pyannote[360].start 1589.23409375
transcript.pyannote[360].end 1589.48721875
transcript.pyannote[361].speaker SPEAKER_01
transcript.pyannote[361].start 1591.41096875
transcript.pyannote[361].end 1592.32221875
transcript.pyannote[362].speaker SPEAKER_00
transcript.pyannote[362].start 1592.32221875
transcript.pyannote[362].end 1592.38971875
transcript.pyannote[363].speaker SPEAKER_03
transcript.pyannote[363].start 1601.78909375
transcript.pyannote[363].end 1602.83534375
transcript.pyannote[364].speaker SPEAKER_03
transcript.pyannote[364].start 1603.47659375
transcript.pyannote[364].end 1604.15159375
transcript.pyannote[365].speaker SPEAKER_03
transcript.pyannote[365].start 1604.35409375
transcript.pyannote[365].end 1605.24846875
transcript.pyannote[366].speaker SPEAKER_03
transcript.pyannote[366].start 1606.10909375
transcript.pyannote[366].end 1633.48034375
transcript.pyannote[367].speaker SPEAKER_03
transcript.pyannote[367].start 1633.93596875
transcript.pyannote[367].end 1634.83034375
transcript.pyannote[368].speaker SPEAKER_03
transcript.pyannote[368].start 1635.89346875
transcript.pyannote[368].end 1637.78346875
transcript.pyannote[369].speaker SPEAKER_03
transcript.pyannote[369].start 1638.86346875
transcript.pyannote[369].end 1642.40721875
transcript.pyannote[370].speaker SPEAKER_03
transcript.pyannote[370].start 1642.84596875
transcript.pyannote[370].end 1652.21159375
transcript.pyannote[371].speaker SPEAKER_03
transcript.pyannote[371].start 1652.54909375
transcript.pyannote[371].end 1655.19846875
transcript.pyannote[372].speaker SPEAKER_03
transcript.pyannote[372].start 1656.04221875
transcript.pyannote[372].end 1666.03221875
transcript.pyannote[373].speaker SPEAKER_00
transcript.pyannote[373].start 1661.45909375
transcript.pyannote[373].end 1662.11721875
transcript.pyannote[374].speaker SPEAKER_00
transcript.pyannote[374].start 1666.03221875
transcript.pyannote[374].end 1674.92534375
transcript.pyannote[375].speaker SPEAKER_00
transcript.pyannote[375].start 1675.27971875
transcript.pyannote[375].end 1682.78909375
transcript.pyannote[376].speaker SPEAKER_03
transcript.pyannote[376].start 1680.12284375
transcript.pyannote[376].end 1683.02534375
transcript.pyannote[377].speaker SPEAKER_01
transcript.pyannote[377].start 1683.02534375
transcript.pyannote[377].end 1693.77471875
transcript.pyannote[378].speaker SPEAKER_03
transcript.pyannote[378].start 1693.77471875
transcript.pyannote[378].end 1695.25971875
transcript.pyannote[379].speaker SPEAKER_01
transcript.pyannote[379].start 1693.80846875
transcript.pyannote[379].end 1699.71471875
transcript.pyannote[380].speaker SPEAKER_03
transcript.pyannote[380].start 1699.25909375
transcript.pyannote[380].end 1704.65909375
transcript.pyannote[381].speaker SPEAKER_03
transcript.pyannote[381].start 1705.65471875
transcript.pyannote[381].end 1706.51534375
transcript.pyannote[382].speaker SPEAKER_01
transcript.pyannote[382].start 1706.51534375
transcript.pyannote[382].end 1708.30409375
transcript.pyannote[383].speaker SPEAKER_01
transcript.pyannote[383].start 1708.62471875
transcript.pyannote[383].end 1722.90096875
transcript.pyannote[384].speaker SPEAKER_03
transcript.pyannote[384].start 1713.85596875
transcript.pyannote[384].end 1717.04534375
transcript.pyannote[385].speaker SPEAKER_03
transcript.pyannote[385].start 1718.17596875
transcript.pyannote[385].end 1719.08721875
transcript.pyannote[386].speaker SPEAKER_03
transcript.pyannote[386].start 1720.60596875
transcript.pyannote[386].end 1726.37721875
transcript.pyannote[387].speaker SPEAKER_01
transcript.pyannote[387].start 1727.25471875
transcript.pyannote[387].end 1728.99284375
transcript.pyannote[388].speaker SPEAKER_03
transcript.pyannote[388].start 1728.99284375
transcript.pyannote[388].end 1738.99971875
transcript.pyannote[389].speaker SPEAKER_01
transcript.pyannote[389].start 1730.69721875
transcript.pyannote[389].end 1732.72221875
transcript.pyannote[390].speaker SPEAKER_01
transcript.pyannote[390].start 1733.86971875
transcript.pyannote[390].end 1734.27471875
transcript.pyannote[391].speaker SPEAKER_01
transcript.pyannote[391].start 1739.74221875
transcript.pyannote[391].end 1744.99034375
transcript.pyannote[392].speaker SPEAKER_03
transcript.pyannote[392].start 1743.16784375
transcript.pyannote[392].end 1749.98534375
transcript.pyannote[393].speaker SPEAKER_03
transcript.pyannote[393].start 1750.98096875
transcript.pyannote[393].end 1751.82471875
transcript.pyannote[394].speaker SPEAKER_01
transcript.pyannote[394].start 1752.44909375
transcript.pyannote[394].end 1760.09346875
transcript.pyannote[395].speaker SPEAKER_03
transcript.pyannote[395].start 1754.67659375
transcript.pyannote[395].end 1755.03096875
transcript.pyannote[396].speaker SPEAKER_03
transcript.pyannote[396].start 1756.02659375
transcript.pyannote[396].end 1759.06409375
transcript.pyannote[397].speaker SPEAKER_03
transcript.pyannote[397].start 1760.09346875
transcript.pyannote[397].end 1760.11034375
transcript.pyannote[398].speaker SPEAKER_03
transcript.pyannote[398].start 1760.12721875
transcript.pyannote[398].end 1768.93596875
transcript.pyannote[399].speaker SPEAKER_01
transcript.pyannote[399].start 1760.78534375
transcript.pyannote[399].end 1761.12284375
transcript.pyannote[400].speaker SPEAKER_03
transcript.pyannote[400].start 1769.44221875
transcript.pyannote[400].end 1773.61034375
transcript.pyannote[401].speaker SPEAKER_03
transcript.pyannote[401].start 1773.96471875
transcript.pyannote[401].end 1777.79534375
transcript.pyannote[402].speaker SPEAKER_03
transcript.pyannote[402].start 1778.03159375
transcript.pyannote[402].end 1790.38409375
transcript.pyannote[403].speaker SPEAKER_03
transcript.pyannote[403].start 1790.95784375
transcript.pyannote[403].end 1793.50596875
transcript.pyannote[404].speaker SPEAKER_03
transcript.pyannote[404].start 1793.82659375
transcript.pyannote[404].end 1796.20596875
transcript.pyannote[405].speaker SPEAKER_03
transcript.pyannote[405].start 1796.89784375
transcript.pyannote[405].end 1801.47096875
transcript.pyannote[406].speaker SPEAKER_03
transcript.pyannote[406].start 1801.74096875
transcript.pyannote[406].end 1805.38596875
transcript.pyannote[407].speaker SPEAKER_03
transcript.pyannote[407].start 1806.19596875
transcript.pyannote[407].end 1808.60909375
transcript.pyannote[408].speaker SPEAKER_03
transcript.pyannote[408].start 1809.38534375
transcript.pyannote[408].end 1814.00909375
transcript.pyannote[409].speaker SPEAKER_03
transcript.pyannote[409].start 1814.43096875
transcript.pyannote[409].end 1816.05096875
transcript.pyannote[410].speaker SPEAKER_03
transcript.pyannote[410].start 1816.77659375
transcript.pyannote[410].end 1816.84409375
transcript.pyannote[411].speaker SPEAKER_00
transcript.pyannote[411].start 1816.84409375
transcript.pyannote[411].end 1817.63721875
transcript.pyannote[412].speaker SPEAKER_03
transcript.pyannote[412].start 1817.63721875
transcript.pyannote[412].end 1817.68784375
transcript.pyannote[413].speaker SPEAKER_00
transcript.pyannote[413].start 1818.05909375
transcript.pyannote[413].end 1821.36659375
transcript.pyannote[414].speaker SPEAKER_00
transcript.pyannote[414].start 1821.72096875
transcript.pyannote[414].end 1824.58971875
transcript.pyannote[415].speaker SPEAKER_03
transcript.pyannote[415].start 1824.58971875
transcript.pyannote[415].end 1829.12909375
transcript.pyannote[416].speaker SPEAKER_03
transcript.pyannote[416].start 1829.36534375
transcript.pyannote[416].end 1835.86221875
transcript.pyannote[417].speaker SPEAKER_00
transcript.pyannote[417].start 1834.96784375
transcript.pyannote[417].end 1836.72284375
transcript.pyannote[418].speaker SPEAKER_03
transcript.pyannote[418].start 1836.36846875
transcript.pyannote[418].end 1837.39784375
transcript.pyannote[419].speaker SPEAKER_01
transcript.pyannote[419].start 1837.39784375
transcript.pyannote[419].end 1837.43159375
transcript.pyannote[420].speaker SPEAKER_03
transcript.pyannote[420].start 1838.83221875
transcript.pyannote[420].end 1839.03471875
transcript.pyannote[421].speaker SPEAKER_01
transcript.pyannote[421].start 1839.03471875
transcript.pyannote[421].end 1839.67596875
transcript.pyannote[422].speaker SPEAKER_03
transcript.pyannote[422].start 1840.55346875
transcript.pyannote[422].end 1840.57034375
transcript.pyannote[423].speaker SPEAKER_01
transcript.pyannote[423].start 1840.57034375
transcript.pyannote[423].end 1845.22784375
transcript.pyannote[424].speaker SPEAKER_01
transcript.pyannote[424].start 1845.93659375
transcript.pyannote[424].end 1850.96534375
transcript.whisperx[0].start 16.513
transcript.whisperx[0].end 20.369
transcript.whisperx[0].text 好 謝謝韓院長 有請卓院長 謝謝麻煩再請卓院長備選
transcript.whisperx[1].start 31.206
transcript.whisperx[1].end 50.26
transcript.whisperx[1].text 好 院長好 院長113年啊我們有一個兒童發展篩檢的一個計畫編列的2.33億去年7月推出的這個計畫請問院長目前辦理的成效 經費 核銷截至目前是多少 您有掌握嗎請部長來說明一下不好意思 時間好 謝謝 謝謝 感恩 感恩部長辛苦了齁
transcript.whisperx[2].start 62.075
transcript.whisperx[2].end 74.372
transcript.whisperx[2].text 有掌握相關的核銷嗎?還有成效?我是說我們因為這個剛推出嘛那大概現在有1186家的醫院跟診所這個我都知道來我們來看一下數據
transcript.whisperx[3].start 75.816
transcript.whisperx[3].end 82.862
transcript.whisperx[3].text 院長預計服務4.5萬人這個是113年所提出的新聞稿那114年講說已經超過26萬人次接受兒童發展篩檢服務部長這兩個數字差很多哪一個是對的113年說4.5萬人可以享受114年變成26萬人次怎麼樣計算的
transcript.whisperx[4].start 103.258
transcript.whisperx[4].end 119.425
transcript.whisperx[4].text 根據統計現在已經超過25萬人次因為一個小孩可以有接受重複嘛對不對到底是重複計算還是數據有整合其他的計畫這部分我要打上一個問號但是我要先講院長
transcript.whisperx[5].start 121.347
transcript.whisperx[5].end 142.428
transcript.whisperx[5].text 這個兒童發展篩檢的一個計畫政策是利益良善我們支持但是4.6萬人跟現在說26萬人次的享受到底是在講兒童發展篩檢還是兒童預防保健服務合併計算我覺得這個部分希望衛福部講清楚說明白部長您知道嗎
transcript.whisperx[6].start 143.509
transcript.whisperx[6].end 171.399
transcript.whisperx[6].text 是合併計算嗎?我現在的資料是有一千九十家在一千家左右提供是哪一個服務啦?二十五萬人次兒童接受兒童發展篩檢我要跟你講的是還是有很多家長覺得兒童發展篩檢的計畫可以再加大力度宣導這部分我們一起來努力但是怎麼樣來宣導加強呢這個部分我希望家長端的部分有給予我們意見我希望你能夠接納
transcript.whisperx[7].start 172.199
transcript.whisperx[7].end 195.085
transcript.whisperx[7].text 那第二個剛剛是家長端再來我要講的是醫院端醫院端目前有什麼問題你有沒有掌握到醫院端醫院端現在大概還有幾十家還沒有正式開始你有沒有去了解他為什麼沒有辦法正式開始你有沒有去關心你是部長啊
transcript.whisperx[8].start 196.443
transcript.whisperx[8].end 213.448
transcript.whisperx[8].text 應該是人力的規劃還有一些缺失吧人力的規劃不足我想院長講出來了但是我要講的是就我所知道兩位醫師有跟我反映也有透過網路在反映我必須要如實的轉達第一位醫師跟我講人力不足第二位醫師他講的是這樣子這個政策
transcript.whisperx[9].start 215.208
transcript.whisperx[9].end 231.127
transcript.whisperx[9].text 本身確實有很多討論的空間在現行有七次預防保健的服務之下還要要求醫學中心再額外提供六次發展篩檢的服務實行上是有難度的部長這個你有掌握到他的一個論點嗎
transcript.whisperx[10].start 233.35
transcript.whisperx[10].end 255.831
transcript.whisperx[10].text 你要怎麼回應這個醫師的意見那個是不一樣的啦 兒童健康照顧這個部分他是要多月多好免 現在重視因為這幾年來大家的反應 家長的反應認為說他的發展還是要早一點發展所以你認同兒童發展篩檢的服務是有必要進行的對不對有必要有必要的嘛
transcript.whisperx[11].start 256.931
transcript.whisperx[11].end 273.938
transcript.whisperx[11].text 但是作為一個民意代表我想不管是家長端跟醫院端所講出來的聲音我必須讓你知道醫院端有醫院端的一個困難包括現在我們說的現在醫護人員的一個相關環境我們要怎麼讓他更好醫療人員的一個缺少你有沒有辦法補足
transcript.whisperx[12].start 274.358
transcript.whisperx[12].end 303.46
transcript.whisperx[12].text 我們所關心的健保點值0.956月下旬你說要把它完成能不能去執行這都是我們持續在關注這都是我們現在想要為這些醫療人員發聲的這個部分我希望你要追蹤啊台大有沒有去執行這個業務我們希望他一定是願意去執行政策但是作為部長你應該去傾聽醫療基層人員他們實行的困難點可以嗎當然可以院長
transcript.whisperx[13].start 304.695
transcript.whisperx[13].end 325.298
transcript.whisperx[13].text 擴大兒童篩檢的服務有兩個目標第一個是希望及早發現遲緩兒童轉介追蹤掌握黃金的療癒時期第二個全國普及但是你知道偏鄉還有非都市地區啊你要免費給他去檢查他都不一定能用為什麼因為不夠普及啊
transcript.whisperx[14].start 326.175
transcript.whisperx[14].end 348.332
transcript.whisperx[14].text 我們現在掌握到的台東東河鄉、北南鄉還有雲林古坑鄉、包中鄉以及林內鄉台中市自己的和平區新社區基隆的七堵區院長沒有人照顧偏鄉非度市區沒有去處理這樣子的兒童發展篩檢的服務現在連衛生所都沒有納入這個計畫院長部長我們要不要處理
transcript.whisperx[15].start 349.176
transcript.whisperx[15].end 363.358
transcript.whisperx[15].text 當然對兒童的發展的遲緩問題應該列為國家很重要的政策尤其在少子化的時代那麼現在我們已經知道不僅在偏鄉在都市裡面的各式醫學中心醫師人數都不夠所以我希望
transcript.whisperx[16].start 364.264
transcript.whisperx[16].end 390.461
transcript.whisperx[16].text 部裡面要去如何培養醫師人士而且現在對現在的所有的醫師要合理的善待在待遇以及各種尊重上面要合理的善待我希望能夠把問題點出來家長端醫療院所端以及現在看到的沒有普及的部分應該要給予照顧給予支持而不是我們編列了這樣子的預算卻沒辦法達到目標我們編列了這樣子的政策卻讓基層難為我要幫基層講話
transcript.whisperx[17].start 393.463
transcript.whisperx[17].end 415.115
transcript.whisperx[17].text 這部分我希望能夠帶到,也希望院長可以一起支持,可以嗎?好,謝謝。好,第二個我想再探討一個問題,現在流感疫情雖然下降,疾管署也預估三月中旬可以脫離高峰期,但是面對冬季流感的高峰,新冠疫苗,我們現在有這樣新冠的一個經驗,對流感未來政府有什麼因應措施,我們有準備什麼?我有幾個問題要就教。
transcript.whisperx[18].start 416.656
transcript.whisperx[18].end 438.102
transcript.whisperx[18].text 快篩試劑屬於醫療器材列管需由醫師以及醫療人員來做一個人員使用新冠疫情的時候未讓民眾能夠在家中就自行篩檢減少前往醫療院所的一個需求同意開放藥局在販售家用型的新冠疫苗試劑
transcript.whisperx[19].start 439.702
transcript.whisperx[19].end 456.259
transcript.whisperx[19].text 有效減少群聚更重要的是家用型對於年長者慢性疾病生活偏遠地區是給予有一個很重要的先期篩檢的一個保護所以我想問作為戰略物資醫療端的藥物快篩試劑安全庫存夠嗎量夠不夠
transcript.whisperx[20].start 459.553
transcript.whisperx[20].end 482.693
transcript.whisperx[20].text 我們希望衛部要流感的快篩試劑對 要把這個準備的存量要長期的來規劃這個我不懂是篩檢或者是藥物的存量都沒有問題篩檢試劑但我現在要講的新冠疫情現在藥局有販售家用型的篩檢試劑新冠篩檢試劑有家用型的但是請問目前家用型的流感快篩試劑有販售嗎有嗎
transcript.whisperx[21].start 487.197
transcript.whisperx[21].end 510.718
transcript.whisperx[21].text 流感應該都是在診所檢查來啦目前家用型的流感快篩試劑是沒有販售我要講重點為了讓流感防治措施能夠更加的靈活我建議將藥師週刊的第2004期刊登的全聯會支持調整防疫政策藥局開放販售流感快篩試劑納入考量
transcript.whisperx[22].start 513.281
transcript.whisperx[22].end 519.68
transcript.whisperx[22].text 請問一下院長您覺得比照新冠開放藥局販售流感型的家用快篩試劑
transcript.whisperx[23].start 520.943
transcript.whisperx[23].end 545.613
transcript.whisperx[23].text 這還是要經過專業的評估這個醫學的專業無法在這裡馬上但是我有提出數據了嘛我有提出這些週刊的一些內容嘛你可以參考嘛但是我要講的是新冠跟流感這兩種都是呼吸道傳染的都有類似的症狀導致第一線的醫護他不易區分他必須要有所謂的我要去用快篩試劑那我想問一下部長有沒有二合一的快篩試劑新冠跟流感
transcript.whisperx[24].start 548.3
transcript.whisperx[24].end 569.853
transcript.whisperx[24].text 有部分在...有嘛,是醫療人員在使用嘛所以我呼籲政府,不論是新冠或者是流感因應未來的可能性,突發性的一個可能有可能大爆發,快篩試劑一定要備足讓醫療人員能夠快速正確的去分類病人我想用藥更正確,快篩試劑的使用也給予醫療人員不足的偏鄉或者是離島地區作為初步篩檢嘛
transcript.whisperx[25].start 571.974
transcript.whisperx[25].end 588.602
transcript.whisperx[25].text 所以販售這個所謂的家用型流感的快篩試劑希望你們評估我們會請專家再來評估再來我想問一下 院長小金庫你有沒有聽過小金庫我所指的是勞動部的小金庫你有沒有聽過
transcript.whisperx[26].start 594.264
transcript.whisperx[26].end 606.693
transcript.whisperx[26].text 我們不准許未來用這樣的名詞來形容他那曾經被這樣子稱呼過您知道原因吧我知道外界媒體就是救安基金嘛但這個是不對的事情就是救安基金不用緊張不會叫你那有聽過衛福部有小金庫嗎我從來沒有聽過從來沒有聽過講出來嚇一跳耶好來
transcript.whisperx[27].start 618.643
transcript.whisperx[27].end 642.418
transcript.whisperx[27].text 依據衛生福利部食品藥物管理署審查費用人員管理要點我們來看一下第二點本要點所稱的審查雇用人員細指本署以及受僱者訂立勞動契約禁用負責從事藥物食品化妝品審查及稽查相關業務人員第四點我們再來看本要點所指的各項作業經費均由本署編列預算之一
transcript.whisperx[28].start 643.358
transcript.whisperx[28].end 655.912
transcript.whisperx[28].text 審查費用僱用人員之職稱 原而應適時的報准署長核定我們來看一下重點要來啦院長食藥署的審查費就是衛福部的小金庫
transcript.whisperx[29].start 657.369
transcript.whisperx[29].end 680.998
transcript.whisperx[29].text 院長 部長說明報告委員 這個需要時的審查費 已經二十年沒有漲了但是整個人力 整個成本我沒有說你漲價的問題啊我們來看一下 是你怎麼去使用這筆錢我們就看這個問題院長你看一下 我二月十一發文三月七號才收到回函啊花了二十四天 你們的行政效率還真好啊
transcript.whisperx[30].start 682.216
transcript.whisperx[30].end 686.097
transcript.whisperx[30].text 根據114年3月7日FDA主計字、地號我們1142300074號函108年到113年各年度的藥物、食品、化妝品審查費之稅入金額及審查僱用人員的經費相關資料顯示
transcript.whisperx[31].start 701.94
transcript.whisperx[31].end 730.434
transcript.whisperx[31].text 我們來看一下這些肉肉等但是我想院長您先稍微了解一下但最重要的是院長你可知道審查費用僱用人員有幾個特點第一所僱人力其中的10%得配置於行政人力外其餘40%規定應禁用於辦理藥品醫療器材食品化妝品等審查還有茶廠等相關業務的專業人員喔其他的不相關業務是不能使用喔
transcript.whisperx[32].start 731.659
transcript.whisperx[32].end 741.702
transcript.whisperx[32].text 聽起來合理啊我們再看自110年啊每年所使用的這個用人經費稅出預算50%編列107年到109年為45%編列110年變50%所經費屬行政院核定的專款專用收支並列
transcript.whisperx[33].start 756.226
transcript.whisperx[33].end 781.743
transcript.whisperx[33].text 而且這筆經費的多寡是依廠商繳交的規費財源而定那接下來我想詢問一下幾個問題院長那你知道食藥署怎麼用這筆錢嗎你有掌握嗎 院長如果收取規費一定有收取的標準使用也一定有法定的程序 一定有標準剛剛我講了辦理藥品 食品 化妝品 審查 茶廠相關業務合理吧你的財源是這樣子來的你應該用在這裡業務應該合理吧可以認同嗎
transcript.whisperx[34].start 786.686
transcript.whisperx[34].end 787.246
transcript.whisperx[34].text 請問司機跟審查業務有什麼關係這誰的司機
transcript.whisperx[35].start 816.482
transcript.whisperx[35].end 838.092
transcript.whisperx[35].text 部長,這是不是審查員的司機?報告委員,我想我們...任何一個部門一定都是依規定來辦理你現在就被我抓到了嘛,你用這一筆財源,你在聘司機嘛告訴我,審查員有沒有聘司機?你有沒有專聘司機給審查員去查查?
transcript.whisperx[36].start 839.6
transcript.whisperx[36].end 860.579
transcript.whisperx[36].text 還是這是你部長的司機如果說他是茶廠或者是審查人員出門有沒有司機啊 你回答我啦那可能需要啊有需要 確定喔 從今天開始審查員所有人都配司機喔過往每一個審查員出去茶廠都一定有司機 確定嗎
transcript.whisperx[37].start 864.061
transcript.whisperx[37].end 882.318
transcript.whisperx[37].text 應該不是專屬的如果是有的話我們查一下如果一個單位裡面的公務車是大家共同來需要的時候使用的那這個司機應該在業務上他是可以含括在裡面的所以現在基本上審查人員如果沒司機就找部長因為你說要我們再來看協助執行新興媒體的宣導計畫相關業務請問一下這是1450嗎
transcript.whisperx[38].start 888.291
transcript.whisperx[38].end 911.342
transcript.whisperx[38].text 你所編列的這個協助新興媒體宣導計畫請問跟剛剛所提的相關業務有什麼關係因為現在的一個健康的知識或者是不管我們要做任何的一個健康的一個不管健康知識的傳導你講話越來越心虛來 第三個辦理立法院質詢議題擬達會診審查業務跟這什麼關係
transcript.whisperx[39].start 917.245
transcript.whisperx[39].end 946.313
transcript.whisperx[39].text 有時候委員會要求來做說明 他們必須及時趕到我想這三點喔 司機 新興媒體還有立法院 審查 擬達 會診作為現在我們看到的所謂的審查相關的藥廠 還是食品 化妝品相距甚遠我覺得在這個部分上 你運用這一筆款項到底合不合理部長 你覺得呢
transcript.whisperx[40].start 948.035
transcript.whisperx[40].end 972.463
transcript.whisperx[40].text 我想所有的華為一定是跟這個規定相關我們一定會確實去要求這樣子如果你現在這樣子跟我回答你想必這些業務應該是非常的有很多數使用所以呢你會編列這麼多徵才人事相關的資料這厚厚一點這厚一點是什麼
transcript.whisperx[41].start 973.695
transcript.whisperx[41].end 993.135
transcript.whisperx[41].text 這一箱東西是衛生福利部113年12月12日的資料根據食藥署108年到113年10月31公告歷年的審查費用人員資格聘查相關的偵查結果我要告訴你啊這一欄當中除了整個食藥署的政風處以外
transcript.whisperx[42].start 994.176
transcript.whisperx[42].end 1021.291
transcript.whisperx[42].text 你幾乎整個食藥署雨露均沾每一個人都使用這一筆經費在聘請這些所謂的司機新興媒體以及剛剛所提到的立法院你答詢會診相關業務這些偵查資料你為什麼沒有放在網路上供國人繼續閱覽你為什麼撤下來來我問你這些職缺資訊歷年來的什麼時候掛回去一天兩天三天就這麼多
transcript.whisperx[43].start 1022.908
transcript.whisperx[43].end 1025.431
transcript.whisperx[43].text 這些全部都是人民的血汗錢啊部長
transcript.whisperx[44].start 1028.41
transcript.whisperx[44].end 1056.474
transcript.whisperx[44].text 好 依規定需要掛載網路的我們一定掛載網路如果需要再補我們一定是把它完成我想每個單位都有類似這樣子的一個狀況我要再講的是 院長不是負責藥物食品化妝品審查相關稽查人員有188人188人啊 尚有部分錄取者學歷並未符合當初公告的
transcript.whisperx[45].start 1058.187
transcript.whisperx[45].end 1072.08
transcript.whisperx[45].text 還能予以任用這就是在第一會期我講的你們就是公告了 結果呢來的人不適合不符合資格 繼續任用再來 那個我們已經處理了很多 不只啦 不只啦部分 我現在沒有要針對
transcript.whisperx[46].start 1073.181
transcript.whisperx[46].end 1097.13
transcript.whisperx[46].text 求職者我不針對求職者我針對的是已經知道這些不符合我們的相關徵才以及不能運用這筆錢你還故意用這筆錢我要再講的是部分負責從事藥物食品化妝品審查稽查人員只有部分不是全職有112年食藥署113年11月檢送相關的雇用人員名冊中359人
transcript.whisperx[47].start 1099.491
transcript.whisperx[47].end 1124.899
transcript.whisperx[47].text 院長你知道嗎不是跟部分有從事這樣子的業務有198人佔了5乘5的比例5乘5就以113年審查費用僱用經費3.3億多元其中不是負責從事這樣子的業務的人佔了3成將近浪費了人民血汗錢1億多院長這怎麼交代
transcript.whisperx[48].start 1126.352
transcript.whisperx[48].end 1139.986
transcript.whisperx[48].text 委員 我要請教 您說了很多的數字但是具體的內容到底是什麼如果你有進一步 請你指教否則我會請會務 回去瞭解這麼多的人 或你說的三層五層那到底他具體做了哪一些不是在原來規範當中的行為跟業務
transcript.whisperx[49].start 1142.328
transcript.whisperx[49].end 1158.42
transcript.whisperx[49].text 謝謝院長那您需要更掌握精確的數字才可以去評斷但我要講的是剛剛這些數據不是我我就拿出來給你看都是我們所知出來的我們幫你彙整出來的我們幫你了解出來的我想院長根據行政院109年的公文他說所顧人力啊
transcript.whisperx[50].start 1158.82
transcript.whisperx[50].end 1183.178
transcript.whisperx[50].text 自110年起每個用人的經費稅數預算是50%編列其途中的一個10%編制10%的行政能力以外其餘人禁用辦理藥品醫療登記以及器材食品化妝品相關的勘驗審查還有茶廠相關業務那請問一下邱部長有照這樣做嗎
transcript.whisperx[51].start 1184.312
transcript.whisperx[51].end 1211.145
transcript.whisperx[51].text 我們願意整個檢討裡面人力的分佈的狀況我現在看就是有問題我才提出嘛109年有這樣子的公文我想這個部分目前有鐵一般的證據我都會一併交出去本席所提出的政府機關濫編預算胡亂使用的問題希望行政立法共同解決我想這政府預算是人民的血和錢
transcript.whisperx[52].start 1212.205
transcript.whisperx[52].end 1241.008
transcript.whisperx[52].text 如果現在你說不知道那我想我到時候會把這些資料全部交給審計由審計來查嘛那由審計來查以後我希望本席將今日函請審計不查核同時我也會複資通知我們各藥協會以及醫療器材的全聯會我想其次依照目前藥品醫療器材的登記申請查驗的登記案查驗的流程大致我們可以看到A 藥品
transcript.whisperx[53].start 1241.837
transcript.whisperx[53].end 1269.094
transcript.whisperx[53].text 我們看一下B 醫療器材C 國外品質的系統審查院長現行大部分的查驗登記幾乎完全以計畫式的委辦CDE以及相關的團體來做審查實要屬僅做複合式的審查是複合式啊其業務量可屬署內這些既有的審查人員大概只要現在的三分之一的量就可以了
transcript.whisperx[54].start 1269.741
transcript.whisperx[54].end 1298.004
transcript.whisperx[54].text 那為何這些審查費用聘用這麼多非從事還有部分從事審查相關業務的人員這就是我要問就是服邊了嘛服邊了你去濫用嘛所以一隻牛剝兩層皮對得起全國人民嗎這就是勞動部的救安基金翻版就在衛福部嘛所以這就是衛福部的一個小金庫政府濫用預算的實際阻礙我們食藥署的業務非常完重我們為了守住人民的一個藥品 醫材的
transcript.whisperx[55].start 1298.764
transcript.whisperx[55].end 1320.802
transcript.whisperx[55].text 的一個安全部長你講的話我必須打一個大大的問號還記得我們第一次在質詢的時候你告訴我人沒有問題到現在你跟我講已經處理掉了就代表著我講的是對的那我現在提出了提搬的證據我有這麼厚厚一疊的資料我希望你回去好好看清楚本期在此強調我不是針對錄取者我也不是針對所有的應徵的錄取者
transcript.whisperx[56].start 1325.046
transcript.whisperx[56].end 1354.104
transcript.whisperx[56].text 而是針對在開立這個條件這個單位知法而犯法濫增審查費不按編預算福報人士 院長這一切的資料我們就等審計部查核以後我們再來談在陽光下跟全民來交代但是我要講的是本席建議待審計部如果查證以後錢的部分對於多年來如果不當審查預算的一個經費逐年歸還你不當實用啊
transcript.whisperx[57].start 1354.804
transcript.whisperx[57].end 1371.461
transcript.whisperx[57].text 可以嗎委員您剛剛所舉的很多的規定包括人力的這個規劃跟你產生的結論我說中間有很大的落差有沒有落差你也要看數據嘛我們交給審計部去調查沒關係到底這個不當的使用你要具體的說出來是哪一些人不當的使用那我們絕對願意來查
transcript.whisperx[58].start 1372.702
transcript.whisperx[58].end 1375.626
transcript.whisperx[58].text 我剛剛已經講了 司機是不是所有審查員的司機到底是部長的司機 還是審查員的司機新興媒體到底跟茶廠還有相關的業務有沒有關係你剛剛的地法院 現在你說是有關於新興藥物或者是所謂的藥品食品的一些網路媒體宣傳沒關係嘛 我們審計部來查嘛
transcript.whisperx[59].start 1393.166
transcript.whisperx[59].end 1410.806
transcript.whisperx[59].text 所以我說最後的結論為何不就可以把它查得很清楚了好 為何不可以自己先來把它查清楚這就是我們看到的一個數據但我要講的是 院長如果現在我們看到這些問題我們就是面對問題解決問題但是不能跳痛啊
transcript.whisperx[60].start 1411.994
transcript.whisperx[60].end 1432.435
transcript.whisperx[60].text 有一個規定然後講一個結論中間是邏輯不同這樣我們也沒有辦法我剛剛講的是有一個規定但我提出了相關的數據我也去掌握了一些名冊而名冊裡面有188人是不是從事相關的業務那112人是部分這個我都有提出而且是由你所提出的一個名冊我加以回應的
transcript.whisperx[61].start 1436.02
transcript.whisperx[61].end 1455.171
transcript.whisperx[61].text 也不能說不同的部門就沒有不同我們繼續講沒關係我們濫增審查費服用人士我現在是這樣子定調沒關係你們兩位有意見我可以尊重但是人多真的好辦事嗎我們先來看一下在精進藥品品質提升審查速率有提升嗎
transcript.whisperx[62].start 1456.38
transcript.whisperx[62].end 1474.575
transcript.whisperx[62].text 院長部長有提升嗎現在人很多有提升嗎答案並沒有因為根據我手上掌握的資料我們現在還是在台灣有發生下列這些實況第一中國製的醫療器材藉由國外席產地透過不實的標示輸入國內審查
transcript.whisperx[63].start 1477.077
transcript.whisperx[63].end 1480.021
transcript.whisperx[63].text 沒有掌握 還是有這樣子的現況一直在發生是有未請的生產科合法資訊核證輸入國內販售還是有這樣的狀況一直在產生喔
transcript.whisperx[64].start 1491.889
transcript.whisperx[64].end 1509.741
transcript.whisperx[64].text 我現在是說我們人力有超過那目前審查費也編了也收了但是我們國內一直有層出不窮這幾個問題第三設有核准不具有製造該輸入的醫療器材之國內外的製造廠廠QSD等豎起檢驗試劑的違法執行室
transcript.whisperx[65].start 1514.69
transcript.whisperx[65].end 1531.009
transcript.whisperx[65].text 我想針對食藥署核准6000多家QST的廠商審閱目前我只查了約五分之一就已經找到十幾家有問題的廠商這難道不嚴重嗎審查的品質有變好嗎謝謝委員請你把那十幾家的資料給我們
transcript.whisperx[66].start 1531.77
transcript.whisperx[66].end 1553.301
transcript.whisperx[66].text 我也會要求衛福部就這三項真的有這三項我們疏忽了沒有發現了而讓他在國內造成任何的醫療行為上的偏失絕對不允許我們會查也請你把那十幾項我希望把事情重視一起維護國人的健康這部分可以嗎好 所以拜託委員把那十幾項給我們我們會查好 謝謝我們下一個議題
transcript.whisperx[67].start 1561.375
transcript.whisperx[67].end 1571.328
transcript.whisperx[67].text 院長我想跟你請教一個問題小朋友大概要打幾個疫苗0到2歲您大概知道嗎部長可以回答0到2歲我想那個從
transcript.whisperx[68].start 1579.278
transcript.whisperx[68].end 1604.933
transcript.whisperx[68].text 好沒關係我無意刁難我無意刁難沒關係因為太多了我能夠體諒公費疫苗卡介苗日本腦炎水痘B型肝炎五合一麻疹德國麻疹還有篩腺炎混合疫苗還有破傷風還有相關小額麻痺還有13架的結核肺炎鏈球菌的疫苗院長這是公費這是公費但是我要唸的
transcript.whisperx[69].start 1606.158
transcript.whisperx[69].end 1634.671
transcript.whisperx[69].text 高端腸病毒71型自費哈多辛621自費日本腦炎活性減毒疫苗自費水痘疫苗自費麻疹德國麻疹篩腺炎混合疫苗也是自費破傷風減毒白喉非細胞型百日咳三合一疫苗也是自費B型肝炎A型肝炎B型腦膜以及肺炎戀球訓有23架的有13架的15架的以及輪狀病毒口服疫苗三劑型的
transcript.whisperx[70].start 1635.95
transcript.whisperx[70].end 1653.886
transcript.whisperx[70].text 零零總總加起來兩三萬院長我講這個議題很簡單0到2歲孩子有許多的公費疫苗是現在政府的政策給他0元可以施打但是有更多自費型的疫苗需要政府來幫忙協助
transcript.whisperx[71].start 1656.109
transcript.whisperx[71].end 1673.786
transcript.whisperx[71].text 可以認同多編列我們相關的一些政策來給予這些少子化的家庭幫助讓他們的疫苗比如說像長病毒免費施打這個部分您可以認同嗎好 部長答覆公費疫苗我相信一定是全面廣泛而且是必要的急迫的那智慧的疫苗如果它將來也因為
transcript.whisperx[72].start 1675.347
transcript.whisperx[72].end 1704.203
transcript.whisperx[72].text 比較多的案例或是健康之所需要在政府財政衡量底下我認為應該優先來考量優先來考量 院長你這樣說那我請問一下部長您認為哪些是優先報告委員我們這個都按照疾管署的ACIP一個很可以全國的防疫專家組成的一個委員會有沒有在瞭解這個狀況一個一個去審查他有一個從公衛的角度目前有沒有審查哪一個部分可以優先可能提供所謂的自費變成公費
transcript.whisperx[73].start 1705.897
transcript.whisperx[73].end 1726.04
transcript.whisperx[73].text 腸病毒可以嗎腸病毒因為他我們在ACIP的裡面論理他的流行的型有時候跟疫苗的型是不一樣的所以他的效果是不好沒有辦法去抓住所以他們ACIP就認為說先還好你腸病毒還你其他的有沒有機會這個部分哪時候給我資料你們哪時候審查出來
transcript.whisperx[74].start 1727.281
transcript.whisperx[74].end 1749.69
transcript.whisperx[74].text 哪一個疫苗自費型的疫苗我剛剛講了這麼多有沒有機會其他的不是所謂的腸病毒以外的有沒有機會納入公費哪時候公布我剛剛念了這麼多那個要一個一個進去加強查驗嘛剛剛院長不是說了如果可以的話優先嘛照顧孩子少子化
transcript.whisperx[75].start 1751.178
transcript.whisperx[75].end 1768.811
transcript.whisperx[75].text 則無旁貸吧但是也要考慮他的效率當然我尊重所以尊重專業這部分我發聲你處理嘛再來我要講的是喔院長我要講喔我們來舉一個例子您聽聽看假設小邱一家三口小邱的薪資所得每月健保費是一千五
transcript.whisperx[76].start 1769.531
transcript.whisperx[76].end 1794.402
transcript.whisperx[76].text 小秋的老婆現在每月健保費是800元那小孩子是跟著媽媽投保嗎就是也是800 1500 800 800但是一家三口合計現在是3100後來如果媽媽她選擇了加入離開職場做全職媽媽做全職媽媽這個媽媽就要跟著爸爸一起投保健保所以她剛剛的800就變成1500
transcript.whisperx[77].start 1796.923
transcript.whisperx[77].end 1815.743
transcript.whisperx[77].text 那孩子是不是也是跟著所謂的家長也就是爸爸一起投保所以一千五直接變成成與三我想問一下院長剩時間不多對於要做全職的媽媽或全職的爸爸他離開職場結果他的健保費增加
transcript.whisperx[78].start 1816.843
transcript.whisperx[78].end 1816.863
transcript.whisperx[78].text 好 謝謝
transcript.whisperx[79].start 1840.612
transcript.whisperx[79].end 1843.054
transcript.whisperx[79].text 謝謝羅廷偉委員的質詢謝謝左院長各部會首長的備詢謝謝報言會現在我們休息我們4點15分繼續開會好謝謝