iVOD / 159049

Field Value
IVOD_ID 159049
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159049
日期 2025-03-13
會議資料.會議代碼 委員會-11-3-20-2
會議資料.會議代碼:str 第11屆第3會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第3會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2025-03-13T09:27:59+08:00
結束時間 2025-03-13T09:38:47+08:00
影片長度 00:10:48
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b972b8f6f00770fcec32a28ebdf360ee83d902c8d6dd6c2bbf0a69acbcd9c1c43052525fe23673a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:27:59 - 09:38:47
會議時間 2025-03-13T09:00:00+08:00
會議名稱 立法院第11屆第3會期財政委員會第2次全體委員會議(事由:邀請中央銀行楊總裁金龍率所屬單位主管暨財金資訊股份有限公司董事長列席業務報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.57096875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 4.95846875
transcript.pyannote[1].end 6.57846875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 6.76409375
transcript.pyannote[2].end 7.82721875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 7.91159375
transcript.pyannote[3].end 8.63721875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 12.68721875
transcript.pyannote[4].end 14.99909375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 15.62346875
transcript.pyannote[5].end 18.52596875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 19.47096875
transcript.pyannote[6].end 21.81659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 22.30596875
transcript.pyannote[7].end 22.62659375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 22.99784375
transcript.pyannote[8].end 24.38159375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 24.41534375
transcript.pyannote[9].end 25.24221875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 24.44909375
transcript.pyannote[10].end 24.83721875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 26.40659375
transcript.pyannote[11].end 27.16596875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 27.43596875
transcript.pyannote[12].end 27.80721875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 28.38096875
transcript.pyannote[13].end 29.22471875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 29.30909375
transcript.pyannote[14].end 40.81784375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 40.81784375
transcript.pyannote[15].end 41.74596875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 41.27346875
transcript.pyannote[16].end 45.66096875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 45.74534375
transcript.pyannote[17].end 46.13346875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 46.20096875
transcript.pyannote[18].end 46.72409375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 46.75784375
transcript.pyannote[19].end 46.79159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 46.79159375
transcript.pyannote[20].end 47.09534375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 47.09534375
transcript.pyannote[21].end 47.12909375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 47.17971875
transcript.pyannote[22].end 51.46596875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 51.88784375
transcript.pyannote[23].end 52.03971875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 52.42784375
transcript.pyannote[24].end 53.38971875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 53.64284375
transcript.pyannote[25].end 54.01409375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 54.79034375
transcript.pyannote[26].end 56.81534375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 57.16971875
transcript.pyannote[27].end 59.70096875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 59.92034375
transcript.pyannote[28].end 60.52784375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 60.69659375
transcript.pyannote[29].end 62.06346875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 62.18159375
transcript.pyannote[30].end 62.36721875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 62.36721875
transcript.pyannote[31].end 66.65346875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 62.43471875
transcript.pyannote[32].end 62.60346875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 67.15971875
transcript.pyannote[33].end 70.33221875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 70.48409375
transcript.pyannote[34].end 70.93971875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 70.97346875
transcript.pyannote[35].end 75.61409375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 73.03221875
transcript.pyannote[36].end 74.80409375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 75.17534375
transcript.pyannote[37].end 77.74034375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 77.67284375
transcript.pyannote[38].end 81.14909375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 79.56284375
transcript.pyannote[39].end 79.74846875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 81.14909375
transcript.pyannote[40].end 81.55409375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 81.55409375
transcript.pyannote[41].end 84.11909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 84.69284375
transcript.pyannote[42].end 93.61971875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 92.05034375
transcript.pyannote[43].end 92.38784375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 93.83909375
transcript.pyannote[44].end 96.33659375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 96.43784375
transcript.pyannote[45].end 99.88034375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 100.16721875
transcript.pyannote[46].end 101.58471875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 101.93909375
transcript.pyannote[47].end 106.22534375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 106.78221875
transcript.pyannote[48].end 107.54159375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 108.06471875
transcript.pyannote[49].end 110.95034375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 111.15284375
transcript.pyannote[50].end 111.54096875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 111.55784375
transcript.pyannote[51].end 111.57471875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 111.59159375
transcript.pyannote[52].end 115.52346875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 115.70909375
transcript.pyannote[53].end 116.08034375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 116.62034375
transcript.pyannote[54].end 117.46409375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 118.03784375
transcript.pyannote[55].end 120.41721875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 120.97409375
transcript.pyannote[56].end 122.27346875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 122.22284375
transcript.pyannote[57].end 127.63971875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 128.12909375
transcript.pyannote[58].end 130.99784375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 131.40284375
transcript.pyannote[59].end 137.47784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 138.15284375
transcript.pyannote[60].end 138.84471875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 139.28346875
transcript.pyannote[61].end 146.08409375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 146.69159375
transcript.pyannote[62].end 147.46784375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 147.67034375
transcript.pyannote[63].end 149.72909375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 150.53909375
transcript.pyannote[64].end 151.46721875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 151.73721875
transcript.pyannote[65].end 153.28971875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 154.21784375
transcript.pyannote[66].end 155.80409375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 156.41159375
transcript.pyannote[67].end 158.09909375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 158.25096875
transcript.pyannote[68].end 159.09471875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 159.70221875
transcript.pyannote[69].end 162.14909375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 162.14909375
transcript.pyannote[70].end 162.28409375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 162.28409375
transcript.pyannote[71].end 163.21221875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 163.71846875
transcript.pyannote[72].end 164.49471875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 164.98409375
transcript.pyannote[73].end 165.62534375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 165.92909375
transcript.pyannote[74].end 166.77284375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 167.54909375
transcript.pyannote[75].end 168.35909375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 168.81471875
transcript.pyannote[76].end 170.35034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 170.87346875
transcript.pyannote[77].end 174.29909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 174.70409375
transcript.pyannote[78].end 177.38721875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 177.38721875
transcript.pyannote[79].end 177.91034375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 178.04534375
transcript.pyannote[80].end 178.87221875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 178.46721875
transcript.pyannote[81].end 179.14221875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 179.32784375
transcript.pyannote[82].end 182.23034375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 182.26409375
transcript.pyannote[83].end 182.92221875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 182.92221875
transcript.pyannote[84].end 184.64346875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 184.84596875
transcript.pyannote[85].end 185.09909375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 185.52096875
transcript.pyannote[86].end 188.87909375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 189.19971875
transcript.pyannote[87].end 191.37659375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 192.20346875
transcript.pyannote[88].end 193.90784375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 194.00909375
transcript.pyannote[89].end 194.38034375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 194.38034375
transcript.pyannote[90].end 196.65846875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 196.87784375
transcript.pyannote[91].end 197.29971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 197.65409375
transcript.pyannote[92].end 200.91096875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 201.31596875
transcript.pyannote[93].end 205.23096875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 205.23096875
transcript.pyannote[94].end 205.75409375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 205.95659375
transcript.pyannote[95].end 206.12534375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 206.36159375
transcript.pyannote[96].end 206.73284375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 206.88471875
transcript.pyannote[97].end 208.42034375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 209.85471875
transcript.pyannote[98].end 211.96409375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 212.20034375
transcript.pyannote[99].end 215.35596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 215.47409375
transcript.pyannote[100].end 215.81159375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 215.65971875
transcript.pyannote[101].end 217.00971875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 217.63409375
transcript.pyannote[102].end 218.73096875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 218.98409375
transcript.pyannote[103].end 219.30471875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 219.52409375
transcript.pyannote[104].end 224.73846875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 225.09284375
transcript.pyannote[105].end 226.64534375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 226.64534375
transcript.pyannote[106].end 226.79721875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 226.79721875
transcript.pyannote[107].end 236.01096875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 236.01096875
transcript.pyannote[108].end 236.56784375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 237.02346875
transcript.pyannote[109].end 238.12034375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 238.55909375
transcript.pyannote[110].end 239.36909375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 239.90909375
transcript.pyannote[111].end 241.14096875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 241.68096875
transcript.pyannote[112].end 243.28409375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 243.28409375
transcript.pyannote[113].end 243.38534375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 243.38534375
transcript.pyannote[114].end 243.48659375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 243.65534375
transcript.pyannote[115].end 244.58346875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 244.90409375
transcript.pyannote[116].end 247.62096875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 249.25784375
transcript.pyannote[117].end 253.17284375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 253.52721875
transcript.pyannote[118].end 255.80534375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 253.78034375
transcript.pyannote[119].end 253.93221875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 256.10909375
transcript.pyannote[120].end 257.45909375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 257.64471875
transcript.pyannote[121].end 257.71221875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 257.71221875
transcript.pyannote[122].end 262.96034375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 263.82096875
transcript.pyannote[123].end 307.96596875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 308.38784375
transcript.pyannote[124].end 321.85409375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 321.85409375
transcript.pyannote[125].end 334.78034375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 333.04221875
transcript.pyannote[126].end 333.29534375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 334.12221875
transcript.pyannote[127].end 334.29096875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 334.78034375
transcript.pyannote[128].end 335.06721875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 335.21909375
transcript.pyannote[129].end 335.26971875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 335.26971875
transcript.pyannote[130].end 335.64096875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 335.32034375
transcript.pyannote[131].end 335.67471875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 335.67471875
transcript.pyannote[132].end 335.79284375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 335.92784375
transcript.pyannote[133].end 337.54784375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 338.02034375
transcript.pyannote[134].end 348.61784375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 340.97346875
transcript.pyannote[135].end 342.61034375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 346.89659375
transcript.pyannote[136].end 366.40409375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 366.55596875
transcript.pyannote[137].end 383.34659375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 378.85784375
transcript.pyannote[138].end 379.71846875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 383.58284375
transcript.pyannote[139].end 386.67096875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 385.60784375
transcript.pyannote[140].end 402.75284375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 389.42159375
transcript.pyannote[141].end 390.24846875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 401.65596875
transcript.pyannote[142].end 403.19159375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 403.17471875
transcript.pyannote[143].end 418.02471875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 410.65034375
transcript.pyannote[144].end 411.35909375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 416.03346875
transcript.pyannote[145].end 416.40471875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 418.02471875
transcript.pyannote[146].end 428.60534375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 429.31409375
transcript.pyannote[147].end 441.75096875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 441.75096875
transcript.pyannote[148].end 442.61159375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 442.79721875
transcript.pyannote[149].end 442.83096875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 442.83096875
transcript.pyannote[150].end 443.35409375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 443.82659375
transcript.pyannote[151].end 450.61034375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 449.73284375
transcript.pyannote[152].end 451.43721875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 451.43721875
transcript.pyannote[153].end 458.28846875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 454.23846875
transcript.pyannote[154].end 454.66034375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 458.67659375
transcript.pyannote[155].end 464.59971875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 464.59971875
transcript.pyannote[156].end 464.92034375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 464.92034375
transcript.pyannote[157].end 466.65846875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 466.92846875
transcript.pyannote[158].end 469.35846875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 470.16846875
transcript.pyannote[159].end 470.94471875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 471.16409375
transcript.pyannote[160].end 473.07096875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 473.71221875
transcript.pyannote[161].end 486.87471875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 476.66534375
transcript.pyannote[162].end 477.15471875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 479.98971875
transcript.pyannote[163].end 480.44534375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 480.64784375
transcript.pyannote[164].end 481.01909375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 483.49971875
transcript.pyannote[165].end 484.49534375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 485.99721875
transcript.pyannote[166].end 487.60034375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 487.65096875
transcript.pyannote[167].end 503.51346875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 491.97096875
transcript.pyannote[168].end 492.37596875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 504.28971875
transcript.pyannote[169].end 505.58909375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 505.82534375
transcript.pyannote[170].end 517.95846875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 517.97534375
transcript.pyannote[171].end 518.75159375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 518.98784375
transcript.pyannote[172].end 519.76409375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 520.03409375
transcript.pyannote[173].end 520.77659375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 521.62034375
transcript.pyannote[174].end 523.15596875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 523.64534375
transcript.pyannote[175].end 524.80971875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 525.06284375
transcript.pyannote[176].end 525.85596875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 526.37909375
transcript.pyannote[177].end 532.20096875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 532.77471875
transcript.pyannote[178].end 546.93284375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 544.62096875
transcript.pyannote[179].end 545.29596875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 547.23659375
transcript.pyannote[180].end 547.45596875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 547.45596875
transcript.pyannote[181].end 549.76784375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 550.25721875
transcript.pyannote[182].end 550.27409375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 550.27409375
transcript.pyannote[183].end 550.34159375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 550.34159375
transcript.pyannote[184].end 550.35846875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 550.35846875
transcript.pyannote[185].end 550.37534375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 550.61159375
transcript.pyannote[186].end 552.61971875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 553.05846875
transcript.pyannote[187].end 554.52659375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 554.93159375
transcript.pyannote[188].end 562.06971875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 562.06971875
transcript.pyannote[189].end 563.31846875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 563.16659375
transcript.pyannote[190].end 565.15784375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 565.15784375
transcript.pyannote[191].end 565.69784375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 565.69784375
transcript.pyannote[192].end 569.41034375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 570.47346875
transcript.pyannote[193].end 578.01659375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 574.45596875
transcript.pyannote[194].end 574.89471875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 574.91159375
transcript.pyannote[195].end 574.96221875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 578.28659375
transcript.pyannote[196].end 582.04971875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 582.04971875
transcript.pyannote[197].end 582.42096875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 582.42096875
transcript.pyannote[198].end 586.35284375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 586.35284375
transcript.pyannote[199].end 586.75784375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 586.58909375
transcript.pyannote[200].end 592.02284375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 592.22534375
transcript.pyannote[201].end 596.54534375
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 594.63846875
transcript.pyannote[202].end 594.70596875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 596.96721875
transcript.pyannote[203].end 598.55346875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 599.54909375
transcript.pyannote[204].end 602.73846875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 602.73846875
transcript.pyannote[205].end 602.97471875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 602.97471875
transcript.pyannote[206].end 606.04596875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 606.04596875
transcript.pyannote[207].end 615.66471875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 615.66471875
transcript.pyannote[208].end 615.86721875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 615.86721875
transcript.pyannote[209].end 626.19471875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 619.27596875
transcript.pyannote[210].end 619.30971875
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 626.19471875
transcript.pyannote[211].end 626.26221875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 626.81909375
transcript.pyannote[212].end 626.98784375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 626.98784375
transcript.pyannote[213].end 627.30846875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 627.30846875
transcript.pyannote[214].end 627.62909375
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 627.62909375
transcript.pyannote[215].end 635.27346875
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 632.11784375
transcript.pyannote[216].end 632.94471875
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 635.59409375
transcript.pyannote[217].end 635.91471875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 636.60659375
transcript.pyannote[218].end 641.83784375
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 638.20971875
transcript.pyannote[219].end 643.12034375
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 641.88846875
transcript.pyannote[220].end 643.10346875
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 643.12034375
transcript.pyannote[221].end 646.96784375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 646.96784375
transcript.pyannote[222].end 647.45721875
transcript.whisperx[0].start 4.978
transcript.whisperx[0].end 8.2
transcript.whisperx[0].text 剛剛有在台下聆聽如果核心的CBI不到1只有0.98
transcript.whisperx[1].start 26.408
transcript.whisperx[1].end 53.018
transcript.whisperx[1].text 很危險啦嗯中國上個月的CPI是-0.7是通縮不是一件好事對那沒有錯在CPI在1以下有陷入通縮的這個可能性對沒有錯那當然你再加上蔬菜水果這個季節性的價格調整對非核心不是只有計算核心物價的話是一點出頭一點一點出頭是
transcript.whisperx[2].start 54.827
transcript.whisperx[2].end 83.567
transcript.whisperx[2].text 我以前在這邊跟你對話過一個國家最好的CPI應該是在2左右不是越低越好不然中國應該要高興就像習近平講的物價下跌有什麼不好因為他不了解這個要從體經濟來看不是只有看這個數字是啦 委員講的也沒有錯站在美國的立場川普是美國總統站在美國立場他一定是想要美國
transcript.whisperx[3].start 84.738
transcript.whisperx[3].end 104.594
transcript.whisperx[3].text 比較好所以他其實從以前的戰略在競選期間他就是要讓製造業回歸美國全世界現在最大的問題先挑開總體經濟來講是站隊的問題站在哪一隊的問題現在的供應鏈是要建構非紅供應鏈
transcript.whisperx[4].start 106.857
transcript.whisperx[4].end 120.216
transcript.whisperx[4].text 就是說因為中國共產黨CCP北韓 伊朗 俄羅斯這些極權國家這一些本來的全球化最得利的是中共
transcript.whisperx[5].start 121.315
transcript.whisperx[5].end 149.418
transcript.whisperx[5].text 沒有錯啦那現在就是因為要把這個中共不遵照世界貿易的這個規則走所以必須要讓他離開這個供應鏈他現在走的戰略是這樣看清楚啦不要看表面然後常常台灣人喜歡說我們是不是在懷疑美國對台灣不好我們來認為川普是一個狂人川普在美國選民如果你相信民主政治的話
transcript.whisperx[6].start 150.595
transcript.whisperx[6].end 166.591
transcript.whisperx[6].text 他在選舉人數以及在個別的計算數上他全部都是大幅獲勝所以美國人很支持這樣的政策那或許他講話比較快那講的
transcript.whisperx[7].start 167.608
transcript.whisperx[7].end 196.238
transcript.whisperx[7].text 又可以改跟過去傳統中華文化裡面的儒家思想說這個為君者必須要謹言慎行有點不太一樣但是他背後有他的思考跟邏輯脈絡我們回到國際貿易來講正常的國際貿易本來就是應該要balance那台灣去年對美國順差多少700多億美金換算成台幣是兩兆五千億
transcript.whisperx[8].start 197.708
transcript.whisperx[8].end 216.74
transcript.whisperx[8].text 那這麼大額的金錢我們已經是美國的這個順差國裡面的排名前幾名的第五名第六名所以在這種狀況之下我們每天假設我們兩個不要說國家對國家的我們兩個是兩個廠商就你一年賺了我
transcript.whisperx[9].start 217.734
transcript.whisperx[9].end 235.382
transcript.whisperx[9].text 七百多億美金難道你不會想說我應該也要你應該要適度的回饋吧這個是很合理的啊難道是台灣的政府對於一個國家對台灣一年順差七百多億美金然後他可以裝聾作啞當中沒有看到嗎
transcript.whisperx[10].start 237.116
transcript.whisperx[10].end 262.425
transcript.whisperx[10].text 所以我是覺得你要從人家的角度也要思考這些問題那你認為像台灣一年對美國順差這麼多很奇怪的是跟過去的理論不同台幣對美金還在貶值照理來講順差多你應該要升值那你還在貶值那因為強勢美元所以你認為這部分應該要怎麼處理
transcript.whisperx[11].start 264.634
transcript.whisperx[11].end 293.13
transcript.whisperx[11].text 當然就是說美國的匯率報告我想委員也知道這個匯率報告它是三樣因為我們第一個標準經常這樣順差還有就是對美國的順差現在就是看第三項第三項剛剛委員也提到了不過我們第三項就是說按照道理我們對它的順差對美元應該是升值
transcript.whisperx[12].start 293.43
transcript.whisperx[12].end 301.754
transcript.whisperx[12].text 但是因為就是說剛剛也講到就川普的交易行情哇這美國的那個交易行情你看看我們這邊他從9月份的時候100.78到1月13號的時候是109就升值了9點多那這個就是說川普行情
transcript.whisperx[13].start 319.183
transcript.whisperx[13].end 337.212
transcript.whisperx[13].text 所以所有的辯論對他都是辯論你看一個人當選美國總統看對全世界影響多大他其實現在是全世界洞見瞻觀大家天天都在聽他講什麼天天都在看他要做什麼另外一點是
transcript.whisperx[14].start 338.132
transcript.whisperx[14].end 365.762
transcript.whisperx[14].text 我相信我們不會刻意去操縱這個匯率因為我們知道這個如果被列為匯率操縱國的話那是我們就很倒楣啦我們第一個我們也很謹慎那當然就是說因為剛剛委員在講就是說匯率呢就實質的貿易來決定的匯率應該就是說那這樣的話美元是要貶值的當然問題另外一個就金融帳
transcript.whisperx[15].start 367.102
transcript.whisperx[15].end 385.935
transcript.whisperx[15].text 金融帳因為就是說CAPITAL FLOWS有的金融帳也就是說他的資金進來他的資金出去金融帳的金融帳跟貿易帳這個就不大一樣所以就是說現在基本上匯率大部分都是由金融帳來決定的而不是貿易帳
transcript.whisperx[16].start 387.196
transcript.whisperx[16].end 401.21
transcript.whisperx[16].text 但是那個貿易戰是長期的因為你不可能說去年對美國順差700多億今年可能還會再繼續增加這多年累積的結果你記不記得當年日本被美國逼的升值逼到日本的狀況
transcript.whisperx[17].start 403.832
transcript.whisperx[17].end 427.61
transcript.whisperx[17].text 如果經常性的貿易順差今年累月這樣累積我們台灣得想辦法解決啊不解決的話我們將來會面臨這個困境因為金融帳比較容易浮動嘛那你這個貿易帳那是比較長程的影響我跟委員報告就是說我們台灣現在目前我們一直沒辦法解決的問題還是在於我們的差額儲蓄的問題
transcript.whisperx[18].start 429.526
transcript.whisperx[18].end 457.677
transcript.whisperx[18].text 所以主計總署前不久就公佈我們今年的我們差額儲蓄大概又是4.5兆所以我有一個看法跟你分享前幾天台積電的魏哲嘉董事長在美國白宮跟川普一起開記者會全世界矚目大家都說這是不得了的影響力對不對可以跟川普在那邊開記者會而且川普對他的禮遇
transcript.whisperx[19].start 458.777
transcript.whisperx[19].end 486.293
transcript.whisperx[19].text 他未來的幾年會增加台積電會增加對美國投資一千億美金嘛那個錢啊如果是由台灣這一邊借貸去那當然要評估各家銀行要評估說這好還是不好其實台積電本身有錢嘛更多金融機構也很想借錢給他啦因為金融機構都想借錢給有錢人啦坦白講就這樣啦
transcript.whisperx[20].start 487.714
transcript.whisperx[20].end 503.254
transcript.whisperx[20].text 那這個錢如果能夠到美國去這也就是一個金融帳的平衡嘛 對不對至少幾年內可以幫 有點小幫助第二個啊 其實賴總統也講得很清楚喔他希望台灣的廠商評估如果合理
transcript.whisperx[21].start 504.349
transcript.whisperx[21].end 517.161
transcript.whisperx[21].text 也有錢賺鼓勵大家到美國去投資這也是一種金融帳的平衡如果多一點投資到美國去我們台灣就會留多一點錢去美國再來
transcript.whisperx[22].start 521.705
transcript.whisperx[22].end 549.102
transcript.whisperx[22].text 政府有沒有可能考慮讓台灣的個人可以直接購買美國的股票因為現在是付委託手續麻煩然後又那個費用又非常的貴使得這個會變少那當然基於國際互惠這個要金管會所屬部門跟美國那邊談嘛這個都可以談啊那再來就是大眾物資的採購然後能源的採購
transcript.whisperx[23].start 550.663
transcript.whisperx[23].end 577.18
transcript.whisperx[23].text 能夠對如果差價沒有很大是可以接受的範圍分散採購來源對美國大宗物資的採購也是平衡貿易的一個方法是沒有錯要多方努力啦對啦那所以是站在這樣的立場講說今天要面對的是我們要看到問題的根源而不是被指責說那是笑的每天在我勒索沒有啊是你一天到晚
transcript.whisperx[24].start 578.41
transcript.whisperx[24].end 597.735
transcript.whisperx[24].text 台灣是人家的順差這麼大的國家他第一名是墨西哥因為就是他的鄰國距離他那麼遠這樣的經濟體對他的順差全球第六名這是很可怕的累計個幾年我覺得我們很可能被迫
transcript.whisperx[25].start 599.605
transcript.whisperx[25].end 625.956
transcript.whisperx[25].text 累積幾年之後很可能的避職的壓力就大了到時候很可能就巨幅升職對台灣的製造業也不利啊我覺得委員講的也沒有錯不過我覺得委員也是講到就是說我們要面對問題我們要解決問題我覺得還是這樣子啦也不是說一味的就是說指責他啦我們要面對我們要面對他我們也要解決他
transcript.whisperx[26].start 626.912
transcript.whisperx[26].end 642.099
transcript.whisperx[26].text 是啊 是政府是整體的嘛所以你也參加行政院會嘛是在談到這方面的時候希望你也是你一定是比我們更高明啦但是對政府多一些建言好 謝謝你加油謝謝委員的質詢下一位請袁寬文委員質詢請