IVOD_ID |
159083 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/159083 |
日期 |
2025-03-13 |
會議資料.會議代碼 |
委員會-11-3-20-2 |
會議資料.會議代碼:str |
第11屆第3會期財政委員會第2次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
3 |
會議資料.會次 |
2 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第3會期財政委員會第2次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-03-13T10:25:36+08:00 |
結束時間 |
2025-03-13T10:38:29+08:00 |
影片長度 |
00:12:53 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770f007f8cc6d931513de83d902c8d6dd6c2f83dc853112caf4556c4274c4566c6a95ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
李彥秀 |
委員發言時間 |
10:25:36 - 10:38:29 |
會議時間 |
2025-03-13T09:00:00+08:00 |
會議名稱 |
立法院第11屆第3會期財政委員會第2次全體委員會議(事由:邀請中央銀行楊總裁金龍率所屬單位主管暨財金資訊股份有限公司董事長列席業務報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
3.99659375 |
transcript.pyannote[0].end |
5.56596875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
6.32534375 |
transcript.pyannote[1].end |
7.18596875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
7.60784375 |
transcript.pyannote[2].end |
7.89471875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
12.63659375 |
transcript.pyannote[3].end |
13.31159375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
13.37909375 |
transcript.pyannote[4].end |
13.73346875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
13.90221875 |
transcript.pyannote[5].end |
76.86284375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
19.92659375 |
transcript.pyannote[6].end |
20.36534375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
44.90159375 |
transcript.pyannote[7].end |
45.35721875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
57.62534375 |
transcript.pyannote[8].end |
58.11471875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
77.03159375 |
transcript.pyannote[9].end |
77.62221875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
77.94284375 |
transcript.pyannote[10].end |
117.37971875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
91.22346875 |
transcript.pyannote[11].end |
91.66221875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
99.18846875 |
transcript.pyannote[12].end |
99.22221875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
117.37971875 |
transcript.pyannote[13].end |
120.73784375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
120.94034375 |
transcript.pyannote[14].end |
127.94346875 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
128.29784375 |
transcript.pyannote[15].end |
132.53346875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
133.14096875 |
transcript.pyannote[16].end |
135.31784375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
135.80721875 |
transcript.pyannote[17].end |
137.00534375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
137.08971875 |
transcript.pyannote[18].end |
138.22034375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
138.57471875 |
transcript.pyannote[19].end |
144.56534375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
144.56534375 |
transcript.pyannote[20].end |
144.59909375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
144.59909375 |
transcript.pyannote[21].end |
144.88596875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
144.88596875 |
transcript.pyannote[22].end |
146.20221875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
146.20221875 |
transcript.pyannote[23].end |
159.51659375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
160.03971875 |
transcript.pyannote[24].end |
162.06471875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
161.47409375 |
transcript.pyannote[25].end |
163.60034375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
163.02659375 |
transcript.pyannote[26].end |
168.73034375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
167.43096875 |
transcript.pyannote[27].end |
183.95159375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
185.06534375 |
transcript.pyannote[28].end |
188.81159375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
185.94284375 |
transcript.pyannote[29].end |
194.76846875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
193.73909375 |
transcript.pyannote[30].end |
194.26221875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
195.40971875 |
transcript.pyannote[31].end |
196.72596875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
196.86096875 |
transcript.pyannote[32].end |
204.03284375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
204.20159375 |
transcript.pyannote[33].end |
205.02846875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
206.37846875 |
transcript.pyannote[34].end |
211.76159375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
212.18346875 |
transcript.pyannote[35].end |
214.56284375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
215.10284375 |
transcript.pyannote[36].end |
219.16971875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
219.79409375 |
transcript.pyannote[37].end |
220.80659375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
220.80659375 |
transcript.pyannote[38].end |
275.43096875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
221.75159375 |
transcript.pyannote[39].end |
222.15659375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
225.59909375 |
transcript.pyannote[40].end |
226.83096875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
267.38159375 |
transcript.pyannote[41].end |
267.56721875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
267.82034375 |
transcript.pyannote[42].end |
268.12409375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
275.48159375 |
transcript.pyannote[43].end |
275.56596875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
275.56596875 |
transcript.pyannote[44].end |
306.49784375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
275.58284375 |
transcript.pyannote[45].end |
275.86971875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
306.56534375 |
transcript.pyannote[46].end |
318.31034375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
312.62346875 |
transcript.pyannote[47].end |
312.64034375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
318.52971875 |
transcript.pyannote[48].end |
322.63034375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
322.63034375 |
transcript.pyannote[49].end |
322.68096875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
323.00159375 |
transcript.pyannote[50].end |
326.17409375 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
326.71409375 |
transcript.pyannote[51].end |
328.75596875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
328.85721875 |
transcript.pyannote[52].end |
329.58284375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
330.15659375 |
transcript.pyannote[53].end |
332.55284375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
332.67096875 |
transcript.pyannote[54].end |
334.22346875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
334.32471875 |
transcript.pyannote[55].end |
335.72534375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
335.10096875 |
transcript.pyannote[56].end |
338.22284375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
338.39159375 |
transcript.pyannote[57].end |
339.21846875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
339.50534375 |
transcript.pyannote[58].end |
342.59346875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
341.32784375 |
transcript.pyannote[59].end |
341.59784375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
342.18846875 |
transcript.pyannote[60].end |
342.45846875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
342.99846875 |
transcript.pyannote[61].end |
343.72409375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
344.24721875 |
transcript.pyannote[62].end |
347.52096875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
346.01909375 |
transcript.pyannote[63].end |
349.41096875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
350.03534375 |
transcript.pyannote[64].end |
358.47284375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
357.42659375 |
transcript.pyannote[65].end |
360.29534375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
359.53596875 |
transcript.pyannote[66].end |
371.02784375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
371.65221875 |
transcript.pyannote[67].end |
383.16096875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
383.39721875 |
transcript.pyannote[68].end |
396.77909375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
396.27284375 |
transcript.pyannote[69].end |
400.82909375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
400.06971875 |
transcript.pyannote[70].end |
400.89659375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
401.16659375 |
transcript.pyannote[71].end |
438.22409375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
404.32221875 |
transcript.pyannote[72].end |
404.57534375 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
436.94159375 |
transcript.pyannote[73].end |
475.02846875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
456.82034375 |
transcript.pyannote[74].end |
457.73159375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
458.96346875 |
transcript.pyannote[75].end |
461.79846875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
475.02846875 |
transcript.pyannote[76].end |
475.29846875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
476.04096875 |
transcript.pyannote[77].end |
476.05784375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
476.05784375 |
transcript.pyannote[78].end |
482.16659375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
482.87534375 |
transcript.pyannote[79].end |
495.53159375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
496.10534375 |
transcript.pyannote[80].end |
511.34346875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
502.02846875 |
transcript.pyannote[81].end |
502.51784375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
511.88346875 |
transcript.pyannote[82].end |
513.43596875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
514.00971875 |
transcript.pyannote[83].end |
530.69909375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
529.72034375 |
transcript.pyannote[84].end |
539.38971875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
540.18284375 |
transcript.pyannote[85].end |
540.21659375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
540.21659375 |
transcript.pyannote[86].end |
540.25034375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
540.25034375 |
transcript.pyannote[87].end |
543.84471875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
540.36846875 |
transcript.pyannote[88].end |
540.48659375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
541.39784375 |
transcript.pyannote[89].end |
550.67909375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
550.89846875 |
transcript.pyannote[90].end |
557.46284375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
556.78784375 |
transcript.pyannote[91].end |
561.54659375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
561.54659375 |
transcript.pyannote[92].end |
575.77221875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
565.81596875 |
transcript.pyannote[93].end |
567.08159375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
568.39784375 |
transcript.pyannote[94].end |
569.47784375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
575.77221875 |
transcript.pyannote[95].end |
579.90659375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
578.32034375 |
transcript.pyannote[96].end |
595.65096875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
593.22096875 |
transcript.pyannote[97].end |
596.81534375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
595.83659375 |
transcript.pyannote[98].end |
597.76034375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
596.98409375 |
transcript.pyannote[99].end |
613.26846875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
607.17659375 |
transcript.pyannote[100].end |
609.11721875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
612.07034375 |
transcript.pyannote[101].end |
612.52596875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
612.61034375 |
transcript.pyannote[102].end |
612.71159375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
614.14596875 |
transcript.pyannote[103].end |
635.42534375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
635.66159375 |
transcript.pyannote[104].end |
648.03096875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
648.03096875 |
transcript.pyannote[105].end |
652.43534375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
651.42284375 |
transcript.pyannote[106].end |
652.95846875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
652.85721875 |
transcript.pyannote[107].end |
655.65846875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
655.65846875 |
transcript.pyannote[108].end |
662.86409375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
655.72596875 |
transcript.pyannote[109].end |
656.02971875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
657.12659375 |
transcript.pyannote[110].end |
657.59909375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
661.95284375 |
transcript.pyannote[111].end |
662.76284375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
662.91471875 |
transcript.pyannote[112].end |
668.12909375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
668.95596875 |
transcript.pyannote[113].end |
672.46596875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
672.97221875 |
transcript.pyannote[114].end |
676.02659375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
676.17846875 |
transcript.pyannote[115].end |
682.50659375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
678.79409375 |
transcript.pyannote[116].end |
695.95596875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
688.58159375 |
transcript.pyannote[117].end |
690.38721875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
695.95596875 |
transcript.pyannote[118].end |
707.22846875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
697.67721875 |
transcript.pyannote[119].end |
697.96409375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
698.14971875 |
transcript.pyannote[120].end |
699.95534375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
707.38034375 |
transcript.pyannote[121].end |
709.91159375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
707.93721875 |
transcript.pyannote[122].end |
713.13471875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
713.55659375 |
transcript.pyannote[123].end |
722.73659375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
717.96096875 |
transcript.pyannote[124].end |
718.63596875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
719.54721875 |
transcript.pyannote[125].end |
720.77909375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
722.97284375 |
transcript.pyannote[126].end |
726.24659375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
726.68534375 |
transcript.pyannote[127].end |
733.72221875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
734.92034375 |
transcript.pyannote[128].end |
734.97096875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
734.97096875 |
transcript.pyannote[129].end |
735.64596875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
735.64596875 |
transcript.pyannote[130].end |
735.96659375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
735.96659375 |
transcript.pyannote[131].end |
739.13909375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
736.03409375 |
transcript.pyannote[132].end |
737.92409375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
739.13909375 |
transcript.pyannote[133].end |
739.18971875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
739.18971875 |
transcript.pyannote[134].end |
739.39221875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
739.51034375 |
transcript.pyannote[135].end |
760.62096875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
741.65346875 |
transcript.pyannote[136].end |
743.71221875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
744.80909375 |
transcript.pyannote[137].end |
745.46721875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
761.00909375 |
transcript.pyannote[138].end |
774.28971875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
768.85596875 |
transcript.pyannote[139].end |
769.61534375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
769.98659375 |
transcript.pyannote[140].end |
774.27284375 |
transcript.whisperx[0].start |
4.149 |
transcript.whisperx[0].end |
6.379 |
transcript.whisperx[0].text |
總裁幫他喝口水再上來請總裁請好 |
transcript.whisperx[1].start |
14.68 |
transcript.whisperx[1].end |
29.647 |
transcript.whisperx[1].text |
我今天問題非常非常多因為時間非常短我就直接進入我的課題央行的黃金儲備一向都很少人關注但是黃金今年被大家討論很多我們央行的黃金儲備將近423公噸其中有410公噸是作為發行的準備是完全不會動的 |
transcript.whisperx[2].start |
36.73 |
transcript.whisperx[2].end |
48.58 |
transcript.whisperx[2].text |
其餘的部分我們每年都會每四年總統副總統就任會做一些紀念幣的這個儲幣的來處理那我們目前央行黃金儲備大概有1358萬盎司市值達到1.3兆新台幣我們的帳面 |
transcript.whisperx[3].start |
55.146 |
transcript.whisperx[3].end |
76.022 |
transcript.whisperx[3].text |
大赚超过1400亿元因为最近黄金都有在涨价那我们在全球的黄金排名也达到第13名过去这几年无论是大陆中国大陆他在4月份今年也扩大黄金的储备包括波兰央行去年也买了90吨的黄金 |
transcript.whisperx[4].start |
78.204 |
transcript.whisperx[4].end |
96.06 |
transcript.whisperx[4].text |
總裁,我有關注到,您有提到我們跟美國的貿易的順差我們應該可以多買一些軍品、農產品、能源這些來平衡我們的貿易順差在1980到1989年代,當時我們其實有很大的貿易順差那時候廣場協議,當時政府就說好,我們買黃金 |
transcript.whisperx[5].start |
103.907 |
transcript.whisperx[5].end |
131.97 |
transcript.whisperx[5].text |
我覺得現在看起來是家惠子孫所以這件事情你覺得我們有沒有可能在貿易順差我們也來買一些黃金有沒有可能你對這件事情的看法如何基本上就是說我們為了平衡美國的順差我們來買黃金好像這個好像也沒有就是說是很好的一個 |
transcript.whisperx[6].start |
133.291 |
transcript.whisperx[6].end |
159.427 |
transcript.whisperx[6].text |
很好的一個措施啦你關什麼基本上美國好像也不認為就是說你就是買黃金來平衡它的那個但美國同不同意是一個關鍵啦對不過就是說這個就涉及到就是說中央銀行就是說我們用買黃金的方式來平衡我們的貿易的順差好像也很少是用這種方式的 |
transcript.whisperx[7].start |
161.947 |
transcript.whisperx[7].end |
183.396 |
transcript.whisperx[7].text |
當時是沒有錯啦當時這個政策現在看起來是對的因為我們的黃金的儲值很多啊是啦當然啦不過就是說時空的情況是不大一樣的那個時候呢是購買黃金就是說要平衡中美之間的一個順差但是那個時候據我了解他也沒有承認 |
transcript.whisperx[8].start |
185.838 |
transcript.whisperx[8].end |
204.432 |
transcript.whisperx[8].text |
只是說我們現在的平衡貿易順差的狀況之前你提到那三大項那你覺得真的有辦法解決嗎所以我在講到這個的時候我才剛剛也在講這個問題就是說基本上我們 |
transcript.whisperx[9].start |
206.414 |
transcript.whisperx[9].end |
223.123 |
transcript.whisperx[9].text |
那美國跟中國大陸美國跟墨西哥跟加拿大的順差的問題跟美國跟我們台灣的一個逆差的問題是不大一樣的是不大一樣的我同意啊因為川普 |
transcript.whisperx[10].start |
224.144 |
transcript.whisperx[10].end |
247.496 |
transcript.whisperx[10].text |
他要一國一國來談所以我們要因應我們必須要好幾道不同的策略跟版本接下來總裁我也要請教你因為國際上面臨川普的多變還有我們自己國內的狀況無論是川普2.0或者是我們接下來電價調漲接下來台灣整體的經濟景氣面對的是外有狼內有虎的狀態 |
transcript.whisperx[11].start |
248.757 |
transcript.whisperx[11].end |
273.035 |
transcript.whisperx[11].text |
那我們未來怎麼樣因應所以在這一次今年度的整個我們3月20號要召開的禮監事會大家都非常關注因為到底升息或降息或者是升多少這都會是代表接下來景氣大家都會用這個來去做最後的觀察那當然美國的狀況主計處在今年也下修2月份下修我們經濟成長到3.14 |
transcript.whisperx[12].start |
276.778 |
transcript.whisperx[12].end |
302.92 |
transcript.whisperx[12].text |
我們光看美國就好了就是說美國過去這一年的通膨就未來一年的通膨會達到4.3%4.3%這個數字其實是非常可怕的所有物價通膨的狀態我們都說超過2已經是一個人民有感更何況它接下來會達到4.3甚至有很多學者專家都說美國市場更可能會引發停滯性的通膨 |
transcript.whisperx[13].start |
304.221 |
transcript.whisperx[13].end |
327.089 |
transcript.whisperx[13].text |
那這個美國通膨的影響當然對全世界都會有影響因為包括台灣的物價也會受到衝擊那我想請教總裁你覺得川普在上任之後哪一個政策對台灣的衝擊最大或者是我們要特別關注的我想主要的還是在半導體就是在半導體還是在半導體 |
transcript.whisperx[14].start |
330.253 |
transcript.whisperx[14].end |
337.32 |
transcript.whisperx[14].text |
哪一個政策是讓你最驚訝的你覺得在半導體在他的立場回歸到美國優先你覺得衝擊最大當然是在半導體我覺得還是在半導體 |
transcript.whisperx[15].start |
350.083 |
transcript.whisperx[15].end |
370.02 |
transcript.whisperx[15].text |
因為就是說為什麼我剛剛也在講我們對美國的順差主要的是資通信我們怎麼因應你覺得對我們衝擊最大所以你看看就是說你看看就是說川普的在在那個的在最近的時候他都一直講就是說是台灣呢拖走了他的那個半導體的產業 |
transcript.whisperx[16].start |
371.701 |
transcript.whisperx[16].end |
384.634 |
transcript.whisperx[16].text |
但是呢我們的台積電說他要去增加投資1000億然後要增加他本來就650億了所以之後呢他就改口了他又改口什麼他就說 |
transcript.whisperx[17].start |
388.457 |
transcript.whisperx[17].end |
413.258 |
transcript.whisperx[17].text |
台灣呢他就好像很滿意啦他就很滿意而且他改口他也不講說我們拖了他的這個產業但是他下一步他可能隨時會變我再下一個問題目前看起來半導體對我們衝擊是最大但是下一個包括關稅的出手匯率關稅其實都是我們有可能成為下一個目標 |
transcript.whisperx[18].start |
414.099 |
transcript.whisperx[18].end |
432.127 |
transcript.whisperx[18].text |
所以因為他的百變隨時想到什麼或下一步他要做什麼我們永遠不會知道所以我們必須要好幾套因應的版本那面對接下來的關稅其他的關稅總裁你覺得台灣面對墨西哥跟加拿大我們會不會成為台灣有沒有可能變成下一個目標當然我們要做準備 |
transcript.whisperx[19].start |
433.348 |
transcript.whisperx[19].end |
453.89 |
transcript.whisperx[19].text |
如果我們是下一個目標的話你覺得我們的一一策略應該是做什麼樣的策略去做挑戰所以我就說我們的報告裡面也有談到就是說在我們十三頁裡面就是說他除了他對墨西哥對加拿大還有對中國中國大陸的一個擴增關稅那另外呢 |
transcript.whisperx[20].start |
454.551 |
transcript.whisperx[20].end |
473.948 |
transcript.whisperx[20].text |
他對醫藥品我們十三類我知道總裁因為我們時間快到了我們的因應策略到底是什麼所以我們在這邊要表達的就是說事實上在這裡面我們的半導體是比較對我們的影響是比較大但是基本上我們出國到美國的半導體不多 |
transcript.whisperx[21].start |
476.79 |
transcript.whisperx[21].end |
493.855 |
transcript.whisperx[21].text |
那如果其他關稅增加的話對我們當然有影響這個還會刺激其他的就是說半導體到美國之後它的上下游產業可能也都會跟著走了對我們會有其他的衝擊在那整個經濟的循環包括通膨的影響很多 |
transcript.whisperx[22].start |
496.355 |
transcript.whisperx[22].end |
508.789 |
transcript.whisperx[22].text |
企業它可能會減少投資或停看停在這個階段它可能停看停它會減少投資造成減少消費包括經濟的蕭條包括我們的供應鏈可能會有移轉的狀況那你覺得 |
transcript.whisperx[23].start |
512.412 |
transcript.whisperx[23].end |
538.724 |
transcript.whisperx[23].text |
這個間接對台灣當然有影響那我們的因應你會不會擔心就是說全球化跟自由化的貿易已經死了就以川普這樣的執行方式還有他的思考邏輯我們過去都講全球化自由化你會不會擔心全球化跟自由化已經死了我跟委員報告基本上我還是都是非常相信我們的企業我們的產業因為我們的企業非常靈活 |
transcript.whisperx[24].start |
540.208 |
transcript.whisperx[24].end |
559.16 |
transcript.whisperx[24].text |
所以你覺得你反對全球化跟自由化貿易會死你看看就是說在川普1.0的時候事實上川普1.0的時候是我們受益我們也沒有受害只是說他的2.0跟1.0是完全不一樣因為他是比較全面那你覺得川普的2.0對台灣經濟的動能會不會有衝擊 |
transcript.whisperx[25].start |
561.681 |
transcript.whisperx[25].end |
564.444 |
transcript.whisperx[25].text |
以目前來講的話呢到目前為止的話呢我們覺得不要講目前因為經濟都要看中長期中長期有些時候中長期是不大容易去預測的啦 |
transcript.whisperx[26].start |
576.818 |
transcript.whisperx[26].end |
595.223 |
transcript.whisperx[26].text |
總裁你是央行總裁你當然要去做準備跟預測啊因為到目前為止呢川普的政策他的實施的具體的一個具體的措施是什麼到目前為止還不是非常的明朗但是總裁我要一下提醒因為這個議題我們在這邊做打住我覺得因為對於接下來緊急整個全世界的緊急台灣的動能 |
transcript.whisperx[27].start |
604.546 |
transcript.whisperx[27].end |
611.554 |
transcript.whisperx[27].text |
經濟的影響跟動能我覺得我們還是要有好幾套準備的模式包括我們的通紅的影響 |
transcript.whisperx[28].start |
614.335 |
transcript.whisperx[28].end |
627.247 |
transcript.whisperx[28].text |
總裁你會不會覺得說對這些景氣循環的狀況你是身經百戰但是接下來到底我們去年我稱呼你是Mr. |
transcript.whisperx[29].start |
627.247 |
transcript.whisperx[29].end |
633.893 |
transcript.whisperx[29].text |
Surprise因為你有預防性的通膨你做了一個半碼的升息今年跟去年的狀況你覺得類不類似 |
transcript.whisperx[30].start |
637.921 |
transcript.whisperx[30].end |
652.324 |
transcript.whisperx[30].text |
基本上我們還是覺得我們的通膨是一直在下來的那現在比較大的一個挑戰是什麼通膨你覺得接下來也會往下降但是明年接下來我們四月份要調電價你有沒有跟經濟部這邊討論過都沒有討論過 |
transcript.whisperx[31].start |
658.365 |
transcript.whisperx[31].end |
664.191 |
transcript.whisperx[31].text |
有啦 大體上我們也知道就是說 有討論過沒有這麼大的事情沒有跟你討論 調25% |
transcript.whisperx[32].start |
669.456 |
transcript.whisperx[32].end |
672.117 |
transcript.whisperx[32].text |
變價調25%好像沒有吧有沒有跟你討論過那不是25%我們對不同的版本有一些準備不管調幾%對於通膨有一定的影響你同意嗎去年10月就調12.5%都有一定程度的影響 |
transcript.whisperx[33].start |
696.264 |
transcript.whisperx[33].end |
709.6 |
transcript.whisperx[33].text |
有啦 有啦 但是呢但是你有沒有預測過他是對企業啦那這一次要調的是對民生喔他對民生 民生的衝擊會比較大一點對啊 所以行政院有沒有跟你討論過行政院有沒有跟你討論過 |
transcript.whisperx[34].start |
714.024 |
transcript.whisperx[34].end |
732.818 |
transcript.whisperx[34].text |
我們也不必要就說討論了因為我們大體上也知道那你到底知道你是用多少%來預估35%嗎還是12%不過呢現在據我了解行政院還沒有決定就說要多少而且行政院認為就是說這個是他的那個委員會決定的 |
transcript.whisperx[35].start |
735.115 |
transcript.whisperx[35].end |
760.193 |
transcript.whisperx[35].text |
有委員決定就說要這樣我把它結束了我還是要提醒總我覺得內部還是要因為你畢竟是掌握經濟而且這個對通膨影響非常大你去年的升息半碼對預支通膨我覺得做得非常好因為連續過去三年我們雖然房價也在漲但是物價漲控制的我覺得相對是好的如果行政院 |
transcript.whisperx[36].start |
761.073 |
transcript.whisperx[36].end |
763.838 |
transcript.whisperx[36].text |
一直喊說要漲價 要漲到 民生電價要漲到25%如果連 都沒有跟你討論過 我覺得是博偶 博偶沒問題的謝謝 謝謝 謝謝李委員的質詢 |