iVOD / 159121

Field Value
IVOD_ID 159121
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159121
日期 2025-03-13
會議資料.會議代碼 委員會-11-3-20-2
會議資料.會議代碼:str 第11屆第3會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-03-13T11:25:19+08:00
結束時間 2025-03-13T11:36:13+08:00
影片長度 00:10:54
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770f69e49b1c87b4d37ee83d902c8d6dd6c2ff1cdb1affc83ff4420fad759d9e24575ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林思銘
委員發言時間 11:25:19 - 11:36:13
會議時間 2025-03-13T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第2次全體委員會議(事由:邀請中央銀行楊總裁金龍率所屬單位主管暨財金資訊股份有限公司董事長列席業務報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 2.47784375
transcript.pyannote[0].end 5.24534375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 10.72971875
transcript.pyannote[1].end 42.91034375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 12.75471875
transcript.pyannote[2].end 13.07534375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 21.42846875
transcript.pyannote[3].end 22.03596875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 27.95909375
transcript.pyannote[4].end 28.17846875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 29.95034375
transcript.pyannote[5].end 30.32159375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 43.28159375
transcript.pyannote[6].end 55.14471875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 55.85346875
transcript.pyannote[7].end 64.93221875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 65.40471875
transcript.pyannote[8].end 68.71221875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 69.79221875
transcript.pyannote[9].end 70.58534375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 72.34034375
transcript.pyannote[10].end 77.13284375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 77.68971875
transcript.pyannote[11].end 77.72346875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 77.72346875
transcript.pyannote[12].end 89.72159375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 87.44346875
transcript.pyannote[13].end 88.48971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 89.35034375
transcript.pyannote[14].end 90.07596875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 90.07596875
transcript.pyannote[15].end 95.17221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 96.38721875
transcript.pyannote[16].end 100.82534375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 100.84221875
transcript.pyannote[17].end 107.49096875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 108.21659375
transcript.pyannote[18].end 110.30909375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 108.87471875
transcript.pyannote[19].end 118.18971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 118.32471875
transcript.pyannote[20].end 118.74659375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 118.74659375
transcript.pyannote[21].end 124.68659375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 124.16346875
transcript.pyannote[22].end 124.61909375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 124.68659375
transcript.pyannote[23].end 157.99784375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 132.92159375
transcript.pyannote[24].end 133.09034375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 144.07596875
transcript.pyannote[25].end 144.44721875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 158.55471875
transcript.pyannote[26].end 164.57909375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 165.28784375
transcript.pyannote[27].end 166.38471875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 166.38471875
transcript.pyannote[28].end 167.05971875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 167.80221875
transcript.pyannote[29].end 168.08909375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 168.57846875
transcript.pyannote[30].end 173.92784375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 168.61221875
transcript.pyannote[31].end 168.64596875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 168.69659375
transcript.pyannote[32].end 168.91596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 174.04596875
transcript.pyannote[33].end 174.68721875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 175.02471875
transcript.pyannote[34].end 176.02034375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 176.45909375
transcript.pyannote[35].end 179.61471875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 179.76659375
transcript.pyannote[36].end 180.22221875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 180.71159375
transcript.pyannote[37].end 181.20096875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 181.21784375
transcript.pyannote[38].end 198.48096875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 198.48096875
transcript.pyannote[39].end 198.49784375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 199.83096875
transcript.pyannote[40].end 200.30346875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 200.89409375
transcript.pyannote[41].end 203.76284375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 203.93159375
transcript.pyannote[42].end 216.79034375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 215.84534375
transcript.pyannote[43].end 227.05034375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 219.64221875
transcript.pyannote[44].end 220.18221875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 220.92471875
transcript.pyannote[45].end 247.62096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 228.60284375
transcript.pyannote[46].end 229.19346875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 235.94346875
transcript.pyannote[47].end 237.00659375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 237.19221875
transcript.pyannote[48].end 237.42846875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 247.89096875
transcript.pyannote[49].end 251.77221875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 251.95784375
transcript.pyannote[50].end 255.36659375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 255.83909375
transcript.pyannote[51].end 264.81659375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 265.45784375
transcript.pyannote[52].end 265.47471875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 265.47471875
transcript.pyannote[53].end 287.36159375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 287.53034375
transcript.pyannote[54].end 292.01909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 289.84221875
transcript.pyannote[55].end 300.42284375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 297.30096875
transcript.pyannote[56].end 297.60471875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 300.94596875
transcript.pyannote[57].end 308.75909375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 309.40034375
transcript.pyannote[58].end 324.14909375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 315.39096875
transcript.pyannote[59].end 315.84659375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 324.31784375
transcript.pyannote[60].end 330.40971875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 331.33784375
transcript.pyannote[61].end 332.36721875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 332.70471875
transcript.pyannote[62].end 332.97471875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 332.97471875
transcript.pyannote[63].end 333.68346875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 333.68346875
transcript.pyannote[64].end 333.70034375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 334.20659375
transcript.pyannote[65].end 334.22346875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 334.22346875
transcript.pyannote[66].end 339.58971875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 339.84284375
transcript.pyannote[67].end 347.03159375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 347.43659375
transcript.pyannote[68].end 350.06909375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 350.38971875
transcript.pyannote[69].end 359.94096875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 359.94096875
transcript.pyannote[70].end 378.89159375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 360.34596875
transcript.pyannote[71].end 361.45971875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 362.67471875
transcript.pyannote[72].end 365.02034375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 371.71971875
transcript.pyannote[73].end 372.42846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 375.24659375
transcript.pyannote[74].end 376.05659375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 376.69784375
transcript.pyannote[75].end 382.80659375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 381.99659375
transcript.pyannote[76].end 386.08034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 386.08034375
transcript.pyannote[77].end 393.40409375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 392.35784375
transcript.pyannote[78].end 395.81721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 393.48846875
transcript.pyannote[79].end 393.75846875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 395.14221875
transcript.pyannote[80].end 396.22221875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 396.22221875
transcript.pyannote[81].end 399.36096875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 396.76221875
transcript.pyannote[82].end 396.96471875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 398.11221875
transcript.pyannote[83].end 398.41596875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 398.43284375
transcript.pyannote[84].end 398.44971875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 398.48346875
transcript.pyannote[85].end 398.58471875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 398.60159375
transcript.pyannote[86].end 398.65221875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 399.81659375
transcript.pyannote[87].end 410.83596875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 411.46034375
transcript.pyannote[88].end 411.76409375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 412.20284375
transcript.pyannote[89].end 419.45909375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 420.31971875
transcript.pyannote[90].end 425.53409375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 425.50034375
transcript.pyannote[91].end 428.48721875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 427.23846875
transcript.pyannote[92].end 427.35659375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 428.48721875
transcript.pyannote[93].end 432.82409375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 430.20846875
transcript.pyannote[94].end 430.93409375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 432.89159375
transcript.pyannote[95].end 452.17971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 438.30846875
transcript.pyannote[96].end 438.61221875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 452.53409375
transcript.pyannote[97].end 453.04034375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 453.04034375
transcript.pyannote[98].end 453.27659375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 453.27659375
transcript.pyannote[99].end 453.44534375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 453.44534375
transcript.pyannote[100].end 453.96846875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 453.96846875
transcript.pyannote[101].end 464.27909375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 459.77346875
transcript.pyannote[102].end 461.29221875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 463.30034375
transcript.pyannote[103].end 466.77659375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 464.75159375
transcript.pyannote[104].end 465.56159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 466.38846875
transcript.pyannote[105].end 470.55659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 467.04659375
transcript.pyannote[106].end 467.82284375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 470.60721875
transcript.pyannote[107].end 474.28596875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 474.40409375
transcript.pyannote[108].end 474.99471875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 474.60659375
transcript.pyannote[109].end 474.85971875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 475.02846875
transcript.pyannote[110].end 481.77846875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 481.05284375
transcript.pyannote[111].end 493.42221875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 481.91346875
transcript.pyannote[112].end 482.48721875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 484.12409375
transcript.pyannote[113].end 486.92534375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 488.76471875
transcript.pyannote[114].end 489.00096875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 493.70909375
transcript.pyannote[115].end 507.12471875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 507.34409375
transcript.pyannote[116].end 521.90721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 522.46409375
transcript.pyannote[117].end 558.86346875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 548.85659375
transcript.pyannote[118].end 549.97034375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 550.22346875
transcript.pyannote[119].end 550.42596875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 558.86346875
transcript.pyannote[120].end 559.15034375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 559.15034375
transcript.pyannote[121].end 576.29534375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 559.16721875
transcript.pyannote[122].end 559.20096875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 576.78471875
transcript.pyannote[123].end 581.30721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 581.57721875
transcript.pyannote[124].end 589.20471875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 590.14971875
transcript.pyannote[125].end 599.59971875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 599.97096875
transcript.pyannote[126].end 639.61034375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 600.46034375
transcript.pyannote[127].end 600.76409375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 611.98596875
transcript.pyannote[128].end 612.44159375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 619.95096875
transcript.pyannote[129].end 620.25471875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 621.46971875
transcript.pyannote[130].end 623.59596875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 637.90596875
transcript.pyannote[131].end 653.24534375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 650.54534375
transcript.pyannote[132].end 650.71409375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 651.77721875
transcript.pyannote[133].end 652.18221875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 653.97096875
transcript.pyannote[134].end 654.40971875
transcript.whisperx[0].start 2.54
transcript.whisperx[0].end 5.583
transcript.whisperx[0].text 好 謝謝主席 我們請楊總裁林委員早好 總裁早 總裁我想本席今天就將全國民眾最關心的幾項國內外的議題 包含川普上台政府如何因應還有烏俄戰爭仍然持續這樣的國際情勢我們台灣應該如何面對來向總裁就教
transcript.whisperx[1].start 32.665
transcript.whisperx[1].end 45.831
transcript.whisperx[1].text 根據央行在去年12月19號發布的經濟預測去年的經濟成長率上修到4.25%今年則預測大概是3.13%同時中研院經濟所也預測今年的成長率大概是3.1%
transcript.whisperx[2].start 55.916
transcript.whisperx[2].end 68.485
transcript.whisperx[2].text 而關於貨幣的調整央行也已經連續三次維持基準率大概是在2%不變我想請問說我們今年下修的原因是什麼
transcript.whisperx[3].start 74.09
transcript.whisperx[3].end 94.626
transcript.whisperx[3].text 經濟成長率今年會下修的原因是什麼事實上我覺得我有看過那個因為我們現在我們在3月20號我們會有另外一個focus但是我覺得主計總署他下修的一個
transcript.whisperx[4].start 96.708
transcript.whisperx[4].end 124.521
transcript.whisperx[4].text 讓我知道的就是說他下修的一個很重要的一個因素是在於他的那個什麼存貨的調整存貨的調整對存貨調整也就是說他的民間的投資的這個部分呢不像他上一次所預期的那麼的高是因為存貨調整他本身呢本身是屬於民間投資的部分
transcript.whisperx[5].start 125.021
transcript.whisperx[5].end 145.478
transcript.whisperx[5].text 總裁我想這個當然是或許他下修的原因之一但是我告訴你依據這個主計總署他在2月26號他發布國內經濟預測表示是因為立法院三減預算會削弱成長的動能因此下修今年經濟成長率到3.14%
transcript.whisperx[6].start 149.921
transcript.whisperx[6].end 163.168
transcript.whisperx[6].text 跟他原先預測的數減少了大概0.15%所以我想請教總裁是說這個主計總署他說調降GDP的理由是因為立法院刪減預算
transcript.whisperx[7].start 165.342
transcript.whisperx[7].end 177.974
transcript.whisperx[7].text 您同意嗎?你覺得這個因素要去考量下去,他這樣的講法成立嗎?是啦,你們不是也有一張表嗎?
transcript.whisperx[8].start 181.377
transcript.whisperx[8].end 193.69
transcript.whisperx[8].text 就是說我看他的那個表他的表裡面除了剛剛我所講的就是說他的存貨的調整以外民間的消費政府的支出的這個部分
transcript.whisperx[9].start 199.861
transcript.whisperx[9].end 216.159
transcript.whisperx[9].text 主宰 主宰我這樣好了啦 主宰其實我比較關心的是說他講的其中一個因素就是因為我們立法院刪減了這次的一個預算所以也是造成說我們成長動能的削弱的原因
transcript.whisperx[10].start 217.881
transcript.whisperx[10].end 226.227
transcript.whisperx[10].text 根據我們的資料,我所掌握的,跟...總裁,我想請教總裁的,是,總裁我的意思就是說,他這樣的說法,他這樣的一個說法說經過刪減後,會影響整個我們政府未來的投資以及消費,而導致GDP的下降剛才你也提到,本月20號,央行要召開理事會
transcript.whisperx[11].start 245.76
transcript.whisperx[11].end 264.558
transcript.whisperx[11].text 所以央行會有新的2025年就今年的GDP的預測所以這個如果在20號的理事會到時候會不會將三讀後的政府總預算的金額的結果也列為我們預測的因素之一是
transcript.whisperx[12].start 265.955
transcript.whisperx[12].end 286.53
transcript.whisperx[12].text 我想剛剛我們如果看主席總署的這個表是沒有錯他也講到政府的支出的這個部分他是下修了0.08那存後這邊民間的投資也有下修那公營的也有下修0.01那這個是主要還有政府的消費也下修了0.01
transcript.whisperx[13].start 287.871
transcript.whisperx[13].end 292.155
transcript.whisperx[13].text 所以未來你們在20號的央行的理事會你認為會考量這個因素嗎?因為我覺得他這個組織總書的說法是非常不正確的
transcript.whisperx[14].start 309.472
transcript.whisperx[14].end 330.057
transcript.whisperx[14].text 因為今年總預算通過的數額是歷史新高兩兆九千兩百四十八億比去年增加了一千三百六十八億創歷史的新高你竟然講說會影響政府的投資及消費而導致GDP的下降
transcript.whisperx[15].start 331.937
transcript.whisperx[15].end 340.16
transcript.whisperx[15].text 這個說法正確嗎?不過根據他的這個數據來看的話0.08加上0.01的0.09再加上0.01就將近是0.1啦他上一次是3.29嘛
transcript.whisperx[16].start 350.604
transcript.whisperx[16].end 377.727
transcript.whisperx[16].text 所以他把他下修到0.15%他本身的政府的這個部分他就下修0.1%所以0.5%我猜我的重點不在這裡他一直講說是因為立法院刪減總預算造成他GDP要下修我說這樣的說法其實是不正確的我也希望說央行在20號的理事會你對於這個重新評估我們今年的GDP的下修我們會
transcript.whisperx[17].start 379.748
transcript.whisperx[17].end 397.467
transcript.whisperx[17].text 第一個我們會再重新評估我們的但是你要把這個因素你要列入嗎這個根本是不成立的嘛因為這個數據呢這個數據呢他雖然就是說是就是說是在這裡沒關係啦這個我是表達我的意見是是是我想另外因為時間的關係我再請問你一下
transcript.whisperx[18].start 400.371
transcript.whisperx[18].end 418.012
transcript.whisperx[18].text 因為在昨天的復議案的質詢中卓院長表示說台電千億撥補如果落空台電將被迫調電價所以我想請問如果說台電因為錯誤的能源政策而在不給補助的情況之下來調漲電價
transcript.whisperx[19].start 420.359
transcript.whisperx[19].end 435.884
transcript.whisperx[19].text 那麼是否會造成萬物齊漲就通膨的一個壓力應該是不會就是說萬物齊漲也不會你是認為不會所以央行後續會有升息的壓力嗎因為就是說我們上一年我們的我們的預測是1.89
transcript.whisperx[20].start 438.685
transcript.whisperx[20].end 444.933
transcript.whisperx[20].text 如果說我們考量到電價的調整還有其他的工用事業的匯率的調整我們大概也會接近2%
transcript.whisperx[21].start 453.402
transcript.whisperx[21].end 465.307
transcript.whisperx[21].text 所以就是因為台電調漲電價會造成我們整個CPI的年增率會增加所以大概就會上漲到大概就會破2%左右你預期就2%左右不會再繼續往上嗎
transcript.whisperx[22].start 471.45
transcript.whisperx[22].end 492.805
transcript.whisperx[22].text 應該如果說直接的直接的影響是這樣子那如果說他有說什麼通膨疫情的心理我再想這一次應該不會了我想我希望你的預測只是準的我們再看一下國外的情勢就是川普上任之後關於美國在新的經貿政策所帶來的影響
transcript.whisperx[23].start 493.826
transcript.whisperx[23].end 515.09
transcript.whisperx[23].text 川普的經貿政策被我們公認為影響我國經濟的成長的重要變數包含台積電我們剛剛一直提到也已經確定要去赴美投資一千億美元所以央行目前有沒有制定哪些具體的因應策略以降低因應國際情勢的外部不確定性對我國經濟與匯率的一個影響
transcript.whisperx[24].start 522.532
transcript.whisperx[24].end 547.671
transcript.whisperx[24].text 以及在全球經濟存在下行風險的情況之下未來是否有需要調整貨幣政策以確保我國經濟的穩定性還有台積電如果赴美的新投資是否會影響我國未來我們的GDP的成長對台灣經濟發展的前景會有何影響我想你現在不用用口頭回答我這幾個問題請你用書面來答覆我
transcript.whisperx[25].start 550.333
transcript.whisperx[25].end 576.023
transcript.whisperx[25].text 因為我們針對這個央行房市管制的措施啊央行決定連續三次維持基準利率在2%不變嘛那也會推出新的房市的管制措施到今年2月底央行已經進行專案精檢總共170次嘛所以請問央行在進行7次的調整選擇信用管制的措施後
transcript.whisperx[26].start 577.223
transcript.whisperx[26].end 588.187
transcript.whisperx[26].text 現在暫時沒有新的管制措施這是否意味說央行已經認為國內的房價以及房市的交易已經達到央行可以接受的平穩狀況
transcript.whisperx[27].start 591.603
transcript.whisperx[27].end 619.922
transcript.whisperx[27].text 我們在報告裡面我們有談到就是說基本上呢我們第一個就是說疫情心理是有下來了第二個呢它的那個集中度是集中度就是說我們金融機構放款給這個不弄產的這個集中度呢慢慢的再下來了37點多現在下降下來另外呢就是說給無自用自宅的資源呢慢慢再上升了
transcript.whisperx[28].start 620.562
transcript.whisperx[28].end 639.734
transcript.whisperx[28].text 這個有達到我們初步的一個效果但是我們現在目前我們有兩個方向第一個因為我們在去年八月的時候我們希望在他們在一年之內做這個資源的一個調整那這個我們每季每次都會我這樣問你最後的結論就是說未來因為現在你說已經達到平穩的效果
transcript.whisperx[29].start 644.838
transcript.whisperx[29].end 648.365
transcript.whisperx[29].text 所以未來有沒有可能會有第八次的新聞管制措施我們滾動式檢討