IVOD_ID |
159087 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/159087 |
日期 |
2025-03-13 |
會議資料.會議代碼 |
委員會-11-3-26-2 |
會議資料.會議代碼:str |
第11屆第3會期社會福利及衛生環境委員會第2次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
2 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第3會期社會福利及衛生環境委員會第2次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-03-13T10:24:27+08:00 |
結束時間 |
2025-03-13T10:44:02+08:00 |
影片長度 |
00:19:35 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770f7e6fa6c3660b7a000aae3c1a04a00b1bf83dc853112caf4540a1818b981201f85ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
廖偉翔 |
委員發言時間 |
10:24:27 - 10:44:02 |
會議時間 |
2025-03-13T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請衛生福利部部長就「有關全國急重症醫療量能」進行專題報告,並備質詢。
【如遇加開院會本次會議取消,不再另行通知】) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
8.51909375 |
transcript.pyannote[0].end |
10.84784375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
15.48846875 |
transcript.pyannote[1].end |
15.65721875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
17.02409375 |
transcript.pyannote[2].end |
17.53034375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
18.62721875 |
transcript.pyannote[3].end |
19.20096875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
20.02784375 |
transcript.pyannote[4].end |
26.65971875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
26.77784375 |
transcript.pyannote[5].end |
31.57034375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
31.82346875 |
transcript.pyannote[6].end |
41.64471875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
42.11721875 |
transcript.pyannote[7].end |
48.52971875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
48.68159375 |
transcript.pyannote[8].end |
50.26784375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
50.70659375 |
transcript.pyannote[9].end |
60.42659375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
60.73034375 |
transcript.pyannote[10].end |
64.34159375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
64.52721875 |
transcript.pyannote[11].end |
72.86346875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
73.55534375 |
transcript.pyannote[12].end |
74.36534375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
74.65221875 |
transcript.pyannote[13].end |
92.28659375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
92.28659375 |
transcript.pyannote[14].end |
92.30346875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
94.12596875 |
transcript.pyannote[15].end |
94.14284375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
94.14284375 |
transcript.pyannote[16].end |
98.88471875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
95.79659375 |
transcript.pyannote[17].end |
96.01596875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
99.62721875 |
transcript.pyannote[18].end |
107.49096875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
99.66096875 |
transcript.pyannote[19].end |
100.04909375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
100.47096875 |
transcript.pyannote[20].end |
100.53846875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
105.73596875 |
transcript.pyannote[21].end |
105.88784375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
106.12409375 |
transcript.pyannote[22].end |
106.24221875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
107.65971875 |
transcript.pyannote[23].end |
111.27096875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
113.43096875 |
transcript.pyannote[24].end |
120.01221875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
120.29909375 |
transcript.pyannote[25].end |
122.74596875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
123.57284375 |
transcript.pyannote[26].end |
131.21721875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
131.35221875 |
transcript.pyannote[27].end |
132.41534375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
132.87096875 |
transcript.pyannote[28].end |
141.22409375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
142.74284375 |
transcript.pyannote[29].end |
149.20596875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
149.44221875 |
transcript.pyannote[30].end |
152.41221875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
149.45909375 |
transcript.pyannote[31].end |
151.02846875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
151.24784375 |
transcript.pyannote[32].end |
154.33596875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
153.37409375 |
transcript.pyannote[33].end |
161.74409375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
161.47409375 |
transcript.pyannote[34].end |
170.70471875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
165.47346875 |
transcript.pyannote[35].end |
166.21596875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
170.70471875 |
transcript.pyannote[36].end |
174.13034375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
172.66221875 |
transcript.pyannote[37].end |
179.76659375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
180.01971875 |
transcript.pyannote[38].end |
190.44846875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
190.83659375 |
transcript.pyannote[39].end |
191.22471875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
191.81534375 |
transcript.pyannote[40].end |
196.05096875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
196.57409375 |
transcript.pyannote[41].end |
210.54659375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
211.08659375 |
transcript.pyannote[42].end |
244.29659375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
244.60034375 |
transcript.pyannote[43].end |
249.91596875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
250.21971875 |
transcript.pyannote[44].end |
258.03284375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
258.75846875 |
transcript.pyannote[45].end |
283.12596875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
266.77409375 |
transcript.pyannote[46].end |
267.43221875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
282.21471875 |
transcript.pyannote[47].end |
286.58534375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
285.67409375 |
transcript.pyannote[48].end |
291.00659375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
289.77471875 |
transcript.pyannote[49].end |
294.26346875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
294.26346875 |
transcript.pyannote[50].end |
296.03534375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
296.03534375 |
transcript.pyannote[51].end |
298.88721875 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
296.33909375 |
transcript.pyannote[52].end |
296.40659375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
299.96721875 |
transcript.pyannote[53].end |
301.87409375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
302.66721875 |
transcript.pyannote[54].end |
309.23159375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
310.22721875 |
transcript.pyannote[55].end |
313.41659375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
313.70346875 |
transcript.pyannote[56].end |
319.10346875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
313.72034375 |
transcript.pyannote[57].end |
319.66034375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
319.86284375 |
transcript.pyannote[58].end |
328.99221875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
329.65034375 |
transcript.pyannote[59].end |
330.03846875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
330.03846875 |
transcript.pyannote[60].end |
330.20721875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
330.20721875 |
transcript.pyannote[61].end |
330.96659375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
330.96659375 |
transcript.pyannote[62].end |
334.08846875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
334.34159375 |
transcript.pyannote[63].end |
334.76346875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
335.10096875 |
transcript.pyannote[64].end |
343.96034375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
345.12471875 |
transcript.pyannote[65].end |
346.50846875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
346.86284375 |
transcript.pyannote[66].end |
352.46534375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
352.73534375 |
transcript.pyannote[67].end |
359.90721875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
360.22784375 |
transcript.pyannote[68].end |
368.73284375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
368.95221875 |
transcript.pyannote[69].end |
377.55846875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
377.74409375 |
transcript.pyannote[70].end |
387.85221875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
388.89846875 |
transcript.pyannote[71].end |
410.93721875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
401.80784375 |
transcript.pyannote[72].end |
402.11159375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
403.68096875 |
transcript.pyannote[73].end |
405.52034375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
409.08096875 |
transcript.pyannote[74].end |
432.95909375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
433.68471875 |
transcript.pyannote[75].end |
437.26221875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
437.46471875 |
transcript.pyannote[76].end |
442.52721875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
442.99971875 |
transcript.pyannote[77].end |
445.81784375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
446.20596875 |
transcript.pyannote[78].end |
459.58784375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
459.89159375 |
transcript.pyannote[79].end |
460.54971875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
461.20784375 |
transcript.pyannote[80].end |
463.13159375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
463.65471875 |
transcript.pyannote[81].end |
467.01284375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
467.31659375 |
transcript.pyannote[82].end |
475.24784375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
475.72034375 |
transcript.pyannote[83].end |
478.40346875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
478.65659375 |
transcript.pyannote[84].end |
484.09034375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
484.64721875 |
transcript.pyannote[85].end |
504.57659375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
505.16721875 |
transcript.pyannote[86].end |
517.31721875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
516.92909375 |
transcript.pyannote[87].end |
518.26221875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
517.97534375 |
transcript.pyannote[88].end |
523.54409375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
524.01659375 |
transcript.pyannote[89].end |
533.75346875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
534.39471875 |
transcript.pyannote[90].end |
549.56534375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
550.05471875 |
transcript.pyannote[91].end |
552.72096875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
553.29471875 |
transcript.pyannote[92].end |
555.37034375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
556.01159375 |
transcript.pyannote[93].end |
559.35284375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
560.02784375 |
transcript.pyannote[94].end |
564.01034375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
564.63471875 |
transcript.pyannote[95].end |
584.34471875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
584.69909375 |
transcript.pyannote[96].end |
588.05721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
588.47909375 |
transcript.pyannote[97].end |
600.07221875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
600.34221875 |
transcript.pyannote[98].end |
603.19409375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
603.59909375 |
transcript.pyannote[99].end |
609.47159375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
609.77534375 |
transcript.pyannote[100].end |
611.96909375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
611.00721875 |
transcript.pyannote[101].end |
611.20971875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
612.37409375 |
transcript.pyannote[102].end |
624.37221875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
624.50721875 |
transcript.pyannote[103].end |
624.52409375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
624.52409375 |
transcript.pyannote[104].end |
624.54096875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
624.54096875 |
transcript.pyannote[105].end |
625.92471875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
625.92471875 |
transcript.pyannote[106].end |
625.97534375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
625.97534375 |
transcript.pyannote[107].end |
626.93721875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
626.11034375 |
transcript.pyannote[108].end |
626.90346875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
626.93721875 |
transcript.pyannote[109].end |
639.67784375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
640.21784375 |
transcript.pyannote[110].end |
647.99721875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
647.59221875 |
transcript.pyannote[111].end |
655.33784375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
648.52034375 |
transcript.pyannote[112].end |
648.92534375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
654.24096875 |
transcript.pyannote[113].end |
661.26096875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
661.26096875 |
transcript.pyannote[114].end |
661.27784375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
661.27784375 |
transcript.pyannote[115].end |
661.29471875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
661.29471875 |
transcript.pyannote[116].end |
665.69909375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
666.00284375 |
transcript.pyannote[117].end |
667.52159375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
666.05346875 |
transcript.pyannote[118].end |
670.00221875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
669.12471875 |
transcript.pyannote[119].end |
684.19409375 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
672.61784375 |
transcript.pyannote[120].end |
672.92159375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
674.42346875 |
transcript.pyannote[121].end |
678.23721875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
678.64221875 |
transcript.pyannote[122].end |
679.24971875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
680.26221875 |
transcript.pyannote[123].end |
680.32971875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
680.36346875 |
transcript.pyannote[124].end |
680.39721875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
680.41409375 |
transcript.pyannote[125].end |
680.68409375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
681.02159375 |
transcript.pyannote[126].end |
683.89034375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
684.22784375 |
transcript.pyannote[127].end |
688.00784375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
688.68284375 |
transcript.pyannote[128].end |
691.46721875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
691.46721875 |
transcript.pyannote[129].end |
692.46284375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
692.46284375 |
transcript.pyannote[130].end |
692.49659375 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
693.13784375 |
transcript.pyannote[131].end |
693.62721875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
693.62721875 |
transcript.pyannote[132].end |
699.36471875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
693.67784375 |
transcript.pyannote[133].end |
694.16721875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
699.83721875 |
transcript.pyannote[134].end |
728.18721875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
728.50784375 |
transcript.pyannote[135].end |
732.59159375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
733.21596875 |
transcript.pyannote[136].end |
737.68784375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
738.00846875 |
transcript.pyannote[137].end |
739.99971875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
740.10096875 |
transcript.pyannote[138].end |
740.69159375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
741.29909375 |
transcript.pyannote[139].end |
761.51534375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
762.44346875 |
transcript.pyannote[140].end |
775.96034375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
776.43284375 |
transcript.pyannote[141].end |
801.27284375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
777.78284375 |
transcript.pyannote[142].end |
778.22159375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
799.45034375 |
transcript.pyannote[143].end |
804.32721875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
804.79971875 |
transcript.pyannote[144].end |
807.16221875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
807.43221875 |
transcript.pyannote[145].end |
822.01221875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
822.31596875 |
transcript.pyannote[146].end |
825.06659375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
825.06659375 |
transcript.pyannote[147].end |
829.63971875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
830.09534375 |
transcript.pyannote[148].end |
845.40096875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
844.72596875 |
transcript.pyannote[149].end |
848.92784375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
847.10534375 |
transcript.pyannote[150].end |
869.43096875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
851.05409375 |
transcript.pyannote[151].end |
851.37471875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
856.53846875 |
transcript.pyannote[152].end |
856.89284375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
857.34846875 |
transcript.pyannote[153].end |
858.07409375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
862.83284375 |
transcript.pyannote[154].end |
863.40659375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
869.78534375 |
transcript.pyannote[155].end |
871.82721875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
871.82721875 |
transcript.pyannote[156].end |
875.55659375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
872.21534375 |
transcript.pyannote[157].end |
873.34596875 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
875.70846875 |
transcript.pyannote[158].end |
882.62721875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
883.31909375 |
transcript.pyannote[159].end |
888.14534375 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
888.60096875 |
transcript.pyannote[160].end |
890.45721875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
890.54159375 |
transcript.pyannote[161].end |
894.11909375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
894.42284375 |
transcript.pyannote[162].end |
897.40971875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
898.01721875 |
transcript.pyannote[163].end |
912.78284375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
913.13721875 |
transcript.pyannote[164].end |
917.84534375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
918.43596875 |
transcript.pyannote[165].end |
922.48596875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
923.14409375 |
transcript.pyannote[166].end |
926.31659375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
927.26159375 |
transcript.pyannote[167].end |
931.90221875 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
932.08784375 |
transcript.pyannote[168].end |
932.50971875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
932.88096875 |
transcript.pyannote[169].end |
937.35284375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
937.87596875 |
transcript.pyannote[170].end |
942.36471875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
942.73596875 |
transcript.pyannote[171].end |
943.37721875 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
944.01846875 |
transcript.pyannote[172].end |
945.73971875 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
946.93784375 |
transcript.pyannote[173].end |
947.62971875 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
947.91659375 |
transcript.pyannote[174].end |
957.82221875 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
957.99096875 |
transcript.pyannote[175].end |
975.05159375 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
973.04346875 |
transcript.pyannote[176].end |
979.40534375 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
978.71346875 |
transcript.pyannote[177].end |
986.29034375 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
984.68721875 |
transcript.pyannote[178].end |
989.64846875 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
987.69096875 |
transcript.pyannote[179].end |
997.91721875 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
991.16721875 |
transcript.pyannote[180].end |
991.70721875 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
992.43284375 |
transcript.pyannote[181].end |
995.70659375 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
997.68096875 |
transcript.pyannote[182].end |
1011.53534375 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
1009.71284375 |
transcript.pyannote[183].end |
1009.89846875 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
1010.18534375 |
transcript.pyannote[184].end |
1012.75034375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
1012.85159375 |
transcript.pyannote[185].end |
1021.05284375 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
1021.49159375 |
transcript.pyannote[186].end |
1022.82471875 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
1023.22971875 |
transcript.pyannote[187].end |
1030.58721875 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
1030.21596875 |
transcript.pyannote[188].end |
1030.55346875 |
transcript.pyannote[189].speaker |
SPEAKER_01 |
transcript.pyannote[189].start |
1030.58721875 |
transcript.pyannote[189].end |
1031.09346875 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
1031.09346875 |
transcript.pyannote[190].end |
1038.06284375 |
transcript.pyannote[191].speaker |
SPEAKER_01 |
transcript.pyannote[191].start |
1037.23596875 |
transcript.pyannote[191].end |
1042.39971875 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
1041.50534375 |
transcript.pyannote[192].end |
1045.58909375 |
transcript.pyannote[193].speaker |
SPEAKER_01 |
transcript.pyannote[193].start |
1043.20971875 |
transcript.pyannote[193].end |
1043.61471875 |
transcript.pyannote[194].speaker |
SPEAKER_01 |
transcript.pyannote[194].start |
1045.04909375 |
transcript.pyannote[194].end |
1047.86721875 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
1045.90971875 |
transcript.pyannote[195].end |
1046.41596875 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
1047.86721875 |
transcript.pyannote[196].end |
1048.01909375 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
1048.01909375 |
transcript.pyannote[197].end |
1048.03596875 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
1048.03596875 |
transcript.pyannote[198].end |
1048.32284375 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
1048.32284375 |
transcript.pyannote[199].end |
1048.50846875 |
transcript.pyannote[200].speaker |
SPEAKER_00 |
transcript.pyannote[200].start |
1048.50846875 |
transcript.pyannote[200].end |
1048.54221875 |
transcript.pyannote[201].speaker |
SPEAKER_01 |
transcript.pyannote[201].start |
1048.54221875 |
transcript.pyannote[201].end |
1048.71096875 |
transcript.pyannote[202].speaker |
SPEAKER_00 |
transcript.pyannote[202].start |
1048.71096875 |
transcript.pyannote[202].end |
1048.98096875 |
transcript.pyannote[203].speaker |
SPEAKER_01 |
transcript.pyannote[203].start |
1048.98096875 |
transcript.pyannote[203].end |
1049.03159375 |
transcript.pyannote[204].speaker |
SPEAKER_00 |
transcript.pyannote[204].start |
1049.03159375 |
transcript.pyannote[204].end |
1053.21659375 |
transcript.pyannote[205].speaker |
SPEAKER_01 |
transcript.pyannote[205].start |
1050.53346875 |
transcript.pyannote[205].end |
1054.14471875 |
transcript.pyannote[206].speaker |
SPEAKER_00 |
transcript.pyannote[206].start |
1053.82409375 |
transcript.pyannote[206].end |
1059.15659375 |
transcript.pyannote[207].speaker |
SPEAKER_00 |
transcript.pyannote[207].start |
1059.47721875 |
transcript.pyannote[207].end |
1062.02534375 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
1062.41346875 |
transcript.pyannote[208].end |
1065.21471875 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
1065.67034375 |
transcript.pyannote[209].end |
1068.26909375 |
transcript.pyannote[210].speaker |
SPEAKER_00 |
transcript.pyannote[210].start |
1069.06221875 |
transcript.pyannote[210].end |
1092.14721875 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
1092.24846875 |
transcript.pyannote[211].end |
1095.11721875 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
1095.35346875 |
transcript.pyannote[212].end |
1096.19721875 |
transcript.pyannote[213].speaker |
SPEAKER_00 |
transcript.pyannote[213].start |
1096.77096875 |
transcript.pyannote[213].end |
1097.47971875 |
transcript.pyannote[214].speaker |
SPEAKER_00 |
transcript.pyannote[214].start |
1097.95221875 |
transcript.pyannote[214].end |
1103.74034375 |
transcript.pyannote[215].speaker |
SPEAKER_00 |
transcript.pyannote[215].start |
1103.75721875 |
transcript.pyannote[215].end |
1107.19971875 |
transcript.pyannote[216].speaker |
SPEAKER_00 |
transcript.pyannote[216].start |
1108.02659375 |
transcript.pyannote[216].end |
1138.75596875 |
transcript.pyannote[217].speaker |
SPEAKER_00 |
transcript.pyannote[217].start |
1139.17784375 |
transcript.pyannote[217].end |
1143.14346875 |
transcript.pyannote[218].speaker |
SPEAKER_00 |
transcript.pyannote[218].start |
1143.59909375 |
transcript.pyannote[218].end |
1145.30346875 |
transcript.pyannote[219].speaker |
SPEAKER_00 |
transcript.pyannote[219].start |
1146.18096875 |
transcript.pyannote[219].end |
1146.73784375 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
1147.26096875 |
transcript.pyannote[220].end |
1160.59221875 |
transcript.pyannote[221].speaker |
SPEAKER_01 |
transcript.pyannote[221].start |
1160.59221875 |
transcript.pyannote[221].end |
1171.91534375 |
transcript.pyannote[222].speaker |
SPEAKER_01 |
transcript.pyannote[222].start |
1171.99971875 |
transcript.pyannote[222].end |
1173.94034375 |
transcript.pyannote[223].speaker |
SPEAKER_00 |
transcript.pyannote[223].start |
1173.94034375 |
transcript.pyannote[223].end |
1173.97409375 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
1174.76721875 |
transcript.pyannote[224].end |
1175.71221875 |
transcript.whisperx[0].start |
8.847 |
transcript.whisperx[0].end |
10.549 |
transcript.whisperx[0].text |
謝謝主席 那有請邱部長委員好 |
transcript.whisperx[1].start |
18.669 |
transcript.whisperx[1].end |
41.309 |
transcript.whisperx[1].text |
部長好首先要先給您看這是去年亞東醫院急診的主醫師在臉書上PO的燃燒殆盡的一頁他當時就說大量護理師離職小夜班排不出人力連續兩個OCA患者進來同時還要心肌梗塞、中風等病化 |
transcript.whisperx[2].start |
42.17 |
transcript.whisperx[2].end |
67.867 |
transcript.whisperx[2].text |
的病患人創下臨死亡的紀錄是燃燒殆盡的一夜其實就凸顯了這個問題已經正在發生中那去年這張照片也引發了相當大的震撼今年以來這個急診還是一樣塞爆那醫師護理師病人也是一樣痛苦那最主要會造成這樣急診大塞車的問題我想你我都知道就是醫院中的護理人員的嚴重不足 |
transcript.whisperx[3].start |
68.607 |
transcript.whisperx[3].end |
80.554 |
transcript.whisperx[3].text |
那請教部長根據衛福部的統計台灣目前約有截至2月約有309,410名的持有護理證照的人員但實際職業的人員僅有193,503人那職業率僅62.5%請教一下部長職業率低的主要有哪些原因 |
transcript.whisperx[4].start |
94.161 |
transcript.whisperx[4].end |
110.024 |
transcript.whisperx[4].text |
我想從我的角度來講看市長要不要再補充那個當然職場的不夠力讓大家太辛苦那是不是待遇方面需要加強部長沒關係好我想這個知道我們先給你看一下上一頁的圖二基本上就是整個醫療的崩潰並且持續惡化的這個循環就是醫療人力不足那其實我想要問的事情進一步 |
transcript.whisperx[5].start |
123.615 |
transcript.whisperx[5].end |
137.941 |
transcript.whisperx[5].text |
你剛剛講的這些問題可是今年以來你們總共召開了五場的營運會議對不對是的那請教部長我們剛剛都知道護理師是很重要的一個因素那這幾場會議找護理師去護理師全聯會或是護理師相關的團體去參加的有幾場 |
transcript.whisperx[6].start |
143.886 |
transcript.whisperx[6].end |
161.723 |
transcript.whisperx[6].text |
前面三場是因為要解決急診的整個運作的問題好部長我目前因為時間有限第四次第五次我直接公布就是五場裡面你只有一場我目前掌握到只有在健保署在3月7日的時候有找護理師相關團體去那是因為要針對要真的針對他們的問題去解決所以當然 |
transcript.whisperx[7].start |
165.467 |
transcript.whisperx[7].end |
190 |
transcript.whisperx[7].text |
是對嘛但是有時候是前面是站在院方跟整個系統的改善當然但是我覺得部長但是我們明天我們昨天也跟那個醫療工會裡面大部分都是護理同仁做了非常詳盡的溝通是這個部分我要提醒你就是這個因為其實前幾天你也來拜訪我也跟你講過其實這個明明大家都知道護理師人員人力不足的問題剛剛你也講到很多相關的好情況 |
transcript.whisperx[8].start |
190.925 |
transcript.whisperx[8].end |
210.135 |
transcript.whisperx[8].text |
所以現在這個護理師這個護士公會全聯會也指出台灣護理人力從2019年就已經出現了流出量大於流入量的現象那離職率以及空缺率從110年就開始持續的上升那今年的一二月 |
transcript.whisperx[9].start |
211.155 |
transcript.whisperx[9].end |
226.368 |
transcript.whisperx[9].text |
也已經超過550位護理師離職那預計3月份的這個數據會更恐怖那也不少的報導有說護理師到各地的護理師工會還有醫院內辦理離職手續居然出現排隊人潮至少等一個小時 |
transcript.whisperx[10].start |
227.469 |
transcript.whisperx[10].end |
249.452 |
transcript.whisperx[10].text |
所以現在不只是離職潮而已其實更是一個離職海嘯那請教部長目前對於這樣嚴重的護理人員流失你覺得現在的因應措施對護理人員來說有感嗎能挽回護理人員的心嗎那我也知道你很努力的找錢但是到五月份才有這些緊急應急的措施會不會又發生這期間啊 |
transcript.whisperx[11].start |
250.313 |
transcript.whisperx[11].end |
257.621 |
transcript.whisperx[11].text |
重點是這期間會不會又發生像高雄這個重症病患轉診150公里外成大醫院人死亡的悲劇 |
transcript.whisperx[12].start |
259.223 |
transcript.whisperx[12].end |
280.8 |
transcript.whisperx[12].text |
謝謝委員的關心齁我一個一個回答第一個剛剛你提的個案它是成大在成大發生的不是在高雄在高雄轉診到沒有沒有沒有從他就是在成大看診他沒有完全跟高雄沒關係那在成大看診以後因為沒有ICU他開刀因為他開刀必須要加入病房所以他找的他的朵六院朵六院區過去 |
transcript.whisperx[13].start |
282.281 |
transcript.whisperx[13].end |
307.736 |
transcript.whisperx[13].text |
那他是不是到很遠的地方去轉診時間拖到了基本上是在成大的體系啦當然距離是有比較遠的我們所謂的高雄不是高雄醫院啦是他的距離很遠嘛對啊 那個跟高雄沒有關係啦對啊 當然但是我的意思就是說他從那邊要到150公里外很遠嘛 對不對那這是不是也是因為有同樣的問題發生就是它是整個系統結構裡面的問題嘛 |
transcript.whisperx[14].start |
310.61 |
transcript.whisperx[14].end |
328.784 |
transcript.whisperx[14].text |
所以現在部長我想不是解釋我的重點不是在針對這個個案我們是在檢討是整個系統性的問題嘛 是吧我剛剛已經有講了任何到急診我跟所有院長的心願就是到急診能住院就趕快住院 |
transcript.whisperx[15].start |
329.807 |
transcript.whisperx[15].end |
352.117 |
transcript.whisperx[15].text |
老部長就越快越好我跟你說你剛有提到護理師的待遇不佳的問題啊外部的拉力也是護理師流失的主因那首先根據這個護理師工會的統計啊也可以看到護理師人員你看這個線圖喔在醫院的比例就是歷年來連續的降低喔那診所的比例也連續的升高 |
transcript.whisperx[16].start |
352.881 |
transcript.whisperx[16].end |
377.06 |
transcript.whisperx[16].text |
那另外台灣護理人員去選擇赴美國、澳洲、紐西蘭、新加坡等外國去工作那澳洲的註冊護理師第一年的年薪大概是170萬台幣那美國護理師月薪大概是10萬至少那年薪就是120萬以上那我想這種巨大的薪資差距也是人才外流的主要原因之一 |
transcript.whisperx[17].start |
377.921 |
transcript.whisperx[17].end |
387.577 |
transcript.whisperx[17].text |
那我想要請教一下部長不 衛福部是否有計畫調整護理人員薪資結構讓確保這些薪資政府能夠真正留住這些人才 |
transcript.whisperx[18].start |
388.959 |
transcript.whisperx[18].end |
410.764 |
transcript.whisperx[18].text |
我們一定全力來增加我想政府也一直在努力啦在我們國家的財源之下還有在健保的有限的健保的資源之下怎麼樣給護理同仁增加待遇很好謝謝不只護理人員啦如果你要比較的話連醫師也比其他國家薪水少很多是沒錯所以我們現在現在看一下剛剛有講到一些前提嘛對不對 |
transcript.whisperx[19].start |
414.025 |
transcript.whisperx[19].end |
432.736 |
transcript.whisperx[19].text |
所以日前媒體報導有預辦診所的護理人員加薪我們是很樂見樂見這些護理人員都能夠加薪不過也要進一步去看你剛剛有講到資源有限當然在什麼情況之下我們對於國家對於健保或是醫療的投資可能不足的情況之下 |
transcript.whisperx[20].start |
433.717 |
transcript.whisperx[20].end |
458.851 |
transcript.whisperx[20].text |
我們再進一步去看細看從統計數字上來看醫院等級尤其是醫學中心的護理人員流失嚴重如果要更細緻的去分析資料恐怕是醫院中的資深護理師的流失更嚴重資深護理師的流失更嚴重而去年7月的時候行政院這裡有一個護理人力政策整備中長程計畫裡面 |
transcript.whisperx[21].start |
461.252 |
transcript.whisperx[21].end |
483.375 |
transcript.whisperx[21].text |
第10頁有提到這個護理人員的流失與回流的值與量其中流失是以年資10年以上30歲到40歲已有豐富經驗的護理人員護理的離職為主所以我想衛福部也清楚資深護理師人員流失情況的嚴重那請教部長這群 |
transcript.whisperx[22].start |
484.716 |
transcript.whisperx[22].end |
502.717 |
transcript.whisperx[22].text |
我想這群護理師資深的人員留不住不只可能不只是關病床的問題甚至也有可能造成整個醫療團隊的銜接甚至配合產生問題也進一步影響工作的成效照顧品質病人安全意外事件甚至醫療錯誤等等未來也有可能有更多的醫療糾紛那部長 |
transcript.whisperx[23].start |
505.62 |
transcript.whisperx[23].end |
533.54 |
transcript.whisperx[23].text |
離職的資深護理人員如果願意重回職場其實是對於整個這個醫療體系來講不僅引擎成本比較低那又是集戰力又可以馬上緩解人力不足的情況嘛對不對所以我也去看了一下這個而且他還可以去訓練新人那我也去看了一下這本這個中長城的計畫的12項主要項目裡面其實跟這個關係比較有關的工作項目是所謂的護理新手臨床教師制度 |
transcript.whisperx[24].start |
534.451 |
transcript.whisperx[24].end |
558.877 |
transcript.whisperx[24].text |
好那他也是主要是要減緩新任護理人員的離職率而不是而非這個提高資深有經驗的護理人員繼續留任的意願他不是他主要是他主要裡面有講說減緩新任護理人員的離職率那所以我想要請教部長是有沒有可能在另密裁員為這個作為增加限職的資深人員 |
transcript.whisperx[25].start |
560.077 |
transcript.whisperx[25].end |
583.957 |
transcript.whisperx[25].text |
的這個9任獎金或鼓勵醫院提出9任獎金制度因為這個中長城的計劃裡面的護理新手臨床的制度裡面啊他這裡面是有寫預計要找1000位護理新手的臨床指導教師但是這項經費一年大概是編3.6億啊那也就是說每人每月是3萬元的訓練費可是我想要問說請教這樣子的 |
transcript.whisperx[26].start |
584.818 |
transcript.whisperx[26].end |
611.693 |
transcript.whisperx[26].text |
你覺得這樣子的三萬元的這個去吸引已經離職而且有經驗的護理師回任是有辦法的嗎是有足夠的吸引力的嗎再者裡面有提到是這個全職或兼職都可以那你在實務上在全職上是不是有困難因為他本身就已經能量能量能就有限了你又說全職再給你這個那這實務上是不是可行的我想這部長請問你怎麼看 |
transcript.whisperx[27].start |
612.773 |
transcript.whisperx[27].end |
636.021 |
transcript.whisperx[27].text |
非常感謝我們委員對這個護理的狀況掌握得非常精闢令人敬佩那這個有關於這個部分臨床導視這部分是不一定要專任對我知道我剛剛說全職或兼任嘛對那另外就是說您提到的說我們提到的那個是不是我們另外來闢財源來希望那個離職因為那個孩子當時跟30歲結婚 |
transcript.whisperx[28].start |
640.302 |
transcript.whisperx[28].end |
665.258 |
transcript.whisperx[28].text |
他的生小孩的確是真的是兩頭煎熬有時候離開可是不要離開永遠離開所以部長這件事情我剛有講他邏輯很清楚就是說你們之前的報告也知道說資深離職的其實是其中一個重要人物如果他能夠在某一個小孩子比較大了不理你的時候那你當然就回歸他身上所以部長其實主要是兩個問題第一個是不是應該要利命財人去 |
transcript.whisperx[29].start |
666.178 |
transcript.whisperx[29].end |
687.73 |
transcript.whisperx[29].text |
吸引這些資深的 這個我們我們有在做喔我們有在做 對然後第二個所以我剛剛講的就是這個嘛就是說你們是不是要另辟財源讓這些讓九任獎金鼓勵他們留下來然後還有一個是吸引他們回流就吸引他們回流吸引他們回流都可以來演對不對那所以我想要講的事情是這件事情因為你們還沒執行嘛對不對這個計畫還沒執行對不對那個 |
transcript.whisperx[30].start |
693.317 |
transcript.whisperx[30].end |
721.433 |
transcript.whisperx[30].text |
如果你执行的话是不是应该要我其实想要这样说你们应该要去追踪成效然后滚动式的检讨因为这是一个必须要做的事情那卫福部我想要问一下这个卫福部刚刚大家很多人也提到你们公告统计护理人员平均薪资是7万但是这也很奇怪是主技处统计医疗保健行业每人月这个经常性薪资大概是5.9万那劳动部统计的是4.98万 |
transcript.whisperx[31].start |
722.714 |
transcript.whisperx[31].end |
739.087 |
transcript.whisperx[31].text |
那人力銀行的薪資調查台灣一年以下的護理師平均月薪更只有4.6萬所以我想這也是大家很好奇的你這個時候在那個情況之下你公布這個然後為什麼會跟其他的單位的數據差這麼多那 |
transcript.whisperx[32].start |
741.528 |
transcript.whisperx[32].end |
760.948 |
transcript.whisperx[32].text |
這個平均7萬的公告也讓很多的媒體或是這些社群媒體就說要來賽心之擔那根據我們大概了解的狀況算是資深的護理師都在5到6萬左右那所以請教部長這7萬到底是怎麼出來的那難道你當初看到這個數據的時候你不會也覺得說怎麼會跟想像中差了這麼多 |
transcript.whisperx[33].start |
762.489 |
transcript.whisperx[33].end |
778.88 |
transcript.whisperx[33].text |
的確我們看到那個各醫院那個一個網站讓他各醫院自己上去報有400多家醫院報的時候他所呈現出來的的確是有給我感覺surprise的你也覺得surprise嘛對不對以前好像 |
transcript.whisperx[34].start |
779.54 |
transcript.whisperx[34].end |
801.374 |
transcript.whisperx[34].text |
因為我感覺以前真的是偏低有這樣的數據我當然好奇嘛當然就是看它裡面是包括固定收入跟匯固定收入所以在醫院裡面它幾乎可能第一個它把所有的收入包括你譬如說報稅的時候的收入部長我想要講這件事你前面可能已經有解釋了我想要講一個重點 |
transcript.whisperx[35].start |
804.898 |
transcript.whisperx[35].end |
829.073 |
transcript.whisperx[35].text |
就是一定要先面對問題才能夠解決問題那你面對這個問題的時候你身為主管機關你應該要更精確的去了解其中的確切的數字所以這部分你們一定要回去改進然後才可以把這個確切數字搞清楚你也才知道如何對症下藥當然當然包圍我們只是公布這個網站而已啦 |
transcript.whisperx[36].start |
830.194 |
transcript.whisperx[36].end |
849.307 |
transcript.whisperx[36].text |
有些有些媒體有什麼就要去自己平經自己怎麼樣沒有我跟你講我們是公佈公佈那個是醫院舔的啦那這個當時112年的用意的確只是希望去求什麼護理人員去求求有所以你應該要回去回查就是到底這個數據到底精不精確會導致我已經今天已經講過了如果導致讓基層護理人員覺得我心情就不太管啊這個算法的不一樣所導致的困擾所以你現在要做的事情我在這邊跟大家道歉好 |
transcript.whisperx[37].start |
859.727 |
transcript.whisperx[37].end |
882.107 |
transcript.whisperx[37].text |
那但是請我們會再去釐清楚對你要去釐清楚這件事情而且我真的保證我們一定全力去增加不管是工作的環境尊嚴還有待遇很好剛剛我們是講待遇所以接下來就講工作環境嘛那台灣醫院的戶邊比也是遠高國際喔那業務量也很繁重那所以台灣醫學中心目前是說 |
transcript.whisperx[38].start |
883.376 |
transcript.whisperx[38].end |
912.394 |
transcript.whisperx[38].text |
大概全日护病比是1比9区域医院是1比12地区医院1比15那像反观国际上像我找到资料是澳洲公立医院的护病比是1比4那美国南加州的内外科病房是1比5我想这种工作负担的巨大差异就是你刚刚说的我们一定要改善我们工作环境的因素而且你改善除了要让他们流脂之外其实现在的这个数据也会严重的影响病人的就医的医疗品质 |
transcript.whisperx[39].start |
913.254 |
transcript.whisperx[39].end |
925.294 |
transcript.whisperx[39].text |
那我也想要跟你說一個根據一篇在2014年發表的這個Lancet的研究顯示護病比如果超過1比6的時候每增加一名病患死亡率會高7% |
transcript.whisperx[40].start |
927.318 |
transcript.whisperx[40].end |
944.319 |
transcript.whisperx[40].text |
所以這不僅是負擔過重的問題還是傷害國民健康安全的問題那我就想要請教啊那請問你們的三班護兵比現在的進度到底是什麼那你以前他們說要兩年內入法四年達標作為目標你們現在有辦法達成嗎這目標會 |
transcript.whisperx[41].start |
947.077 |
transcript.whisperx[41].end |
961.036 |
transcript.whisperx[41].text |
會沒有嗎?包委員我想要達到三班戶更比的一個比例甚至有更好的一個規定我想都是我們朝向的目標這中間必須第一個護理人力也要盡量我們來努力讓他加強 |
transcript.whisperx[42].start |
961.937 |
transcript.whisperx[42].end |
970.567 |
transcript.whisperx[42].text |
那但是我們在三班互動筆的努力之下的確我們在從譬如說醫學中心的三班整體達到利用我們從去年的三頁到今年的一頁從36%沒有那你可以達成嗎59%你們原本目標兩年內入法四年內達標可以做到嗎 |
transcript.whisperx[43].start |
977.575 |
transcript.whisperx[43].end |
1000.138 |
transcript.whisperx[43].text |
我想這個部分可以做到嗎應該重點是來增加護理的人力是不然的話不然的話你達不到標準所以我其實我整個邏輯是有層次的所以我們一步一步來啦國家的進步也希望大家量度所以你也要盡速提高護理人員的待遇對不對我們日以繼夜來努力啦所以你要有具體的方案你到底要怎麼幫他加喔 |
transcript.whisperx[44].start |
1000.538 |
transcript.whisperx[44].end |
1022.596 |
transcript.whisperx[44].text |
所以基本上現在剛剛講到針對護理人員的條件惡化除了你們現在三班護病比沒有達標或者是你沒有在不知道你到底可不可以達標的情況之下已經改善非常多了我想跟你說還有跨科資源的政策也讓他們壓力更大那比如說比起外國美國他可能大部分護理師一週三到四天所以相對我們就是 |
transcript.whisperx[45].start |
1023.317 |
transcript.whisperx[45].end |
1047.402 |
transcript.whisperx[45].text |
有這樣的問題所以你們是不是也應該要有計劃的建立護理人員的勞動權益保障機制也確保合理的工時當然當然當然保合理的工作負荷然後建立明確的申訴管道和獎懲制度好這個部分因為時間關係我給你討論護理人員真的就好像我們自己的女兒啦愛惜都來不及了但不能嘴巴上這樣講啊這個問題不是今天才發生啦部長我們一定盡量讓她一個更好的環境 |
transcript.whisperx[46].start |
1047.762 |
transcript.whisperx[46].end |
1067.785 |
transcript.whisperx[46].text |
部長你不能喊口號因為這就是這就是已經執行了很久所以部長我要跟你說一步一步非常的努力對 你剛剛這樣講就是要很重視所以現在有幾個建議是不是具體的行動立即編列一些專項的預算儘速的大幅提高護理人員的薪資待遇確保新進的人員至少也可以達到 |
transcript.whisperx[47].start |
1069.43 |
transcript.whisperx[47].end |
1085.167 |
transcript.whisperx[47].text |
那個年薪台幣70萬以上我想這是護理師公會也很希望看到的哪有加速我們的友善職場所以你的三班戶並比的立法進程你不能夠說因為人你一直找不足就用這個理由那這樣永遠都找不足你永遠就沒辦法推動嘛 |
transcript.whisperx[48].start |
1085.928 |
transcript.whisperx[48].end |
1106.934 |
transcript.whisperx[48].text |
那所以你應該這雞生蛋誕生雞的問題嘛你是不是應該要訂定明確的時間表跟你們這個罰則或時間到了有什麼樣的責任要追究你總是要互相的去給自己一個目標才可以做到嘛那還有第三個是增加9任的獎金鼓勵資深的護理師留任或生育後回任 |
transcript.whisperx[49].start |
1108.212 |
transcript.whisperx[49].end |
1132.753 |
transcript.whisperx[49].text |
第四個 建立護理師人員的職涯發展跟專業自主的制度性保障提升護理專業在醫療體系中的地位如果部長再不趕快的有效的採取這個措施我們大家都看到已經面臨崩潰的台灣的醫療體系它不只是護理人員而已它也是讓百姓面對到醫療品質不佳的狀況而且其實我要跟你講的就是這個 |
transcript.whisperx[50].start |
1133.433 |
transcript.whisperx[50].end |
1145.064 |
transcript.whisperx[50].text |
本席在去年一年多前我面對陳建仁院長的時候就已經跟他講過了這個問題當時還要被他三娘教子就說你不專業結果一年後還是發生了 |
transcript.whisperx[51].start |
1146.209 |
transcript.whisperx[51].end |
1175.455 |
transcript.whisperx[51].text |
對不對所以這個東西我覺得不能政治化部長請你我相信你也是願意做事的部長但是我覺得你要正視現在亡羊補牢還有一點機會是希望你可以拿出魄力解決問題是的我想委員提出的這些訴求我們一定努力來研擬來一直一直來盡量把它達成這樣子好謝謝謝謝謝謝廖委員去年被 |