iVOD / 159020

Field Value
IVOD_ID 159020
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/159020
日期 2025-03-11
會議資料.會議代碼 全院委員會-11-3-2
會議資料.會議代碼:str 第11屆第3會期第2次全院委員會會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 2
會議資料.種類 全院委員會
會議資料.標題 第11屆第3會期第2次全院委員會會議
影片種類 Clip
開始時間 2025-03-11T15:19:48+08:00
結束時間 2025-03-11T15:35:32+08:00
影片長度 00:15:44
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/a37056a99b6ff72871eae1484b375b0131125bfab2e25e2581efae1376afe49b28864551c56b11fa5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 葛如鈞
委員發言時間 15:19:48 - 15:35:32
會議時間 2025-03-11T09:00:00+08:00
會議名稱 第11屆第3會期第2次全院委員會會議(事由:一、「中華民國114年度中央政府總預算案」覆議案(3月11日)。二、「財政收支劃分法」第八條、第十六條之一及第三十條條文覆議案(3月12日)。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 5.83596875
transcript.pyannote[0].end 6.93284375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 7.21971875
transcript.pyannote[1].end 8.40096875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 8.97471875
transcript.pyannote[2].end 9.97034375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 11.97846875
transcript.pyannote[3].end 12.07971875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 18.20534375
transcript.pyannote[4].end 18.71159375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 19.33596875
transcript.pyannote[5].end 24.90471875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 25.57971875
transcript.pyannote[6].end 33.83159375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 34.65846875
transcript.pyannote[7].end 38.70846875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 38.72534375
transcript.pyannote[8].end 42.45471875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 42.69096875
transcript.pyannote[9].end 45.54284375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 46.04909375
transcript.pyannote[10].end 51.66846875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 46.15034375
transcript.pyannote[11].end 46.53846875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 52.00596875
transcript.pyannote[12].end 58.33409375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 58.67159375
transcript.pyannote[13].end 72.15471875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 72.71159375
transcript.pyannote[14].end 74.12909375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 74.80409375
transcript.pyannote[15].end 76.87971875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 77.60534375
transcript.pyannote[16].end 78.33096875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 78.92159375
transcript.pyannote[17].end 82.02659375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 82.21221875
transcript.pyannote[18].end 114.42659375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 115.38846875
transcript.pyannote[19].end 117.16034375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 117.16034375
transcript.pyannote[20].end 117.37971875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 117.37971875
transcript.pyannote[21].end 118.10534375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 118.10534375
transcript.pyannote[22].end 118.17284375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 118.98284375
transcript.pyannote[23].end 119.15159375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 119.42159375
transcript.pyannote[24].end 120.31596875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 120.31596875
transcript.pyannote[25].end 131.52096875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 120.33284375
transcript.pyannote[26].end 124.36596875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 125.93534375
transcript.pyannote[27].end 127.55534375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 132.19596875
transcript.pyannote[28].end 159.98909375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 160.56284375
transcript.pyannote[29].end 162.14909375
transcript.pyannote[30].speaker SPEAKER_04
transcript.pyannote[30].start 161.54159375
transcript.pyannote[30].end 163.16159375
transcript.pyannote[31].speaker SPEAKER_04
transcript.pyannote[31].start 163.56659375
transcript.pyannote[31].end 164.61284375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 165.59159375
transcript.pyannote[32].end 169.11846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 169.74284375
transcript.pyannote[33].end 181.72409375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 182.41596875
transcript.pyannote[34].end 183.64784375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 184.91346875
transcript.pyannote[35].end 186.02721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 186.31409375
transcript.pyannote[36].end 187.02284375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 187.02284375
transcript.pyannote[37].end 187.12409375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 187.12409375
transcript.pyannote[38].end 187.90034375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 187.90034375
transcript.pyannote[39].end 187.96784375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 188.37284375
transcript.pyannote[40].end 190.26284375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 188.72721875
transcript.pyannote[41].end 189.50346875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 190.44846875
transcript.pyannote[42].end 209.95596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 209.95596875
transcript.pyannote[43].end 288.40784375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 210.22596875
transcript.pyannote[44].end 211.00221875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 286.63596875
transcript.pyannote[45].end 287.15909375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 287.26034375
transcript.pyannote[46].end 289.89284375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 288.44159375
transcript.pyannote[47].end 288.59346875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 290.83784375
transcript.pyannote[48].end 297.11534375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 297.11534375
transcript.pyannote[49].end 297.57096875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 297.79034375
transcript.pyannote[50].end 297.99284375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 297.99284375
transcript.pyannote[51].end 298.70159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 298.11096875
transcript.pyannote[52].end 307.81409375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 303.05534375
transcript.pyannote[53].end 303.10596875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 303.56159375
transcript.pyannote[54].end 307.79721875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 307.81409375
transcript.pyannote[55].end 318.81659375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 317.80409375
transcript.pyannote[56].end 318.61409375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 318.69846875
transcript.pyannote[57].end 329.78534375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 318.83346875
transcript.pyannote[58].end 318.85034375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 321.61784375
transcript.pyannote[59].end 322.91721875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 323.74409375
transcript.pyannote[60].end 324.97596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 324.97596875
transcript.pyannote[61].end 327.00096875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 330.54471875
transcript.pyannote[62].end 331.97909375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 330.98346875
transcript.pyannote[63].end 332.68784375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 333.88596875
transcript.pyannote[64].end 339.69096875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 340.58534375
transcript.pyannote[65].end 341.74971875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 342.07034375
transcript.pyannote[66].end 347.82471875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 347.82471875
transcript.pyannote[67].end 350.50784375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 350.54159375
transcript.pyannote[68].end 350.57534375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 350.57534375
transcript.pyannote[69].end 359.46846875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 357.03846875
transcript.pyannote[70].end 359.29971875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 359.46846875
transcript.pyannote[71].end 359.97471875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 359.97471875
transcript.pyannote[72].end 360.02534375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 360.02534375
transcript.pyannote[73].end 360.05909375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 360.05909375
transcript.pyannote[74].end 360.21096875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 360.21096875
transcript.pyannote[75].end 360.86909375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 360.86909375
transcript.pyannote[76].end 382.46909375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 362.03346875
transcript.pyannote[77].end 363.60284375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 366.18471875
transcript.pyannote[78].end 366.85971875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 370.97721875
transcript.pyannote[79].end 372.64784375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 374.74034375
transcript.pyannote[80].end 375.02721875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 375.02721875
transcript.pyannote[81].end 376.29284375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 376.29284375
transcript.pyannote[82].end 376.41096875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 382.46909375
transcript.pyannote[83].end 382.48596875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 383.58284375
transcript.pyannote[84].end 389.48909375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 385.37159375
transcript.pyannote[85].end 385.40534375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 385.40534375
transcript.pyannote[86].end 385.42221875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 385.42221875
transcript.pyannote[87].end 387.93659375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 388.02096875
transcript.pyannote[88].end 388.25721875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 390.23159375
transcript.pyannote[89].end 394.38284375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 394.73721875
transcript.pyannote[90].end 396.44159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 396.47534375
transcript.pyannote[91].end 400.20471875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 399.76596875
transcript.pyannote[92].end 399.91784375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 400.45784375
transcript.pyannote[93].end 403.96784375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 403.96784375
transcript.pyannote[94].end 404.05221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 404.05221875
transcript.pyannote[95].end 404.50784375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 404.50784375
transcript.pyannote[96].end 405.13221875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 405.13221875
transcript.pyannote[97].end 405.52034375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 406.24596875
transcript.pyannote[98].end 408.40596875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 408.16971875
transcript.pyannote[99].end 426.00659375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 410.65034375
transcript.pyannote[100].end 411.30846875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 427.08659375
transcript.pyannote[101].end 436.03034375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 436.03034375
transcript.pyannote[102].end 436.04721875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 436.04721875
transcript.pyannote[103].end 436.08096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 436.08096875
transcript.pyannote[104].end 444.02909375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 437.27909375
transcript.pyannote[105].end 437.71784375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 444.45096875
transcript.pyannote[106].end 446.96534375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 446.96534375
transcript.pyannote[107].end 452.98971875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 449.12534375
transcript.pyannote[108].end 449.78346875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 449.96909375
transcript.pyannote[109].end 450.47534375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 453.24284375
transcript.pyannote[110].end 456.39846875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 453.31034375
transcript.pyannote[111].end 454.13721875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 456.39846875
transcript.pyannote[112].end 456.43221875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 456.97221875
transcript.pyannote[113].end 459.58784375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 459.16596875
transcript.pyannote[114].end 459.45284375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 459.58784375
transcript.pyannote[115].end 459.85784375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 459.85784375
transcript.pyannote[116].end 459.97596875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 459.97596875
transcript.pyannote[117].end 462.50721875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 463.35096875
transcript.pyannote[118].end 473.18909375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 467.72159375
transcript.pyannote[119].end 475.11284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 476.02409375
transcript.pyannote[120].end 476.96909375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 476.96909375
transcript.pyannote[121].end 481.49159375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 481.79534375
transcript.pyannote[122].end 488.57909375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 488.64659375
transcript.pyannote[123].end 493.00034375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 493.40534375
transcript.pyannote[124].end 494.35034375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 495.17721875
transcript.pyannote[125].end 499.15971875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 499.15971875
transcript.pyannote[126].end 499.24409375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 499.95284375
transcript.pyannote[127].end 503.14221875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 503.58096875
transcript.pyannote[128].end 506.78721875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 506.04471875
transcript.pyannote[129].end 513.03096875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 508.32284375
transcript.pyannote[130].end 509.14971875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 513.03096875
transcript.pyannote[131].end 513.16596875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 513.16596875
transcript.pyannote[132].end 513.36846875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 513.36846875
transcript.pyannote[133].end 514.39784375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 514.83659375
transcript.pyannote[134].end 524.13471875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 521.73846875
transcript.pyannote[135].end 531.03659375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 529.24784375
transcript.pyannote[136].end 529.68659375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 531.03659375
transcript.pyannote[137].end 536.04846875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 533.60159375
transcript.pyannote[138].end 537.02721875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 537.22971875
transcript.pyannote[139].end 540.57096875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 537.31409375
transcript.pyannote[140].end 539.54159375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 540.67221875
transcript.pyannote[141].end 542.35971875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 542.98409375
transcript.pyannote[142].end 545.02596875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 546.25784375
transcript.pyannote[143].end 546.73034375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 546.73034375
transcript.pyannote[144].end 547.25346875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 547.69221875
transcript.pyannote[145].end 548.50221875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 550.88159375
transcript.pyannote[146].end 563.23409375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 563.52096875
transcript.pyannote[147].end 564.66846875
transcript.pyannote[148].speaker SPEAKER_04
transcript.pyannote[148].start 565.24221875
transcript.pyannote[148].end 570.92909375
transcript.pyannote[149].speaker SPEAKER_04
transcript.pyannote[149].start 571.58721875
transcript.pyannote[149].end 575.38409375
transcript.pyannote[150].speaker SPEAKER_04
transcript.pyannote[150].start 576.16034375
transcript.pyannote[150].end 578.08409375
transcript.pyannote[151].speaker SPEAKER_04
transcript.pyannote[151].start 578.47221875
transcript.pyannote[151].end 581.05409375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 581.05409375
transcript.pyannote[152].end 588.96846875
transcript.pyannote[153].speaker SPEAKER_04
transcript.pyannote[153].start 581.07096875
transcript.pyannote[153].end 582.85971875
transcript.pyannote[154].speaker SPEAKER_04
transcript.pyannote[154].start 590.63909375
transcript.pyannote[154].end 591.06096875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 592.71471875
transcript.pyannote[155].end 595.87034375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 595.97159375
transcript.pyannote[156].end 610.63596875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 610.92284375
transcript.pyannote[157].end 619.32659375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 619.32659375
transcript.pyannote[158].end 622.73534375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 619.34346875
transcript.pyannote[159].end 619.79909375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 621.25034375
transcript.pyannote[160].end 621.28409375
transcript.pyannote[161].speaker SPEAKER_05
transcript.pyannote[161].start 621.28409375
transcript.pyannote[161].end 637.97346875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 627.17346875
transcript.pyannote[162].end 627.19034375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 627.19034375
transcript.pyannote[163].end 627.35909375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 627.35909375
transcript.pyannote[164].end 629.78909375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 633.02909375
transcript.pyannote[165].end 633.82221875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 633.82221875
transcript.pyannote[166].end 633.87284375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 634.31159375
transcript.pyannote[167].end 640.36971875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 637.97346875
transcript.pyannote[168].end 639.05346875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 640.90971875
transcript.pyannote[169].end 652.40159375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 642.76596875
transcript.pyannote[170].end 644.38596875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 645.21284375
transcript.pyannote[171].end 648.28409375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 650.22471875
transcript.pyannote[172].end 664.80471875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 654.03846875
transcript.pyannote[173].end 658.22346875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 665.73284375
transcript.pyannote[174].end 665.74971875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 665.74971875
transcript.pyannote[175].end 666.86346875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 667.16721875
transcript.pyannote[176].end 668.71971875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 669.88409375
transcript.pyannote[177].end 679.72221875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 678.33846875
transcript.pyannote[178].end 688.98659375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 682.84409375
transcript.pyannote[179].end 684.31221875
transcript.pyannote[180].speaker SPEAKER_06
transcript.pyannote[180].start 685.35846875
transcript.pyannote[180].end 687.11346875
transcript.pyannote[181].speaker SPEAKER_06
transcript.pyannote[181].start 687.70409375
transcript.pyannote[181].end 687.97409375
transcript.pyannote[182].speaker SPEAKER_06
transcript.pyannote[182].start 688.98659375
transcript.pyannote[182].end 693.15471875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 693.42471875
transcript.pyannote[183].end 696.29346875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 696.59721875
transcript.pyannote[184].end 708.07221875
transcript.pyannote[185].speaker SPEAKER_06
transcript.pyannote[185].start 708.07221875
transcript.pyannote[185].end 708.69659375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 708.69659375
transcript.pyannote[186].end 720.44159375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 720.72846875
transcript.pyannote[187].end 730.46534375
transcript.pyannote[188].speaker SPEAKER_06
transcript.pyannote[188].start 730.78596875
transcript.pyannote[188].end 732.65909375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 732.65909375
transcript.pyannote[189].end 732.81096875
transcript.pyannote[190].speaker SPEAKER_06
transcript.pyannote[190].start 732.81096875
transcript.pyannote[190].end 733.67159375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 732.89534375
transcript.pyannote[191].end 735.96659375
transcript.pyannote[192].speaker SPEAKER_06
transcript.pyannote[192].start 735.96659375
transcript.pyannote[192].end 735.98346875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 735.98346875
transcript.pyannote[193].end 736.59096875
transcript.pyannote[194].speaker SPEAKER_06
transcript.pyannote[194].start 736.03409375
transcript.pyannote[194].end 743.00346875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 742.75034375
transcript.pyannote[195].end 755.62596875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 755.89596875
transcript.pyannote[196].end 763.77659375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 764.62034375
transcript.pyannote[197].end 768.11346875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 768.38346875
transcript.pyannote[198].end 768.87284375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 769.17659375
transcript.pyannote[199].end 808.49534375
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 809.76096875
transcript.pyannote[200].end 810.90846875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 811.63409375
transcript.pyannote[201].end 815.19471875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 815.41409375
transcript.pyannote[202].end 819.68346875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 819.70034375
transcript.pyannote[203].end 821.70846875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 821.79284375
transcript.pyannote[204].end 833.52096875
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 833.52096875
transcript.pyannote[205].end 845.97471875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 844.65846875
transcript.pyannote[206].end 844.87784375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 845.97471875
transcript.pyannote[207].end 847.45971875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 847.45971875
transcript.pyannote[208].end 857.73659375
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 847.49346875
transcript.pyannote[209].end 848.72534375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 849.02909375
transcript.pyannote[210].end 850.56471875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 852.37034375
transcript.pyannote[211].end 852.47159375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 856.62284375
transcript.pyannote[212].end 858.19221875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 858.19221875
transcript.pyannote[213].end 858.20909375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 859.03596875
transcript.pyannote[214].end 877.02471875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 877.02471875
transcript.pyannote[215].end 886.03596875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 886.12034375
transcript.pyannote[216].end 887.55471875
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 887.03159375
transcript.pyannote[217].end 887.53784375
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 887.55471875
transcript.pyannote[218].end 887.70659375
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 887.70659375
transcript.pyannote[219].end 887.97659375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 887.97659375
transcript.pyannote[220].end 896.46471875
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 893.62971875
transcript.pyannote[221].end 894.76034375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 895.43534375
transcript.pyannote[222].end 901.96596875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 896.63346875
transcript.pyannote[223].end 900.56534375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 901.96596875
transcript.pyannote[224].end 920.83221875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 920.96721875
transcript.pyannote[225].end 921.03471875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 921.05159375
transcript.pyannote[226].end 923.98784375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 935.31096875
transcript.pyannote[227].end 939.81659375
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 941.82471875
transcript.pyannote[228].end 944.40659375
transcript.whisperx[0].start 5.945
transcript.whisperx[0].end 10.088
transcript.whisperx[0].text 謝謝院長有請卓院長麻煩再請卓院長各位好院長好中華民國至今114年來至今只有18件復議案在您上任不到一年來就用了五次而且這一次還是歷史上第一次針對總預算的復議
transcript.whisperx[1].start 34.687
transcript.whisperx[1].end 57.903
transcript.whisperx[1].text 面對我們的國父今年是四十一百年不知道你心中有什麼感想有沒有什麼話想要對他說我們今天時間有限希望您可以想一下面對您這樣歷史留名的身份和資歷我想我與您相差甚遠但是有一件事情您我都一樣就是我們都是公僕我們都是在為人民服務
transcript.whisperx[2].start 58.843
transcript.whisperx[2].end 76.462
transcript.whisperx[2].text 作為為人民服務我們也要感念人民願意將他們的血和錢交給政府來運用並且期待我們的政府能夠提供好的服務但是最重要的就是這個但是人民作為母親孩子跟媽媽要零用錢
transcript.whisperx[3].start 77.639
transcript.whisperx[3].end 97.736
transcript.whisperx[3].text 一百塊去年九十五塊今年還多了五塊媽媽為了確保孩子沒有亂花說了其中三塊錢先扣掉一塊錢保留如果考試考的好的話就可以用明明最終的還是比去年更多但是呢小孩子突然大哭大鬧
transcript.whisperx[4].start 98.817
transcript.whisperx[4].end 117.976
transcript.whisperx[4].text 沒有鉛筆盒啊這個鉛筆盒要一塊我沒辦法考試這個睡不著啊沒辦法睡覺啊這個枕頭不夠鬆軟要讓它鬆軟要一塊我沒有褲子啊這個褲子有點皺這個要燙平要一塊沒辦法出門啊院長您覺得這樣的小孩有道理嗎不乖該打
transcript.whisperx[5].start 119.589
transcript.whisperx[5].end 138.19
transcript.whisperx[5].text 這小孩該打該打嘛對不對所以我們現在不是要來打人不是要來打人我們理性的來討教該打嘛我們現在沒有要用暴力在立法院我們和平但是呢不管要不要打我們都要來理性的討論怎麼花錢的嘛這小孩子到底在做什麼
transcript.whisperx[6].start 138.991
transcript.whisperx[6].end 160.777
transcript.whisperx[6].text 所以立院要幫民眾 民眾就是我們的母親要仔細審視錢有沒有亂花嘛不然真的就要打了 對吧但今年來呢 政府有妥善運用這些人民的血汗錢嗎今天我們想要來代替人民不是要來打 要來講 要來問齁我們先有請教育部長齁我一邊問 部長
transcript.whisperx[7].start 165.626
transcript.whisperx[7].end 183.411
transcript.whisperx[7].text 部長 我想經過了這麼多場的質詢您知道教育部去年跟今年的預算分別是多少嗎今年比較多還是比較少因為部長移動需要一點時間院長您要率先回應也可以您應該要非常清楚今年比較多還比較少
transcript.whisperx[8].start 184.943
transcript.whisperx[8].end 209.303
transcript.whisperx[8].text 今年比去年都多 多嘛 部長同意嘛那有什麼好哭的咧跟委員報告 雖然多了278億 大概278億但是這278億事實上是用來水電 學校的水電補貼還有我們優質評價這些幼兒園的經費就是說我們增加是因為有許多的政策要推動
transcript.whisperx[9].start 210.343
transcript.whisperx[9].end 237.893
transcript.whisperx[9].text 那你們為什麼還要到處哭窮哭沒有錢我們先謝謝教育部有提供完整的數據數據非常清楚今年就是比去年的預算多扣除掉檢列跟凍結今年增加277.6億當然不含通山我直接幫你講636億我直接除以8我就算扣掉通山分配到教育部一樣還是比去年多什麼水電
transcript.whisperx[10].start 239.533
transcript.whisperx[10].end 262.526
transcript.whisperx[10].text 漲價的是誰不做這個台灣的這個能源的多元化不弄核電廠拼命漲價的是誰我們不要去討論這個事實上你錢就是比之前多之前怎麼花的到底用到哪裡去了學習歷程爭議不斷什麼學習歷程變成學習歷程大師一份五塊十塊兩百塊五百塊全部都有
transcript.whisperx[11].start 263.166
transcript.whisperx[11].end 286.943
transcript.whisperx[11].text 然後呢 到現在2025年了上傳檔案容量最高只有10MB部長知道嗎 知道 對不對還有什麼學習履歷槍手啦 作弊啦我們的教育部次長還開罵 說家長幫忙作弊但是呢 有沒有解決 到底最終的原因是什麼到底要怎麼優化學習歷程 怎麼廢除 有討論嗎你們有用媽媽給的錢來好好的做事嗎
transcript.whisperx[12].start 290.865
transcript.whisperx[12].end 309.285
transcript.whisperx[12].text 跟委員報告事實上我們也在做全國的一個巡迴的開獎學習歷程多元入學變多錢入學有沒有解決上傳的檔案容量只有10MB有沒有解決請你回答請部長回答有沒有解決
transcript.whisperx[13].start 310.066
transcript.whisperx[13].end 329.507
transcript.whisperx[13].text 跟委員報告 委員不能用少數的一些特例然後來說整個政策它的一個 否認它的一個價值性謝謝部長 謝謝您同意了其實你們就是沒有好好的花錢 沒有好好的了解大家的需求把所有網路上的民怨說成是特例好沒有關係 謝謝 有請國科會主委謝謝 有請國科會主委
transcript.whisperx[14].start 333.939
transcript.whisperx[14].end 339.481
transcript.whisperx[14].text 我一邊請教 請教主委去年跟今年的預算分別是多少今年比較多還是比較少
transcript.whisperx[15].start 340.626
transcript.whisperx[15].end 364.205
transcript.whisperx[15].text 國科會主委也需要一點移動的時間院長您可以先回答新年國科會預算比較多還比較少我們對科技預算今年支持的當然是比較多對嘛那為什麼民眾到處聽到這個也三那個也三到處都在講說科技研究沒辦法做了人沒有錢可以用我們要做的項目也比較多多的項目就要多的預算我們看數字
transcript.whisperx[16].start 365.706
transcript.whisperx[16].end 393.997
transcript.whisperx[16].text 要看項目啊事實上就是增加了將近100億然後呢我們現在來看去年有沒有做得比較好嘛你去年對不起院長你去年沒有做得比較好你今年要更多的錢有意義嗎正確嗎民眾不會痛嗎委員剛剛說這是人民的血汗錢我也告訴你血汗錢嘛所以我們會用血汗來執行這筆預算我們是遵照也是遵照我們立法院委員的建議
transcript.whisperx[17].start 394.773
transcript.whisperx[17].end 404.994
transcript.whisperx[17].text 我們要加強我們的算力我們要增加我們在AI的這個研究能量不好意思我打斷主委我剛剛還沒有問你啦但沒關係我們去年算力排名幾名啊
transcript.whisperx[18].start 406.992
transcript.whisperx[18].end 425.17
transcript.whisperx[18].text 26但是我們會增加你確定是26嗎你算過了嗎沒有關係大家算法不同啦我們去看其他國際排名啦我們很可能連前50名都排不上啦再來我們看到明明我們做的根本就不夠多也不夠好結果咧這是我們國科會的粉絲專頁喔
transcript.whisperx[19].start 427.75
transcript.whisperx[19].end 456.089
transcript.whisperx[19].text 這邊講什麼國科會預算如果可能會影響約多少可能會造成多少影響去我想作為一個科學這個是確實的如果才化法按照大院通過的對不起主委我們做科學做報告做研究可以是用如果跟大約嗎你要不要為全國科研人員做個示範是嗎我們是這樣做研究的嗎我們是這樣做報告的嗎
transcript.whisperx[20].start 457.149
transcript.whisperx[20].end 474.844
transcript.whisperx[20].text 當然是這樣啊 如果是真的通過的話所以就是這樣的態度 人民會在意這麼科學 這麼理性的部會是您用這種態度來處理來溝通這是實事求是的精神嗎我們這一頁就留在這裡 大家都會看得到如果這樣通過 我是非常憂心
transcript.whisperx[21].start 477.916
transcript.whisperx[21].end 498.862
transcript.whisperx[21].text 這個 請問 好 我告訴我本來想要放過這一題 我告訴主委我們直接聯絡國科會我們說 請問這篇頒文到底有什麼具體的影響國科會從來沒有提出論述跟佐證告訴我們這是科學嗎這是科學嗎 你現在提出來你現在每一條來說明啊這是科學嗎
transcript.whisperx[22].start 500.02
transcript.whisperx[22].end 516.083
transcript.whisperx[22].text 如果真的刪掉這些預算的話我們所有的計畫當然都要刪哪些計畫要刪?要刪多少錢?院長你同意這樣的態度來主掌台灣的科技嗎?科學嗎?你同意嗎?同意或不同意?我同意我們用理性
transcript.whisperx[23].start 516.543
transcript.whisperx[23].end 544.693
transcript.whisperx[23].text 委員也是一個科技理性的委員啦你剛剛說我們的PETAFLOW不夠嘛那你刪掉這個預算我們資料更差啊那能不能請院長答應我們索取這方面的資料請國科院完整的提供可以嗎他們可以提供啊我們認為財化法現在雖然大院通過但是它還是有一個補助程序院長不要浪費時間我們能不能索取資料國科會的立馬 請說明 完整說明不要那邊汝果大約好不好 好有請經濟部部長
transcript.whisperx[24].start 548.174
transcript.whisperx[24].end 568.179
transcript.whisperx[24].text 謝謝主委我想經過這麼多的質詢剛剛也有兩個前例了我相信部長應該也理解我想要問的就是您清不清楚經濟部去年跟今年的預算分別是多少今年比較多還是比較少報告委員經濟部114年度預算是2134億三讀三檢以後成為1097億
transcript.whisperx[25].start 576.77
transcript.whisperx[25].end 588.687
transcript.whisperx[25].text 113年度法定預算1819億相較 減少722億不好意思 部長我打電話給你去除掉台電的那1100億的三減到底預算是比較多還是比較少能用的錢有沒有比較多哪一個
transcript.whisperx[26].start 592.802
transcript.whisperx[26].end 610.215
transcript.whisperx[26].text 去除掉1000億我們把它減劣總體經濟部的預算比較多還比較少我可以直接告訴你答案啦你們不願意給啦我直接告訴你們答案扣除掉台電的這個1000億事實上在委員會刪減的不到1%總體來講你們今年的預算還是比去年多
transcript.whisperx[27].start 611.016
transcript.whisperx[27].end 624.954
transcript.whisperx[27].text 然後我們現在看到台積電現在要赴美了經濟部的部長院長一概不知說看直播才知道我們沒有這樣講喔委員我們沒有這樣講喔這個完全是對不起委員這個是媒體的這個
transcript.whisperx[28].start 626.655
transcript.whisperx[28].end 649.767
transcript.whisperx[28].text 斷章取義喔我講的並不是這樣子喔我講的是說他沒有來送審但是你們都把他用指揮曲怎麼可以這樣子喔宣布的時間我們知道宣布的時間我們那天晚上不要玩文字遊戲啦我們都回去看重播啦大家都很清楚我們不是文字遊戲的部位啦你們真的以為我們什麼都不知道嗎
transcript.whisperx[29].start 651.148
transcript.whisperx[29].end 656.273
transcript.whisperx[29].text 所以你們什麼都知道嗎我們沒有要玩文字遊戲啦謝謝部長其實就是比去年還多啦我們有請速發部啦速發部的部長謝謝謝謝院長不好意思
transcript.whisperx[30].start 669.909
transcript.whisperx[30].end 692.424
transcript.whisperx[30].text 那一樣我們也讓這個各部會所長有一點時間那我的問題也一樣速發部今年的預算比去年多還是比較少我想院長問你清楚今年的預算比去年多多少經費多做多少事情非常清楚啦就是編列的比較多我們砍的也沒有比較多不管多做多少事情報告委員我們去年拿到是70億現在被刪除剩下51億
transcript.whisperx[31].start 693.462
transcript.whisperx[31].end 719.714
transcript.whisperx[31].text 你這個數字為什麼那麼清楚你們不願意給啊你們為什麼不願意給我們索取資料你們不用意給啊你們完全你們的同仁交白券喔我們今天在附議案要做質詢你們完全交白券為什麼不提供資料部長你知道嗎我沒有好沒有關係我只是這樣講啦人家馬斯克用AI啦我們速發部如果連提供一個這樣的資料都沒有辦法做好我們怎麼有辦法相信你們編列的預算會好好花錢
transcript.whisperx[32].start 720.996
transcript.whisperx[32].end 742.282
transcript.whisperx[32].text 結果打詐打了一整年 我告訴 我就只問部長您知不知道去年打詐我們的被詐騙金額最高是多少錢 你知道嗎我們平均我們去年被詐騙金額最高那一天是多少錢 一天多少錢我們一天啦 去年我上面說大概是3到6億現在降到1到3億 目前是這樣子
transcript.whisperx[33].start 742.782
transcript.whisperx[33].end 763.278
transcript.whisperx[33].text 我報告部長也報告院長12月27號單日財損金額高達6億6千萬我是建議這一天可能要作為苦難紀念日民眾真的被騙得很慘真的是希望行政院院長您可以好好的了解各個部會到底是怎麼花錢的謝謝部長您請回
transcript.whisperx[34].start 764.69
transcript.whisperx[34].end 789.943
transcript.whisperx[34].text 所以我想回到行政院啦您是部會的頭部會如果花錢花得好民眾很支持我們立法院作為民意的代表的一個機關我們當然會希望可以來尊重各個部會可是我們剛剛看到有一大堆的問題啊有學習履歷啊有這個打造的成效的這個問題啊有各式各樣的這個產業
transcript.whisperx[35].start 791.644
transcript.whisperx[35].end 808.056
transcript.whisperx[35].text 多元化不足的問題啊結果咧我們現在的行政院是搞一個複議老實說啦我們現在呢是完全沒有一個機制會讓政府停擺我們是完全不能理解你們現在這樣子一直去哭去鬧
transcript.whisperx[36].start 809.81
transcript.whisperx[36].end 831.315
transcript.whisperx[36].text 到底是為了什麼我想您作為行政院部會的頭我們回到一開始的例子人民媽媽是作為拿錢出來的人你們現在翻桌不認母啦直接一整年是想要跟大家講這個你們去做這個巡迴你們有願意去講剛剛這些問題如何解決嗎
transcript.whisperx[37].start 833.736
transcript.whisperx[37].end 857.864
transcript.whisperx[37].text 你們願意去講嗎我請問我們到各地去跟大家講地方建設跟大家講國家發展跟大家講我們這部預算在大院支持底下我們如何認真努力的來執行我們剛剛提的所有的問題沒有一個部會首長可以完整的回答我們為什麼要編更多的預算而且我們甚至已經編了更多的預算我們的問題不完整一個部會多了這些錢你要問他你比去年多做哪些事好
transcript.whisperx[38].start 859.073
transcript.whisperx[38].end 884.448
transcript.whisperx[38].text 那我就先問了我們剛剛就是用這樣的一個機制只有一個簡單的問題我們甚至連去詢問到底你刪了多少到底你編了多少你今年跟去年比起來多多少錢可以用部會不願意回答這是您主管的部會嗎您知道嗎 您理解 您同意嗎我們對這次的審查預算我們最終立法院沒有一個宣讀刪減總數這個地方我們認為是史無前途的
transcript.whisperx[39].start 887.85
transcript.whisperx[39].end 896.22
transcript.whisperx[39].text 你剛剛講的你確定是講的是三減還是在講凍結全部都有過去的例子不管是2002年的680億的例子還是之前的凍結的例子通緩報告立法院從來沒有宣讀凍結數
transcript.whisperx[40].start 902.927
transcript.whisperx[40].end 922.474
transcript.whisperx[40].text 全部的例子在過去都有每一個跟你質詢的人都提過了結果你看都不看你還講說時空環境條件不同我告訴院長如果真的是這樣我們每年都要來重新證明一次1加1等於2最後我想要跟院長講一下AI真的可以幫助我們我們現在就
transcript.whisperx[41].start 935.174
transcript.whisperx[41].end 943.677
transcript.whisperx[41].text 好 謝謝葛如君委員的詢問也謝謝卓院長及相關部會所長謝謝好 報告全員委員會我們各黨團所