iVOD / 159077

Field Value
IVOD_ID 159077
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159077
日期 2025-03-13
會議資料.會議代碼 委員會-11-3-26-2
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-03-13T10:11:24+08:00
結束時間 2025-03-13T10:24:20+08:00
影片長度 00:12:56
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770fc7058eacf6bb97550aae3c1a04a00b1bf83dc853112caf45ec1a1595b71728d95ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱鎮軍
委員發言時間 10:11:24 - 10:24:20
會議時間 2025-03-13T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第2次全體委員會議(事由:邀請衛生福利部部長就「有關全國急重症醫療量能」進行專題報告,並備質詢。 【如遇加開院會本次會議取消,不再另行通知】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 5.76846875
transcript.pyannote[0].end 7.87784375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 14.40846875
transcript.pyannote[1].end 15.80909375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 16.66971875
transcript.pyannote[2].end 22.18784375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 23.33534375
transcript.pyannote[3].end 24.02721875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 24.02721875
transcript.pyannote[4].end 25.09034375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 25.41096875
transcript.pyannote[5].end 25.44471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 25.44471875
transcript.pyannote[6].end 30.92909375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 29.14034375
transcript.pyannote[7].end 32.73471875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 32.73471875
transcript.pyannote[8].end 32.93721875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 32.93721875
transcript.pyannote[9].end 35.36721875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 36.27846875
transcript.pyannote[10].end 36.31221875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 36.31221875
transcript.pyannote[11].end 37.35846875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 37.91534375
transcript.pyannote[12].end 42.03284375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 39.38346875
transcript.pyannote[13].end 40.00784375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 40.90221875
transcript.pyannote[14].end 41.71221875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 42.20159375
transcript.pyannote[15].end 42.97784375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 42.97784375
transcript.pyannote[16].end 46.25159375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 46.63971875
transcript.pyannote[17].end 48.19221875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 48.96846875
transcript.pyannote[18].end 49.39034375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 50.33534375
transcript.pyannote[19].end 53.03534375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 53.03534375
transcript.pyannote[20].end 53.94659375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 54.99284375
transcript.pyannote[21].end 55.68471875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 55.85346875
transcript.pyannote[22].end 63.91971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 64.56096875
transcript.pyannote[23].end 69.97784375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 67.85159375
transcript.pyannote[24].end 68.69534375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 69.97784375
transcript.pyannote[25].end 70.92284375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 70.92284375
transcript.pyannote[26].end 70.95659375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 71.00721875
transcript.pyannote[27].end 72.91409375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 73.04909375
transcript.pyannote[28].end 73.97721875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 73.97721875
transcript.pyannote[29].end 74.02784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 74.02784375
transcript.pyannote[30].end 75.73221875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 75.20909375
transcript.pyannote[31].end 75.22596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 76.27221875
transcript.pyannote[32].end 81.48659375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 81.55409375
transcript.pyannote[33].end 86.63346875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 87.15659375
transcript.pyannote[34].end 92.03346875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 92.08409375
transcript.pyannote[35].end 95.59409375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 96.08346875
transcript.pyannote[36].end 97.39971875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 97.90596875
transcript.pyannote[37].end 99.54284375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 99.96471875
transcript.pyannote[38].end 100.90971875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 101.53409375
transcript.pyannote[39].end 101.97284375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 102.22596875
transcript.pyannote[40].end 103.91346875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 104.67284375
transcript.pyannote[41].end 110.32596875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 110.79846875
transcript.pyannote[42].end 113.29596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 114.15659375
transcript.pyannote[43].end 115.01721875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 115.60784375
transcript.pyannote[44].end 118.66221875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 119.43846875
transcript.pyannote[45].end 122.88096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 124.18034375
transcript.pyannote[46].end 124.33221875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 125.17596875
transcript.pyannote[47].end 130.32284375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 131.11596875
transcript.pyannote[48].end 134.03534375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 133.73159375
transcript.pyannote[49].end 133.86659375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 133.96784375
transcript.pyannote[50].end 134.00159375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 134.03534375
transcript.pyannote[51].end 135.30096875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 134.62596875
transcript.pyannote[52].end 135.21659375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 135.30096875
transcript.pyannote[53].end 144.24471875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 135.73971875
transcript.pyannote[54].end 138.84471875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 140.24534375
transcript.pyannote[55].end 140.36346875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 140.39721875
transcript.pyannote[56].end 140.46471875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 142.40534375
transcript.pyannote[57].end 142.75971875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 145.72971875
transcript.pyannote[58].end 145.96596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 145.96596875
transcript.pyannote[59].end 150.65721875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 147.06284375
transcript.pyannote[60].end 147.65346875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 152.24346875
transcript.pyannote[61].end 153.62721875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 154.63971875
transcript.pyannote[62].end 157.05284375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 157.35659375
transcript.pyannote[63].end 160.19159375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 160.19159375
transcript.pyannote[64].end 160.32659375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 160.56284375
transcript.pyannote[65].end 161.03534375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 161.03534375
transcript.pyannote[66].end 169.10159375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 162.41909375
transcript.pyannote[67].end 162.94221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 170.06346875
transcript.pyannote[68].end 170.89034375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 171.66659375
transcript.pyannote[69].end 172.72971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 173.33721875
transcript.pyannote[70].end 181.63971875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 177.18471875
transcript.pyannote[71].end 178.60221875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 182.23034375
transcript.pyannote[72].end 192.81096875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 193.14846875
transcript.pyannote[73].end 193.73909375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 193.73909375
transcript.pyannote[74].end 204.53909375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 193.77284375
transcript.pyannote[75].end 194.93721875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 202.12596875
transcript.pyannote[76].end 202.98659375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 204.79221875
transcript.pyannote[77].end 210.66471875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 211.33971875
transcript.pyannote[78].end 213.02721875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 213.02721875
transcript.pyannote[79].end 213.36471875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 213.36471875
transcript.pyannote[80].end 213.41534375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 213.41534375
transcript.pyannote[81].end 221.81909375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 221.81909375
transcript.pyannote[82].end 224.40096875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 221.83596875
transcript.pyannote[83].end 222.40971875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 224.87346875
transcript.pyannote[84].end 228.38346875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 229.44659375
transcript.pyannote[85].end 230.03721875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 230.03721875
transcript.pyannote[86].end 240.53346875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 241.14096875
transcript.pyannote[87].end 251.08034375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 249.78096875
transcript.pyannote[88].end 257.74596875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 256.96971875
transcript.pyannote[89].end 257.54346875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 258.18471875
transcript.pyannote[90].end 259.24784375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 259.24784375
transcript.pyannote[91].end 259.26471875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 259.48409375
transcript.pyannote[92].end 260.41221875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 259.80471875
transcript.pyannote[93].end 270.87471875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 270.31784375
transcript.pyannote[94].end 273.91221875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 274.35096875
transcript.pyannote[95].end 274.53659375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 274.53659375
transcript.pyannote[96].end 277.05096875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 274.62096875
transcript.pyannote[97].end 276.40971875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 277.27034375
transcript.pyannote[98].end 291.34409375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 280.94909375
transcript.pyannote[99].end 280.99971875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 281.03346875
transcript.pyannote[100].end 281.05034375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 281.82659375
transcript.pyannote[101].end 282.53534375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 291.54659375
transcript.pyannote[102].end 296.86221875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 293.26784375
transcript.pyannote[103].end 294.33096875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 294.60096875
transcript.pyannote[104].end 294.85409375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 295.96784375
transcript.pyannote[105].end 302.05971875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 302.86971875
transcript.pyannote[106].end 304.35471875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 304.35471875
transcript.pyannote[107].end 304.54034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 304.69221875
transcript.pyannote[108].end 304.72596875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 304.72596875
transcript.pyannote[109].end 305.02971875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 305.02971875
transcript.pyannote[110].end 305.73846875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 305.73846875
transcript.pyannote[111].end 315.32346875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 305.75534375
transcript.pyannote[112].end 306.81846875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 315.08721875
transcript.pyannote[113].end 327.45659375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 325.65096875
transcript.pyannote[114].end 339.58971875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 339.92721875
transcript.pyannote[115].end 342.25596875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 342.40784375
transcript.pyannote[116].end 347.06534375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 347.21721875
transcript.pyannote[117].end 352.02659375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 351.46971875
transcript.pyannote[118].end 351.52034375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 351.52034375
transcript.pyannote[119].end 351.87471875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 352.51596875
transcript.pyannote[120].end 352.95471875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 353.34284375
transcript.pyannote[121].end 360.91971875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 358.23659375
transcript.pyannote[122].end 359.45159375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 361.52721875
transcript.pyannote[123].end 366.69096875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 366.69096875
transcript.pyannote[124].end 366.74159375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 367.92284375
transcript.pyannote[125].end 368.02409375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 368.02409375
transcript.pyannote[126].end 369.28971875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 370.03221875
transcript.pyannote[127].end 392.23971875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 379.60034375
transcript.pyannote[128].end 381.76034375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 382.09784375
transcript.pyannote[129].end 383.90346875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 392.94846875
transcript.pyannote[130].end 397.43721875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 397.03221875
transcript.pyannote[131].end 397.16721875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 398.02784375
transcript.pyannote[132].end 400.35659375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 398.14596875
transcript.pyannote[133].end 415.74659375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 403.15784375
transcript.pyannote[134].end 403.25909375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 414.37971875
transcript.pyannote[135].end 424.35284375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 422.20971875
transcript.pyannote[136].end 422.71596875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 423.01971875
transcript.pyannote[137].end 425.29784375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 426.05721875
transcript.pyannote[138].end 426.07409375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 426.07409375
transcript.pyannote[139].end 427.13721875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 426.15846875
transcript.pyannote[140].end 426.36096875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 427.13721875
transcript.pyannote[141].end 427.96409375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 427.96409375
transcript.pyannote[142].end 428.50409375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 428.50409375
transcript.pyannote[143].end 428.55471875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 428.55471875
transcript.pyannote[144].end 428.70659375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 428.70659375
transcript.pyannote[145].end 428.79096875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 428.79096875
transcript.pyannote[146].end 428.84159375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 428.84159375
transcript.pyannote[147].end 431.87909375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 429.55034375
transcript.pyannote[148].end 437.09346875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 437.09346875
transcript.pyannote[149].end 437.53221875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 437.53221875
transcript.pyannote[150].end 438.59534375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 437.54909375
transcript.pyannote[151].end 437.73471875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 438.91596875
transcript.pyannote[152].end 447.84284375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 448.02846875
transcript.pyannote[153].end 453.02346875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 453.49596875
transcript.pyannote[154].end 455.57159375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 455.99346875
transcript.pyannote[155].end 456.68534375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 456.87096875
transcript.pyannote[156].end 459.97596875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 459.97596875
transcript.pyannote[157].end 460.00971875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 461.03909375
transcript.pyannote[158].end 461.05596875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 461.05596875
transcript.pyannote[159].end 462.52409375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 463.14846875
transcript.pyannote[160].end 469.67909375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 470.06721875
transcript.pyannote[161].end 487.71846875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 478.03221875
transcript.pyannote[162].end 481.64346875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 486.40221875
transcript.pyannote[163].end 487.00971875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 487.81971875
transcript.pyannote[164].end 489.00096875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 490.73909375
transcript.pyannote[165].end 493.75971875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 493.96221875
transcript.pyannote[166].end 494.02971875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 494.09721875
transcript.pyannote[167].end 502.88909375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 504.30659375
transcript.pyannote[168].end 508.32284375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 507.44534375
transcript.pyannote[169].end 520.59096875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 523.00409375
transcript.pyannote[170].end 524.38784375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 524.48909375
transcript.pyannote[171].end 532.67346875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 526.44659375
transcript.pyannote[172].end 527.74596875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 532.67346875
transcript.pyannote[173].end 534.10784375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 534.42846875
transcript.pyannote[174].end 589.13721875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 568.21221875
transcript.pyannote[175].end 568.88721875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 569.03909375
transcript.pyannote[176].end 572.41409375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 573.93284375
transcript.pyannote[177].end 574.10159375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 589.13721875
transcript.pyannote[178].end 589.18784375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 589.18784375
transcript.pyannote[179].end 589.42409375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 589.20471875
transcript.pyannote[180].end 589.52534375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 589.52534375
transcript.pyannote[181].end 589.82909375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 589.82909375
transcript.pyannote[182].end 593.94659375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 593.33909375
transcript.pyannote[183].end 596.42721875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 595.36409375
transcript.pyannote[184].end 599.02596875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 599.02596875
transcript.pyannote[185].end 601.03409375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 601.18596875
transcript.pyannote[186].end 605.45534375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 605.94471875
transcript.pyannote[187].end 606.77159375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 607.26096875
transcript.pyannote[188].end 617.68971875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 615.49596875
transcript.pyannote[189].end 621.95909375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 623.71409375
transcript.pyannote[190].end 624.05159375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 624.05159375
transcript.pyannote[191].end 624.72659375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 624.72659375
transcript.pyannote[192].end 628.00034375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 624.79409375
transcript.pyannote[193].end 625.06409375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 628.21971875
transcript.pyannote[194].end 629.01284375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 629.01284375
transcript.pyannote[195].end 629.13096875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 629.46846875
transcript.pyannote[196].end 629.70471875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 629.95784375
transcript.pyannote[197].end 629.97471875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 629.97471875
transcript.pyannote[198].end 629.99159375
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 629.99159375
transcript.pyannote[199].end 632.40471875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 632.97846875
transcript.pyannote[200].end 634.07534375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 635.25659375
transcript.pyannote[201].end 635.49284375
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 637.23096875
transcript.pyannote[202].end 637.97346875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 637.97346875
transcript.pyannote[203].end 638.02409375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 638.02409375
transcript.pyannote[204].end 638.96909375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 638.96909375
transcript.pyannote[205].end 639.03659375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 639.03659375
transcript.pyannote[206].end 639.96471875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 639.96471875
transcript.pyannote[207].end 640.03221875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 640.03221875
transcript.pyannote[208].end 640.97721875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 640.97721875
transcript.pyannote[209].end 641.02784375
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 641.02784375
transcript.pyannote[210].end 648.14909375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 642.29346875
transcript.pyannote[211].end 642.32721875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 642.32721875
transcript.pyannote[212].end 643.55909375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 643.55909375
transcript.pyannote[213].end 643.59284375
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 643.59284375
transcript.pyannote[214].end 643.66034375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 643.86284375
transcript.pyannote[215].end 644.20034375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 648.35159375
transcript.pyannote[216].end 656.04659375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 655.52346875
transcript.pyannote[217].end 658.69596875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 658.69596875
transcript.pyannote[218].end 659.91096875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 658.78034375
transcript.pyannote[219].end 658.81409375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 658.83096875
transcript.pyannote[220].end 660.40034375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 660.78846875
transcript.pyannote[221].end 669.96846875
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 661.71659375
transcript.pyannote[222].end 662.07096875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 669.96846875
transcript.pyannote[223].end 672.53346875
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 673.46159375
transcript.pyannote[224].end 686.75909375
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 683.46846875
transcript.pyannote[225].end 684.19409375
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 684.66659375
transcript.pyannote[226].end 686.74221875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 686.75909375
transcript.pyannote[227].end 688.69971875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 688.69971875
transcript.pyannote[228].end 691.39971875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 688.71659375
transcript.pyannote[229].end 689.25659375
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 689.25659375
transcript.pyannote[230].end 689.30721875
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 691.65284375
transcript.pyannote[231].end 696.63096875
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 691.78784375
transcript.pyannote[232].end 691.90596875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 695.38221875
transcript.pyannote[233].end 703.65096875
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 704.07284375
transcript.pyannote[234].end 707.98784375
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 708.08909375
transcript.pyannote[235].end 710.63721875
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 710.89034375
transcript.pyannote[236].end 719.74971875
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 720.22221875
transcript.pyannote[237].end 722.80409375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 723.15846875
transcript.pyannote[238].end 725.50409375
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 725.97659375
transcript.pyannote[239].end 730.12784375
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 730.60034375
transcript.pyannote[240].end 743.84721875
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 743.84721875
transcript.pyannote[241].end 755.67659375
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 756.06471875
transcript.pyannote[242].end 758.14034375
transcript.pyannote[243].speaker SPEAKER_01
transcript.pyannote[243].start 757.07721875
transcript.pyannote[243].end 758.37659375
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 758.37659375
transcript.pyannote[244].end 759.67596875
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 759.99659375
transcript.pyannote[245].end 763.03409375
transcript.pyannote[246].speaker SPEAKER_01
transcript.pyannote[246].start 763.21971875
transcript.pyannote[246].end 765.78471875
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 763.87784375
transcript.pyannote[247].end 764.38409375
transcript.pyannote[248].speaker SPEAKER_01
transcript.pyannote[248].start 767.50596875
transcript.pyannote[248].end 774.10409375
transcript.whisperx[0].start 5.779
transcript.whisperx[0].end 21.709
transcript.whisperx[0].text 好 我們有請我們的邱部長委員好 部長好我想請問一下 我們部裡面有一個次長叫測疫次長 你知道是誰嗎
transcript.whisperx[1].start 24.093
transcript.whisperx[1].end 47.024
transcript.whisperx[1].text 次長喔?我們衛福部有三位次長都是...你現在有帶手機嗎?我們幫他查一下手機收一下就知道啦喔 是現在我專心聆聽委員的指教不敢動用手機我跟你講就是我們林怡靜嘛 次長林靜儀齁 林靜儀次長那
transcript.whisperx[2].start 50.353
transcript.whisperx[2].end 63.238
transcript.whisperx[2].text 他今天沒來是怎麼樣?我聽說昨天召委有邀請他來嗎?對不起,因為時間有點緊,所以他今天有很多的行程各位都知道部長在這裡真的都要靠三位次長
transcript.whisperx[3].start 64.625
transcript.whisperx[3].end 84.986
transcript.whisperx[3].text 你也知道衛福部的業務太多了,有的社福那邊也要去所以是部長允許他不來就對了那我有跟趙偉親自請假,感謝趙偉那我知道他去年到現在有總共三次了去年點滴事件,點滴的事件他跟醫護對嗆
transcript.whisperx[4].start 87.528
transcript.whisperx[4].end 114.245
transcript.whisperx[4].text 這個某些人站著說話不腰疼你要的2000CC廠商沒在做改給你500CC堅持這樣說堅持這樣沒貨那最終的結果又是就是沒有嘛就是缺嘛那個總預算他當過立法委員還配合我們民進黨在做這個造謠帶風向更扯的是連數字都不看凍結預算
transcript.whisperx[5].start 116.206
transcript.whisperx[5].end 144.017
transcript.whisperx[5].text 不在乎什麼韌性國家醫療部長你也當過立法委員你認為他講的這個對嗎我想林次長也有針對他講的話有些不得體他都有深切檢討有嗎像上一次我們的行政院長也有特別要求要謹言慎行他已經三次了你們還繼續想保他
transcript.whisperx[6].start 147.045
transcript.whisperx[6].end 168.249
transcript.whisperx[6].text 我們留下他的,我們是沒有人才了是嗎?衛福部沒有人了嗎?我們國家的人才很多啊對啊,那為什麼出了那麼多狀況,我們部裡面都沒有反應?還是你動不了他?他有不但聲勢減少,而且更加工作努力他的工作能力是專業的側翼?
transcript.whisperx[7].start 171.721
transcript.whisperx[7].end 178.345
transcript.whisperx[7].text 那個他的專業說實在比我強很多啦所以部長你不會當側翼不會當網軍就對了這點你輸他
transcript.whisperx[8].start 182.687
transcript.whisperx[8].end 209.823
transcript.whisperx[8].text 不是專業啦專業他的工作效率啦以及對事情的一個分析能力啦都給我非常都給我們衛福部很多的好啦我還是覺得啦部長你還是要多管管底下的人啦如果真的在這樣子不是人應該該讓他走就讓他走我們一定深切檢討謹言慎行那我再請問部長是那個前幾天你有到那個
transcript.whisperx[9].start 211.517
transcript.whisperx[9].end 228.117
transcript.whisperx[9].text 醫院去嘛 到急診室去看我真的實實是在那邊打氣絕對不是視察 我不需要視察因為數據 急診的數據都在我們手上所以你也相信我們現在這個急診室的狀況那個媒體拍的 你相信嗎
transcript.whisperx[10].start 230.803
transcript.whisperx[10].end 257.434
transcript.whisperx[10].text 額 陸委員報告齁我在台大醫院出入40年我的出入幾乎不是正門都是從急診旁邊側門急車路進去所以急診每天發生的情況齁我跟那個石崇良他也是台大急診出身的應該都深切的了解你應該都知道嘛深切的了解他的一個辛苦那你為什麼那時候去看的時候你去打氣然後然後搞得人仰馬翻所有人都要移走呢所有病人都要往
transcript.whisperx[11].start 258.695
transcript.whisperx[11].end 273.591
transcript.whisperx[11].text 那個 報告委員那個所有的所有的醫院都有發聲明說他們完全沒有去做任何完全都是正常的程序而且把時間點都寫得清清楚楚後來媒體再去啊他去了林口 台大
transcript.whisperx[12].start 274.712
transcript.whisperx[12].end 301.758
transcript.whisperx[12].text 我沒有去林河長庚林河長庚永遠都是非常擁擠的但是因為時間的關係我已經到我本來沒有要去看雙河啦但是到已經四點多的時候我想說雙河還是聽說也是也是屬於比較擁擠的以後要去的時候那個時候才打電話跟他說要去以後如果你要去視察這個你上我車我們直接上你也不要問我去哪裡我帶你去看可以嗎
transcript.whisperx[13].start 302.93
transcript.whisperx[13].end 320.362
transcript.whisperx[13].text 我可以隨時配合委員的如果可以的話那個古代青菜大臣要微服出訪他一定不會驚動地方這樣我們才看得到民間的真正的狀況這樣好不好我沒有說實在我不是去視察我是真的去打氣而已啦然後
transcript.whisperx[14].start 321.022
transcript.whisperx[14].end 339.245
transcript.whisperx[14].text 也給那些在努力的不管是給他院長督導督導你也是醫生啦我相信你也知道說我們醫院為什麼要分科那護理人員也是啦那急診需要內科床位內科床位滿床的時候婦婦產科有床
transcript.whisperx[15].start 340.146
transcript.whisperx[15].end 368.755
transcript.whisperx[15].text 內科病人可能就會轉到婦產科你要醫護人員去執行他不熟悉的業務這樣對醫護人員其實來講說他的壓力是非常非常的大啦這個不是比喻這是現實發生的狀況那我也聽說你們說要推這個早期出院在宅接受治療照顧這個有嗎那人力呢有想過嗎一個團隊出去車程一天那個要算車程他一天能夠去幾家好這個我想
transcript.whisperx[16].start 370.06
transcript.whisperx[16].end 391.972
transcript.whisperx[16].text Hospital at home就是說我真的很感佩委員對這個醫療的了解跟關心那這個是其實在國際已經推很久了我知道啦但是我們現況我們以台灣的現況來講我們僅有的人力就是要去做更有效率的事情如果讓我們一切都站在病人的立場如果他只是為了一個打個抗生素
transcript.whisperx[17].start 394.119
transcript.whisperx[17].end 410.633
transcript.whisperx[17].text 這個我想大家都很有經驗我們也常常在服務打個抗生素如果一定要急診打一個禮拜大概就您的想法跟用意出發點我覺得都不錯但是我覺得要回歸現實面就是說我們如果做這件事情的時候那如果這些人配置在醫院
transcript.whisperx[18].start 411.675
transcript.whisperx[18].end 425.198
transcript.whisperx[18].text 他又可以照顧多少治療的這個患者包括委員我們這個不只醫院的團隊我們的基層團隊我們也希望地區醫院人力比較如果人力比較夠都可以投入這樣的我們現在的重點就是沒有人
transcript.whisperx[19].start 426.549
transcript.whisperx[19].end 449.826
transcript.whisperx[19].text 不是沒有床有時候是不均的問題因為我們自己當民意代表我們每天可能要接幾十通的電話六十通電話就是沒有床的事情我們也很痛苦所以我們在去年就一直希望把健保點子提高讓醫護人員能夠留下來但是我們部裡面它又自動打折了我請問部長你那天有講到說
transcript.whisperx[20].start 453.547
transcript.whisperx[20].end 464.217
transcript.whisperx[20].text 你突然公布說我們護理人員的薪資的數據你的目的是什麼你是說有7萬嗎是這樣子各位報告這個網站其實在112年的11月就已經
transcript.whisperx[21].start 470.488
transcript.whisperx[21].end 488.69
transcript.whisperx[21].text 各醫院有400多家的醫院填上去那我在確認當時照護師邀請各醫院填上去的目的事實上不是這樣子啊是說是希望能夠讓護理人員知道各個醫院的薪資是怎麼樣可是你7萬是怎麼來的那當然是
transcript.whisperx[22].start 491.246
transcript.whisperx[22].end 502.543
transcript.whisperx[22].text 包委你可以看一下這裡有個非公子齁如果是年資一年以下的最低值其實是四萬二也是相當低啦對啊所以我要問的是七萬是怎麼來的
transcript.whisperx[23].start 504.723
transcript.whisperx[23].end 519.518
transcript.whisperx[23].text 所有的數據都是醫院他們那邊填的我們後來104薪資情報顯示一年以下的護理師年平均才58.4萬一到三年才達到62.5萬薪資根本就沒有你說的7萬
transcript.whisperx[24].start 524.957
transcript.whisperx[24].end 538.89
transcript.whisperx[24].text 七萬是因為那個網站上面我本來以為部長你說的七萬是今年你要把它調到七萬是這樣嗎這個是醫院他把固定收入跟會固定收入通通加起來除以二
transcript.whisperx[25].start 539.911
transcript.whisperx[25].end 567.247
transcript.whisperx[25].text 的一個數字的成績我拜託委員齁能夠上一個一照護師的網站比這個更詳細啦他裡面有寫各個醫院400多家醫院裡面的所有薪資我覺得那個薪資我問過所有醫院的院長他們說他們哪裡敢造假齁但是只是呈現方式的不一樣因為他呈現的是可能把所有的所有的醫院支出給護理人員的都把他加進去啦齁
transcript.whisperx[26].start 568.368
transcript.whisperx[26].end 595.898
transcript.whisperx[26].text 對啊所以真正護理的願意我們現在問的是護理師拿到的我好像沒那麼高啊我的薪資就沒那麼高啊所以這樣的差距讓大家誤解我想我要我必須要真的感到抱歉那這個數據跟跟實際上拿的這個東西如果站在議案的立場他會覺得說這就我付出給護理同仁了嘛我看到我看到這7萬的數字這個部長宣布7萬的時候我很高興我猜我要我從來沒有寫過多少
transcript.whisperx[27].start 596.778
transcript.whisperx[27].end 616.17
transcript.whisperx[27].text 我要帶這些護理人員跟部長說謝謝你要把他調到7萬因為是有記者會說要尋找7萬我們只是把數據公費說實在如果能夠讓護理人員更高或達到這個數目是我們也是日夜以求的事情我們提到7年的1260億的計畫113年執行哪些
transcript.whisperx[28].start 623.712
transcript.whisperx[28].end 627.715
transcript.whisperx[28].text 不好意思7年那個1260億的計畫那個叫那個說像計畫嗎還是護理人員那個護理人員政策準備12年車輛車輛車類說像車類我想市長跟委員報告一下說像車類的一個做法
transcript.whisperx[29].start 648.41
transcript.whisperx[29].end 672.251
transcript.whisperx[29].text 我們12項策略有4項是有公務預算的有4項一個就是這就包含了三班醫護比入法嘛對對那現在做的怎麼樣夜班獎勵夜班獎勵三班先達標先獎勵那因為去年是3月1號開始執行所以去年有用了40億你們不是說要讓三班護病比這個入法嗎
transcript.whisperx[30].start 673.667
transcript.whisperx[30].end 691.068
transcript.whisperx[30].text 對我們先講因為現在如果要達到這樣的標準還要7000到8000人所以我們現在去年開始執行嘛就是因為人員不夠嘛對不對人員不夠所以你現在不能錄啊要增加的因為你錄了之後馬上這個船會關更多先獎勵然後朝著這個方向走這樣子
transcript.whisperx[31].start 691.764
transcript.whisperx[31].end 700.194
transcript.whisperx[31].text 所以我們第一階段一定是留了人才嘛去年我們又合訂政策準備中長城計畫護理人員的政策準備中長城計畫我們也編了248億每年68億
transcript.whisperx[32].start 711.948
transcript.whisperx[32].end 725.379
transcript.whisperx[32].text 每年68億 4年是275億也就是說我們家前項計畫是總共投資護理是248億那我請教部長這些計畫裡面哪些是護理人員直接能拿到的
transcript.whisperx[33].start 726.038
transcript.whisperx[33].end 741.869
transcript.whisperx[33].text 夜班獎其實這都要用在護理人員的這個都要用在護理人員的這個職場環境的改善那夜班獎勵是直接到護理人員的薪資裡面夜班獎勵那先達標先獎勵呢原則上是要給白班然後沒關係因為時間的問題啦時間的關係那你現在不用急著回答我你們把這個113年180億執行的成效
transcript.whisperx[34].start 756.198
transcript.whisperx[34].end 768.523
transcript.whisperx[34].text 多少錢花在什麼地方多少錢花在提升醫護人員的待遇把資料給我好嗎好沒問題這多久可以給我沒問題多久兩個禮拜內好謝謝部長好謝謝委員對護理職場的關心非常感謝