iVOD / 159166

Field Value
IVOD_ID 159166
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159166
日期 2025-03-13
會議資料.會議代碼 委員會-11-3-23-2
會議資料.會議代碼:str 第11屆第3會期交通委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 23
會議資料.委員會代碼:str[0] 交通委員會
會議資料.標題 第11屆第3會期交通委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-03-13T12:00:36+08:00
結束時間 2025-03-13T12:09:50+08:00
影片長度 00:09:14
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770f7dc81507af1c1f9cb0efe61acdb48b4e86f8ffab8834d983062fd125beb3cbaa5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 許智傑
委員發言時間 12:00:36 - 12:09:50
會議時間 2025-03-13T09:00:00+08:00
會議名稱 立法院第11屆第3會期交通委員會第2次全體委員會議(事由:邀請數位發展部部長黃彥男列席報告業務概況,並備質詢。 【如本院改為加開院會,則本次會議取消,不另行通知。】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 2.66346875
transcript.pyannote[0].end 3.03471875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 3.03471875
transcript.pyannote[1].end 3.13596875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 3.13596875
transcript.pyannote[2].end 3.23721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 3.82784375
transcript.pyannote[3].end 4.84034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 5.75159375
transcript.pyannote[4].end 11.80971875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 12.58596875
transcript.pyannote[5].end 13.39596875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 14.13846875
transcript.pyannote[6].end 25.66409375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 26.10284375
transcript.pyannote[7].end 31.92471875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 32.22846875
transcript.pyannote[8].end 37.32471875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 37.93221875
transcript.pyannote[9].end 43.04534375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 43.95659375
transcript.pyannote[10].end 45.05346875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 46.47096875
transcript.pyannote[11].end 50.50409375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 51.26346875
transcript.pyannote[12].end 53.10284375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 53.82846875
transcript.pyannote[13].end 58.90784375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 59.63346875
transcript.pyannote[14].end 60.79784375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 61.50659375
transcript.pyannote[15].end 64.18971875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 64.88159375
transcript.pyannote[16].end 67.17659375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 67.58159375
transcript.pyannote[17].end 68.25659375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 68.76284375
transcript.pyannote[18].end 71.74971875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 72.61034375
transcript.pyannote[19].end 75.19221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 75.05721875
transcript.pyannote[20].end 88.55721875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 88.64159375
transcript.pyannote[21].end 94.34534375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 94.42971875
transcript.pyannote[22].end 102.04034375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 102.36096875
transcript.pyannote[23].end 102.81659375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 103.08659375
transcript.pyannote[24].end 107.65971875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 107.94659375
transcript.pyannote[25].end 108.79034375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 109.39784375
transcript.pyannote[26].end 110.12346875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 110.12346875
transcript.pyannote[27].end 110.19096875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 110.89971875
transcript.pyannote[28].end 116.33346875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 116.58659375
transcript.pyannote[29].end 119.72534375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 120.70409375
transcript.pyannote[30].end 122.07096875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 122.86409375
transcript.pyannote[31].end 126.96471875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 127.48784375
transcript.pyannote[32].end 130.84596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 131.70659375
transcript.pyannote[33].end 134.77784375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 136.22909375
transcript.pyannote[34].end 138.47346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 140.14409375
transcript.pyannote[35].end 142.79346875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 143.85659375
transcript.pyannote[36].end 146.42159375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 146.84346875
transcript.pyannote[37].end 148.24409375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 149.12159375
transcript.pyannote[38].end 151.43346875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 152.34471875
transcript.pyannote[39].end 155.41596875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 155.85471875
transcript.pyannote[40].end 156.98534375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 157.67721875
transcript.pyannote[41].end 161.30534375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 161.57534375
transcript.pyannote[42].end 163.53284375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 163.90409375
transcript.pyannote[43].end 164.66346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 165.35534375
transcript.pyannote[44].end 167.56596875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 168.29159375
transcript.pyannote[45].end 175.66596875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 176.59409375
transcript.pyannote[46].end 177.79221875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 178.06221875
transcript.pyannote[47].end 179.83409375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 181.13346875
transcript.pyannote[48].end 186.21284375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 186.76971875
transcript.pyannote[49].end 192.45659375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 192.76034375
transcript.pyannote[50].end 201.01221875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 201.11346875
transcript.pyannote[51].end 209.39909375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 209.92221875
transcript.pyannote[52].end 213.01034375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 213.14534375
transcript.pyannote[53].end 215.28846875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 215.81159375
transcript.pyannote[54].end 225.39659375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 225.53159375
transcript.pyannote[55].end 228.24846875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 228.94034375
transcript.pyannote[56].end 229.76721875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 230.17221875
transcript.pyannote[57].end 233.17596875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 233.44596875
transcript.pyannote[58].end 238.82909375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 239.53784375
transcript.pyannote[59].end 250.84409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 251.36721875
transcript.pyannote[60].end 252.70034375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 253.54409375
transcript.pyannote[61].end 267.28034375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 267.63471875
transcript.pyannote[62].end 281.21909375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 281.42159375
transcript.pyannote[63].end 283.83471875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 283.86846875
transcript.pyannote[64].end 289.90971875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 290.43284375
transcript.pyannote[65].end 295.52909375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 295.57971875
transcript.pyannote[66].end 301.14846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 301.14846875
transcript.pyannote[67].end 301.16534375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 301.51971875
transcript.pyannote[68].end 305.67096875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 306.22784375
transcript.pyannote[69].end 312.40409375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 312.53909375
transcript.pyannote[70].end 326.22471875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 327.08534375
transcript.pyannote[71].end 333.48096875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 333.64971875
transcript.pyannote[72].end 336.78846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 337.64909375
transcript.pyannote[73].end 345.00659375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 345.49596875
transcript.pyannote[74].end 358.35471875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 358.77659375
transcript.pyannote[75].end 362.60721875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 363.01221875
transcript.pyannote[76].end 365.79659375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 366.25221875
transcript.pyannote[77].end 367.28159375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 368.10846875
transcript.pyannote[78].end 374.04846875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 371.14596875
transcript.pyannote[79].end 371.19659375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 374.25096875
transcript.pyannote[80].end 376.27596875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 376.66409375
transcript.pyannote[81].end 377.17034375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 377.45721875
transcript.pyannote[82].end 386.63721875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 386.75534375
transcript.pyannote[83].end 419.34096875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 419.67846875
transcript.pyannote[84].end 424.01534375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 424.26846875
transcript.pyannote[85].end 425.98971875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 425.39909375
transcript.pyannote[86].end 428.95971875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 428.68971875
transcript.pyannote[87].end 435.03471875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 435.03471875
transcript.pyannote[88].end 438.81471875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 435.13596875
transcript.pyannote[89].end 435.35534375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 439.08471875
transcript.pyannote[90].end 439.11846875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 439.11846875
transcript.pyannote[91].end 440.72159375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 439.96221875
transcript.pyannote[92].end 450.77909375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 442.39221875
transcript.pyannote[93].end 445.59846875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 446.13846875
transcript.pyannote[94].end 446.89784375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 450.37409375
transcript.pyannote[95].end 462.22034375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 461.42721875
transcript.pyannote[96].end 466.92846875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 467.18159375
transcript.pyannote[97].end 469.62846875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 470.18534375
transcript.pyannote[98].end 486.53721875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 486.55409375
transcript.pyannote[99].end 495.56534375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 494.40096875
transcript.pyannote[100].end 495.09284375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 496.13909375
transcript.pyannote[101].end 508.15409375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 507.34409375
transcript.pyannote[102].end 510.29721875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 511.07346875
transcript.pyannote[103].end 520.20284375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 519.83159375
transcript.pyannote[104].end 521.87346875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 521.87346875
transcript.pyannote[105].end 525.67034375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 525.85596875
transcript.pyannote[106].end 526.14284375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 526.14284375
transcript.pyannote[107].end 528.35346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 528.18471875
transcript.pyannote[108].end 530.58096875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 529.66971875
transcript.pyannote[109].end 532.74096875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 532.16721875
transcript.pyannote[110].end 532.35284375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 533.36534375
transcript.pyannote[111].end 542.51159375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 538.02284375
transcript.pyannote[112].end 538.41096875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 538.57971875
transcript.pyannote[113].end 539.64284375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 540.43596875
transcript.pyannote[114].end 541.07721875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 543.33846875
transcript.pyannote[115].end 551.21909375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 551.21909375
transcript.pyannote[116].end 551.42159375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 551.42159375
transcript.pyannote[117].end 552.97409375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 552.77159375
transcript.pyannote[118].end 552.83909375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 552.97409375
transcript.pyannote[119].end 553.71659375
transcript.whisperx[0].start 5.796
transcript.whisperx[0].end 11.105
transcript.whisperx[0].text 我剛一開始就提到其實我對這一次的預算其實是很有意見
transcript.whisperx[1].start 14.389
transcript.whisperx[1].end 42.769
transcript.whisperx[1].text 預算數86被刪了35.82動了17.25所以剛剛林軍縣委員也有提到就是說巧婦難為無米之炊啦錢少很多要做很多事事實上是很辛苦那當然就是說我們也盡力而為啦那我們也希望說後續我會再多做一些趕快提一些專案報告希望趕快解凍那能做的就盡量做
transcript.whisperx[2].start 44.088
transcript.whisperx[2].end 71.195
transcript.whisperx[2].text 那當然就是說打詐跟數位任性其實這個都是非常重要的東西那包括AI基本法現在就是本來在我們的交通委員會的速發部那現在就是程序委員會把它調到那個教委會的國發會坦白講這個我個人是不贊成
transcript.whisperx[3].start 72.639
transcript.whisperx[3].end 97.126
transcript.whisperx[3].text 那我想問一下部長的意見怎麼樣我們這樣子就是所謂基本法其實並沒有所謂主管機關因為都是以政府來當作是主持所以原則上行政院有在上次開會有談一個決議就是說雖然沒有主管機關但是以後AI的基本法的推動跟解釋單位是速發部那我們承接這樣的一個工作我們已經開始在進行
transcript.whisperx[4].start 98.146
transcript.whisperx[4].end 126.701
transcript.whisperx[4].text 所以我們當然就是說因為行政院有指示所以我們會去再推動AI基本法的推動跟剛剛講就是需要去溝通協調這個我們書畫部會進行因為你看AI基本法剛剛那個部長有提到其實將來有很多的規範到底創新好還是規範要到什麼程度我聽他們那個將來整個世界上又會有一個protocol去訂定嘛
transcript.whisperx[5].start 127.54
transcript.whisperx[5].end 150.946
transcript.whisperx[5].text 我是聽人家這樣說 醫療AI有頭的頭比較好的不能有頭有手有頭有手的頭比較不太好這個其實概念很簡單 但是也有一些不孝分子可能會去偷做 偷得又有手有腳的
transcript.whisperx[6].start 152.483
transcript.whisperx[6].end 179.429
transcript.whisperx[6].text 那基本上我們訂這個規範這個應該是最後這個部分應該也會訂下去啦類似這樣子的啦就是說以中型防範未來那個人類被機器人取代那機器人會攻擊人類這些相對的都會在整個世界的公約上去訂定當然就是說我們可以看OECD
transcript.whisperx[7].start 181.455
transcript.whisperx[7].end 208.837
transcript.whisperx[7].text 經濟合作發展組織它有一些人工智慧的建議所以全世界各國也都針對人工智慧訂一些法規比如說日本的人工智慧社會原則美國、加拿大、歐盟等等人工智慧法所以我也認為說我們台灣要儘快訂這個AI基本法這個是一個基本的大的原則
transcript.whisperx[8].start 209.958
transcript.whisperx[8].end 227.851
transcript.whisperx[8].text 那當然AI基本法也不用訂很細啦我知道有一些不同的委員或不同的黨派那訂定的AI基本法規範的很細那我個人是認為也沒有那個必要啦那當然就是說我們希望說的就是
transcript.whisperx[9].start 229.045
transcript.whisperx[9].end 252.629
transcript.whisperx[9].text 速發部就AI的所有的部分那包括這些基本的法則包括將來應用包括將來執行我想速發部應該都是最直接的啦包括國發會可能會有一些預算編列就AI的應用的部分軟體的部分也會給速發部來用嘛
transcript.whisperx[10].start 253.775
transcript.whisperx[10].end 279.898
transcript.whisperx[10].text 所以大原則我是認為說是不是部長應該把這個AI基本法充分的表達你的意見就是說應該回到我們的訴法部來才是最專業最適合的對 包括委員就是說基本法這是很多原則性的宣示那後面要立很多作用法跟執法這個目前下面很多都是我們訴法部要去做像AI的風險分類或分級
transcript.whisperx[11].start 281.879
transcript.whisperx[11].end 304.754
transcript.whisperx[11].text 一些資料的管理等等但都會在我們這裡所以不管那個最上層的基本法是誰在推動但是在後面很多的資法跟作用都會回到促發部在制定所以這個工作上促發部還是負責最主要的工作我是覺得剛剛部長提到盡量去爭取
transcript.whisperx[12].start 306.397
transcript.whisperx[12].end 325.811
transcript.whisperx[12].text 那另外就是說我們這個基本上塑化部所負責的業務將來AI的應用真的很廣泛包括智慧醫療包括無人機包括自駕車簡單的講就是AI for all所有的部分都有可能會用到AI那今天
transcript.whisperx[13].start 327.148
transcript.whisperx[13].end 336.451
transcript.whisperx[13].text 就像我們大學在寫程式的時候我們那個實在是4chan了啦基本上我們要有一個電腦中心讓我們去寫程式
transcript.whisperx[14].start 337.828
transcript.whisperx[14].end 365.547
transcript.whisperx[14].text 那我們現在就是說所有的AI的應用有一些小中小企業他可能沒有足夠的算力中心他可能沒有足夠的硬體設備你要叫他自己寫是有點困難的所以就牽涉到我們的AI的算力池這個部分或者是說我們的韌性這個部分那目前整個國家應該也有規劃一個大的方向
transcript.whisperx[15].start 368.168
transcript.whisperx[15].end 386.396
transcript.whisperx[15].text 大企業自己去做那是有能力啦中小企業沒有能力去做這個部分書發部準備什麼樣的能力然後讓其他的中小企業要做AI應用的都可以來國家幫你處理這個基本的硬體的裝置
transcript.whisperx[16].start 387.276
transcript.whisperx[16].end 401.35
transcript.whisperx[16].text 我們就是在去年就成立了一個算力池大概有40片的GPU就讓民眾可以在中小企業能夠申請免費使用在這裡面我們也產生了這個
transcript.whisperx[17].start 403.312
transcript.whisperx[17].end 424.638
transcript.whisperx[17].text 大概幾十個這樣一個AI的80個AI的應用嘛那本來今年是打算擴充到再加買個70個GPU然後擴大到就至少300個300個這個公司本來打算本來是打算這樣子但是因為經費關係我們就是要維持去年的那個規模
transcript.whisperx[18].start 425.958
transcript.whisperx[18].end 443.709
transcript.whisperx[18].text 經費是被刪掉的你們有做這個經費被刪掉嗎這一塊就被刪掉了所以這一塊就是沒辦法再去買因為GPU是蠻昂貴的所以這個要維護我想我們必須嚴正的抗議跟大力的宣導這個是要提供全國所有的中小企業有機會做AI應用的錢
transcript.whisperx[19].start 446.511
transcript.whisperx[19].end 468.913
transcript.whisperx[19].text 所要做的設備那現在是被刪掉了你們沒辦法再擴充了沒辦法再買所以現在就是用原來的40片去提供服務就是服務的加速就有限了所以這個就想說在這個規模之下所以這個算一詞這個其實我真的是非常嚴重的抗議那最後這個那個韌性的海南站現在狀況如何
transcript.whisperx[20].start 470.194
transcript.whisperx[20].end 494.171
transcript.whisperx[20].text 海嵐站目前就是我們就是國內就是有10有4條海嵐就是幾個海嵐站然後國際有14條海嵐那海嵐站的目前我們還在擴建幾個海嵐線那海嵐站當然就是也可以再加第一個我們有經費來補助這個電信公司在海嵐站的這些建設跟維運現在有規劃嗎
transcript.whisperx[21].start 496.713
transcript.whisperx[21].end 510.074
transcript.whisperx[21].text 就是目前海嵐站是已經有幾個地方嘛那委員也知道我們事實上可以再擴充幾個海嵐站所以事實上海嵐站就是為了韌性有沒有規劃大概什麼時候有機會完成
transcript.whisperx[22].start 511.161
transcript.whisperx[22].end 532.358
transcript.whisperx[22].text 新年我們有一筆預算就是要再規劃這個所謂的這個現在要考慮從高雄上岸這個會再繼續規劃所以今年應該有機會完成規劃那再來就是經費再看經費怎麼去又是經費被刪的問題今年就是經費不足你先把規劃做好然後
transcript.whisperx[23].start 533.819
transcript.whisperx[23].end 552.244
transcript.whisperx[23].text 經費我們再來想辦法,不然看有沒有辦法追加減再說啦其實我真的是很生氣經費被刪這麼久,塑膠布是被刪得最慘的好啦,就你的能力盡力而為那我們能爭取經費我們再來做立法,我們運會再來做努力好,加油,謝謝