iVOD / 159072

Field Value
IVOD_ID 159072
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159072
日期 2025-03-13
會議資料.會議代碼 委員會-11-3-20-2
會議資料.會議代碼:str 第11屆第3會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-03-13T10:01:59+08:00
結束時間 2025-03-13T10:14:12+08:00
影片長度 00:12:13
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770f24be8779c04c581de83d902c8d6dd6c2f83dc853112caf452b572682c7da76a75ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 郭國文
委員發言時間 10:01:59 - 10:14:12
會議時間 2025-03-13T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第2次全體委員會議(事由:邀請中央銀行楊總裁金龍率所屬單位主管暨財金資訊股份有限公司董事長列席業務報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.18284375
transcript.pyannote[0].end 1.68471875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 3.42284375
transcript.pyannote[1].end 4.43534375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 10.94909375
transcript.pyannote[2].end 11.86034375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 12.40034375
transcript.pyannote[3].end 27.68909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 13.36221875
transcript.pyannote[4].end 13.88534375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 19.36971875
transcript.pyannote[5].end 20.19659375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 27.67221875
transcript.pyannote[6].end 28.07721875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 27.99284375
transcript.pyannote[7].end 76.10346875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 45.01971875
transcript.pyannote[8].end 47.29784375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 51.31409375
transcript.pyannote[9].end 52.27596875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 53.81159375
transcript.pyannote[10].end 54.03096875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 54.03096875
transcript.pyannote[11].end 54.30096875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 54.30096875
transcript.pyannote[12].end 54.35159375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 54.35159375
transcript.pyannote[13].end 54.36846875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 57.16971875
transcript.pyannote[14].end 57.22034375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 57.22034375
transcript.pyannote[15].end 57.77721875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 57.91221875
transcript.pyannote[16].end 58.04721875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 76.10346875
transcript.pyannote[17].end 76.35659375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 76.30596875
transcript.pyannote[18].end 139.48596875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 76.37346875
transcript.pyannote[19].end 76.39034375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 116.80596875
transcript.pyannote[20].end 116.97471875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 117.10971875
transcript.pyannote[21].end 118.13909375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 132.82034375
transcript.pyannote[22].end 133.05659375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 139.48596875
transcript.pyannote[23].end 139.73909375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 139.73909375
transcript.pyannote[24].end 147.18096875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 146.26971875
transcript.pyannote[25].end 146.42159375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 147.07971875
transcript.pyannote[26].end 147.46784375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 147.34971875
transcript.pyannote[27].end 153.79596875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 153.88034375
transcript.pyannote[28].end 173.70846875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 173.70846875
transcript.pyannote[29].end 173.91096875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 173.91096875
transcript.pyannote[30].end 186.12846875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 187.32659375
transcript.pyannote[31].end 194.53221875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 194.53221875
transcript.pyannote[32].end 201.01221875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 201.01221875
transcript.pyannote[33].end 209.11221875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 207.10409375
transcript.pyannote[34].end 207.23909375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 209.11221875
transcript.pyannote[35].end 209.41596875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 209.41596875
transcript.pyannote[36].end 213.87096875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 212.31846875
transcript.pyannote[37].end 218.81534375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 214.07346875
transcript.pyannote[38].end 215.17034375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 216.33471875
transcript.pyannote[39].end 227.97846875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 218.91659375
transcript.pyannote[40].end 219.35534375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 219.81096875
transcript.pyannote[41].end 220.46909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 222.19034375
transcript.pyannote[42].end 232.11284375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 232.21409375
transcript.pyannote[43].end 232.63596875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 233.00721875
transcript.pyannote[44].end 233.74971875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 234.39096875
transcript.pyannote[45].end 235.25159375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 235.60596875
transcript.pyannote[46].end 236.02784375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 236.02784375
transcript.pyannote[47].end 236.88846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 239.79096875
transcript.pyannote[48].end 244.06034375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 244.27971875
transcript.pyannote[49].end 248.17784375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 247.16534375
transcript.pyannote[50].end 255.97409375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 249.89909375
transcript.pyannote[51].end 250.20284375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 253.86471875
transcript.pyannote[52].end 253.93221875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 255.97409375
transcript.pyannote[53].end 262.16721875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 256.26096875
transcript.pyannote[54].end 256.59846875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 262.40346875
transcript.pyannote[55].end 262.69034375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 262.69034375
transcript.pyannote[56].end 274.11471875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 273.59159375
transcript.pyannote[57].end 274.50284375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 274.50284375
transcript.pyannote[58].end 291.68159375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 291.73221875
transcript.pyannote[59].end 292.69409375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 291.95159375
transcript.pyannote[60].end 292.30596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 292.86284375
transcript.pyannote[61].end 305.82284375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 301.40159375
transcript.pyannote[62].end 301.78971875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 306.36284375
transcript.pyannote[63].end 307.15596875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 307.32471875
transcript.pyannote[64].end 307.78034375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 307.78034375
transcript.pyannote[65].end 307.79721875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 307.81409375
transcript.pyannote[66].end 309.92346875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 310.17659375
transcript.pyannote[67].end 310.90221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 311.13846875
transcript.pyannote[68].end 312.25221875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 312.47159375
transcript.pyannote[69].end 312.82596875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 313.33221875
transcript.pyannote[70].end 314.20971875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 314.91846875
transcript.pyannote[71].end 316.50471875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 316.87596875
transcript.pyannote[72].end 318.24284375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 318.52971875
transcript.pyannote[73].end 320.36909375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 320.97659375
transcript.pyannote[74].end 327.86159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 328.41846875
transcript.pyannote[75].end 330.00471875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 330.61221875
transcript.pyannote[76].end 338.45909375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 338.69534375
transcript.pyannote[77].end 350.55846875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 351.14909375
transcript.pyannote[78].end 352.68471875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 353.17409375
transcript.pyannote[79].end 353.62971875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 354.42284375
transcript.pyannote[80].end 355.03034375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 355.38471875
transcript.pyannote[81].end 358.16909375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 358.03409375
transcript.pyannote[82].end 358.15221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 358.16909375
transcript.pyannote[83].end 358.45596875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 358.70909375
transcript.pyannote[84].end 373.15409375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 373.15409375
transcript.pyannote[85].end 373.47471875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 373.47471875
transcript.pyannote[86].end 383.97096875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 373.49159375
transcript.pyannote[87].end 373.50846875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 383.97096875
transcript.pyannote[88].end 384.17346875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 384.17346875
transcript.pyannote[89].end 385.82721875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 385.82721875
transcript.pyannote[90].end 386.23221875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 386.50221875
transcript.pyannote[91].end 388.30784375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 388.99971875
transcript.pyannote[92].end 390.56909375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 391.32846875
transcript.pyannote[93].end 394.34909375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 394.45034375
transcript.pyannote[94].end 395.53034375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 396.01971875
transcript.pyannote[95].end 411.73034375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 404.10284375
transcript.pyannote[96].end 404.45721875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 405.03096875
transcript.pyannote[97].end 407.03909375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 407.03909375
transcript.pyannote[98].end 409.28346875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 412.20284375
transcript.pyannote[99].end 413.19846875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 413.19846875
transcript.pyannote[100].end 413.43471875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 413.43471875
transcript.pyannote[101].end 417.90659375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 417.90659375
transcript.pyannote[102].end 418.14284375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 418.14284375
transcript.pyannote[103].end 427.28909375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 427.28909375
transcript.pyannote[104].end 434.30909375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 434.30909375
transcript.pyannote[105].end 434.68034375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 434.68034375
transcript.pyannote[106].end 434.91659375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 434.91659375
transcript.pyannote[107].end 449.42909375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 443.60721875
transcript.pyannote[108].end 444.02909375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 447.23534375
transcript.pyannote[109].end 447.26909375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 448.02846875
transcript.pyannote[110].end 465.12284375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 451.13346875
transcript.pyannote[111].end 452.80409375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 452.95596875
transcript.pyannote[112].end 453.88409375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 453.96846875
transcript.pyannote[113].end 454.20471875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 462.38909375
transcript.pyannote[114].end 462.57471875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 464.97096875
transcript.pyannote[115].end 465.35909375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 465.35909375
transcript.pyannote[116].end 469.59471875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 469.59471875
transcript.pyannote[117].end 469.96596875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 469.96596875
transcript.pyannote[118].end 472.98659375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 474.20159375
transcript.pyannote[119].end 474.97784375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 474.97784375
transcript.pyannote[120].end 475.02846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 475.02846875
transcript.pyannote[121].end 475.18034375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 475.18034375
transcript.pyannote[122].end 477.07034375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 475.19721875
transcript.pyannote[123].end 500.94846875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 479.87159375
transcript.pyannote[124].end 479.97284375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 479.97284375
transcript.pyannote[125].end 480.02346875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 480.02346875
transcript.pyannote[126].end 480.05721875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 480.05721875
transcript.pyannote[127].end 480.14159375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 490.75596875
transcript.pyannote[128].end 491.24534375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 491.95409375
transcript.pyannote[129].end 492.44346875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 500.42534375
transcript.pyannote[130].end 500.86409375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 500.94846875
transcript.pyannote[131].end 514.19534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 510.83721875
transcript.pyannote[132].end 514.17846875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 514.19534375
transcript.pyannote[133].end 514.53284375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 514.53284375
transcript.pyannote[134].end 514.56659375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 514.56659375
transcript.pyannote[135].end 514.63409375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 514.63409375
transcript.pyannote[136].end 515.14034375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 515.57909375
transcript.pyannote[137].end 521.24909375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 521.72159375
transcript.pyannote[138].end 528.99471875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 529.29846875
transcript.pyannote[139].end 539.13659375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 539.13659375
transcript.pyannote[140].end 539.50784375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 539.50784375
transcript.pyannote[141].end 542.05596875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 539.84534375
transcript.pyannote[142].end 540.90846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 542.05596875
transcript.pyannote[143].end 547.86096875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 542.07284375
transcript.pyannote[144].end 542.56221875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 547.10159375
transcript.pyannote[145].end 550.57784375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 550.22346875
transcript.pyannote[146].end 553.34534375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 553.34534375
transcript.pyannote[147].end 553.56471875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 553.56471875
transcript.pyannote[148].end 556.38284375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 553.58159375
transcript.pyannote[149].end 553.64909375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 555.64034375
transcript.pyannote[150].end 561.56346875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 558.07034375
transcript.pyannote[151].end 558.47534375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 560.58471875
transcript.pyannote[152].end 595.38096875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 563.92596875
transcript.pyannote[153].end 564.04409375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 564.04409375
transcript.pyannote[154].end 564.06096875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 571.14846875
transcript.pyannote[155].end 571.50284375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 578.35409375
transcript.pyannote[156].end 578.70846875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 578.70846875
transcript.pyannote[157].end 578.72534375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 579.41721875
transcript.pyannote[158].end 580.02471875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 580.02471875
transcript.pyannote[159].end 580.76721875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 580.76721875
transcript.pyannote[160].end 580.83471875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 586.52159375
transcript.pyannote[161].end 586.80846875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 595.85346875
transcript.pyannote[162].end 601.42221875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 601.55721875
transcript.pyannote[163].end 603.07596875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 603.07596875
transcript.pyannote[164].end 603.19409375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 603.19409375
transcript.pyannote[165].end 638.83409375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 603.21096875
transcript.pyannote[166].end 603.56534375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 612.39096875
transcript.pyannote[167].end 612.74534375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 639.79596875
transcript.pyannote[168].end 641.34846875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 641.34846875
transcript.pyannote[169].end 651.32159375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 641.97284375
transcript.pyannote[170].end 644.35221875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 652.04721875
transcript.pyannote[171].end 658.52721875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 658.52721875
transcript.pyannote[172].end 658.79721875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 658.79721875
transcript.pyannote[173].end 674.08596875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 658.93221875
transcript.pyannote[174].end 659.59034375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 665.95221875
transcript.pyannote[175].end 666.27284375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 669.34409375
transcript.pyannote[176].end 670.40721875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 674.25471875
transcript.pyannote[177].end 678.65909375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 677.93346875
transcript.pyannote[178].end 703.75221875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 685.74659375
transcript.pyannote[179].end 686.26971875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 687.78846875
transcript.pyannote[180].end 688.96971875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 688.96971875
transcript.pyannote[181].end 689.67846875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 690.55596875
transcript.pyannote[182].end 691.70346875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 696.24284375
transcript.pyannote[183].end 697.03596875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 697.03596875
transcript.pyannote[184].end 697.81221875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 704.27534375
transcript.pyannote[185].end 705.03471875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 705.03471875
transcript.pyannote[186].end 719.76659375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 707.48159375
transcript.pyannote[187].end 708.25784375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 716.32409375
transcript.pyannote[188].end 720.07034375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 720.07034375
transcript.pyannote[189].end 720.12096875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 720.12096875
transcript.pyannote[190].end 720.62721875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 720.35721875
transcript.pyannote[191].end 727.61346875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 720.82971875
transcript.pyannote[192].end 722.26409375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 724.17096875
transcript.pyannote[193].end 729.28409375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 729.45284375
transcript.pyannote[194].end 732.67596875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 731.96721875
transcript.pyannote[195].end 732.40596875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 732.96284375
transcript.pyannote[196].end 733.65471875
transcript.whisperx[0].start 0.049
transcript.whisperx[0].end 1.69
transcript.whisperx[0].text 總裁你好 我想我一樣跟賴昭偉一樣關心關於對等關稅的問題不過就數據上來說 賴昭偉講說美國平均3.3% 我們是6.5% 名目上這樣是沒有錯
transcript.whisperx[1].start 28.068
transcript.whisperx[1].end 47.033
transcript.whisperx[1].text 但事實上在貿易金額加權之後的平均關稅台灣其實是2.2%那美國是1.7%也就是相差是0.5%你剛剛講0.5%沒有錯看起來台灣是比較高但台灣之所以比較高的原因是因為農產品比較高所以實質上我們的貿易平均關稅其實是比美國還低
transcript.whisperx[2].start 51.414
transcript.whisperx[2].end 79.028
transcript.whisperx[2].text 所以我要跟你說明這一點所以也就是說對等關稅來說對台灣其實是沒有什麼太大的重啟更何況呢其實我們在整個進出國跟美國之間的一個出口的項目還有這個進口的項目各十大項當中包括這個半導體那個機路電路啦半導體的機械啦等等器具基本上幾乎都是免稅的兩邊都免稅的所以這個部分我看起來
transcript.whisperx[3].start 79.548
transcript.whisperx[3].end 102.159
transcript.whisperx[3].text 看這個部分整個對等關稅看起來衝擊不是很大可是事實上是因為我們的貿易順差劇烈的成長一下子從2023年第九名現在變成第六名然後現在川普一直對於這些順差的國家譬如講第一名的中國大陸或墨西哥都持有高關稅的方式這是讓大家關心的地方
transcript.whisperx[4].start 103.08
transcript.whisperx[4].end 114.735
transcript.whisperx[4].text 現在我想請問一下那個總裁喔到底你認為川普用這個高關稅的政策是一種手段呢還是一種目的那就如同你剛剛回答這個其他委員講說我們要面對問題我們要解決問題是不是我們態度是這樣子
transcript.whisperx[5].start 118.72
transcript.whisperx[5].end 146.517
transcript.whisperx[5].text 然後你在這個報告當中的13頁當中就寫出來主要的這些經濟體有幾個方式就是他們來面對這個高關稅的部分第一個是報復措施PEW獎以加拿大的話他就針對這個秀黛州的部分來進行高關稅來施以報復第二個的部分是雙邊協商第三個部分購買美國商品在上次你報告當中購買美國商品我們要購買農產品、能源跟軍品你有提到就是這三個
transcript.whisperx[6].start 147.478
transcript.whisperx[6].end 173.309
transcript.whisperx[6].text 然後最近又多一個增加對美投資台積電去那1000億那之前我們1600億再加上總統又提到說GDP的部分國防預算要增加到3%而且這個部分我們不會受到三減預算的影響我們一樣維持國防預算的情況底下一年大概採購大概50億美金之多我們的天然氣石油的部分大概加起來一年的話大概是2000億左右的這一個美元
transcript.whisperx[7].start 174.009
transcript.whisperx[7].end 185.985
transcript.whisperx[7].text 在這個情況底下換算起來再將農產品大概十到二十億啊就這些總體數字來說總裁面對問題解決問題你覺得你提出的方法當中還有哪些台灣需要加強的地方
transcript.whisperx[8].start 187.966
transcript.whisperx[8].end 206.61
transcript.whisperx[8].text 我想就是說第二個就是說也要多多跟他們溝通協調有溝通的管道嗎我之所以跳過雙邊協商的部分就是還沒有看到我們有對等溝通的管道啊因為溝通就我們中央銀行的這個職權來講我們就是說匯率報告
transcript.whisperx[9].start 209.951
transcript.whisperx[9].end 236.385
transcript.whisperx[9].text 匯率報告的話呢我們有談到就是說央行跟他們對話是沒有問題是說新的關稅的這個政策下來的時候有沒有新的溝通管道跟對話方式啊這個我就我不曉得啦但是就中央銀行的一個立場溝通我們跳過好不好你不曉得我們就跳過嘛溝通我們就跳過嘛你既然不曉得我們就跳過嘛我們剛剛講的你曉得的部分嘛要怎麼做我念給你聽啊還需要加強什麼
transcript.whisperx[10].start 239.847
transcript.whisperx[10].end 254.814
transcript.whisperx[10].text 想不出來你這麼聰明都想不出來我們怎麼辦嘛對不對我們要面對這個川普的一個貿易政策我跟委員報告事實上我們的台積電去那邊投資對等關稅之外還有報復關稅的問題耶
transcript.whisperx[11].start 257.075
transcript.whisperx[11].end 272.82
transcript.whisperx[11].text 對不對台積電去加漢布朗當加起來是1650億耶但是他以川普他們的野心不是只是一家台積電他希望建立的是產業鏈半導體的產業鏈甚至是半導體的生態系形成所謂半導體的狼帶
transcript.whisperx[12].start 274.62
transcript.whisperx[12].end 292.157
transcript.whisperx[12].text 所以目前這個為止總體經濟來說那個衝擊很大對美的關係關鍵很重要那這樣的情況底下我就說你之前已經有寫出一些方向了嘛那是不是應該在做你總體經濟宏觀的角度再提出一些可能性跟看法關稅只是其中之一了總裁
transcript.whisperx[13].start 293.038
transcript.whisperx[13].end 314.08
transcript.whisperx[13].text 你知道最近川普還提到一個海湖莊園協議這比照華盛頓廣場協議的這個衝擊更大他除了關稅還有匯率還有債務重整三大面向最近他就點名日本跟中國說他操縱匯率那日本很聰明
transcript.whisperx[14].start 314.961
transcript.whisperx[14].end 327.412
transcript.whisperx[14].text 日本之前是1比158現在跳到1比148最近好像又變成146又馬上升值升值的幅度是最快的你去看你這張圖你這張圖是最近
transcript.whisperx[15].start 330.675
transcript.whisperx[15].end 352.001
transcript.whisperx[15].text 央行每天在臉書裡頭更新了最重要的圖為什麼你每天要更新因為知識體態嘛因為國人很關注嘛這個主要貨幣對美的這個升貶幅度的一個關鍵但是就升貶幅度的比較當中我們看出一個關鍵點就是台灣的部分比其他國家來說
transcript.whisperx[16].start 354.448
transcript.whisperx[16].end 365.799
transcript.whisperx[16].text 比較嚴重人家都有升值我們甚至還在貶所以這個問題可能我們會被針對嘛在3月10號的時候是0.12我們還貶值0.42最新的報告當中是0.553月12號
transcript.whisperx[17].start 373.647
transcript.whisperx[17].end 388.062
transcript.whisperx[17].text 所以說在這種情況底下央行有沒有做努力我看是有做努力啦你在報告的37頁當中呢你去年就賣廢了164億嘛很顯然你有逐貶嘛可是你逐貶的情況底下
transcript.whisperx[18].start 389.159
transcript.whisperx[18].end 408.204
transcript.whisperx[18].text 還是貶啊?怎麼辦?總裁我跟委員報告啦基本上呢美國財政部他不會就是說只有觀察你的匯率短時間的一個波動事實上我們現在就貶嘛你超級嘛因為匯率有些時候你要看長的
transcript.whisperx[19].start 412.287
transcript.whisperx[19].end 438.786
transcript.whisperx[19].text 要看長的如果看長的話我有一個數據跟委員報告請說2010年到現在呢我們台幣呢對義蘭的貨幣呢我們升值了將近百分之二十所以照你這樣講我們不會因為這樣子川普點名的中國日本我們不會被點名你是不是這樣子安心沒問題我跟委員報告就是說第一個
transcript.whisperx[20].start 439.807
transcript.whisperx[20].end 469.233
transcript.whisperx[20].text 我們跟美國財政部的一個溝通是良好的他們也知道我們台灣的匯率運作的情況你總裁說沒問題大家就安心了好不好就沒問題嘛可是接下來下個禮拜四我們央行要開這個禮監事會議了下個禮拜四FED也要開這個利率的禮監事會議了他們在凌晨我們在下午如果說他們有這個降息的話對我們壓力可能會比較小
transcript.whisperx[21].start 470.155
transcript.whisperx[21].end 472.504
transcript.whisperx[21].text 可是如果萬一他升息的話那我們該怎麼辦
transcript.whisperx[22].start 475.226
transcript.whisperx[22].end 500.652
transcript.whisperx[22].text 這件事應該會比較有聯動效果吧我跟委員報告啦就是說基本上呢說美國現在要升息這個跟市場的意氣是不大是違背的啦不太可能是不太可能因為現在呢所以只有降息不會升息對而且呢它的降息只是時間的時間的短或是它如果降
transcript.whisperx[23].start 501.072
transcript.whisperx[23].end 520.603
transcript.whisperx[23].text 美元就會貶他如果升美元就會強可是你上一次的會期當中我們在另一個會議室你說美元川普上來美元應該會走強勢貨幣剛剛你回答這一個代委員又說會走貶這不是矛盾嗎沒有沒有沒有沒有矛盾那個委員你看看我們第六頁
transcript.whisperx[24].start 521.784
transcript.whisperx[24].end 545.391
transcript.whisperx[24].text 第二位在那個川普在九月份的時候他的美元的指數是100.78那然後呢到今年的1月13號的時候呢109.96相當於他將近升值了10%所以說還是升值嗎還是升值啊如果他走升值的話那對台灣的壓力就越大嘛
transcript.whisperx[25].start 545.731
transcript.whisperx[25].end 572.044
transcript.whisperx[25].text 你去看一下台灣最近的情況那也不是說只有台灣啦所以我們在這邊但是我不管其他我就管我們嘛他生之後我們會壓力更大你再來看看不過我跟委員報告啦就是說匯率不是看短時間對我知道你剛剛已經強調過了不用再重複我聽到了現在有一個大的問題是台灣現在所處的環境當中是屬於這種minus的利率是負利率
transcript.whisperx[26].start 573.324
transcript.whisperx[26].end 599.615
transcript.whisperx[26].text 這個負利率你在上次的報告當中去年3月你說屬於4宗比較於美國香港但是現在所有的國家你聽我講完所有的國家來說現在minus的就剩下台灣跟日本是最近剛好2月我們的CPI是只有1.58所以說意外稍微轉正一點點總裁你也算是神機妙算但是你如果說換算成台銀的定存的這個比例1.715%的話
transcript.whisperx[27].start 601.816
transcript.whisperx[27].end 624.506
transcript.whisperx[27].text 還是一樣負利率啊所以很多人會把這個利率過低的問題視為房價之所以會高漲問題因為資金取得成本實在太低了嘛一個關鍵的問題好 就來提到你房市的降溫的部分你在P35頁當中的這個部分到底你精簡的幾家銀行都沒有講你只有講說你精簡120
transcript.whisperx[28].start 627.347
transcript.whisperx[28].end 651.032
transcript.whisperx[28].text 然後你最後的講法說你會持續去觀察那你的意思是說你要用經檢的持續經檢的方式來取代可能的第八波的信用管制是不是總裁那當然啊所以沒有所謂的第八波信用管制只有第七波的持續經檢不會只有停在120會持續下去是不是
transcript.whisperx[29].start 652.514
transcript.whisperx[29].end 673.484
transcript.whisperx[29].text 我想我們第七波是配合了它的總量管制那總量管制之後我們第一個我們一定要來檢討就是說它有沒有按照它的一個期程來控制它的對不弄產的放款第二個我們在配合我們的專案精檢
transcript.whisperx[30].start 674.344
transcript.whisperx[30].end 703.243
transcript.whisperx[30].text 我覺得這樣以目前來講的話呢你在B35你講說他們裡頭有一些問題就是哪幾家銀行你也沒有公布麻煩你公布一下或是私底下給我貸款陳述超過法定上限或者變相給予寬帶期這些東西都是違法的事情啊利用其他名目徵貸這裡都沒有寫出來這銀行哪有嚇阻效果啊清檢只有你知道別人都不知道有這麼神秘嗎
transcript.whisperx[31].start 704.724
transcript.whisperx[31].end 726
transcript.whisperx[31].text 我們現在在開秘密會議嗎是是是要不要公佈好好那我就要公佈嘛不是我來讓我們的相關的單位對啊也許我們提供資料給你對啊這公佈公佈公佈提供資料給參議會的問題該公佈就公佈好不好不是我們來那個這個接下來我還會再問你啦謝謝謝謝謝謝各位的質詢下一位請