iVOD / 158780

Field Value
IVOD_ID 158780
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/158780
日期 2025-01-08
會議資料.會議代碼 委員會-11-2-23-19
會議資料.會議代碼:str 第11屆第2會期交通委員會第19次全體委員會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 19
會議資料.種類 委員會
會議資料.委員會代碼[0] 23
會議資料.委員會代碼:str[0] 交通委員會
會議資料.標題 第11屆第2會期交通委員會第19次全體委員會議
影片種類 Clip
開始時間 2025-01-08T12:29:16+08:00
結束時間 2025-01-08T12:37:22+08:00
影片長度 00:08:06
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/740a0dd0b202cb58ef1cecd1a1713e899b82b4e80112db25e734c898429ef19ac918614e2a6c40d45ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王義川
委員發言時間 12:29:16 - 12:37:22
會議時間 2025-01-08T09:00:00+08:00
會議名稱 立法院第11屆第2會期交通委員會第19次全體委員會議(事由:邀請交通部部長陳世凱、國家發展委員會、環境部、經濟部及國家科學及技術委員會就「陸海空交通運輸業因應凈零排放轉型之改善措施」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 2.00534375
transcript.pyannote[0].end 3.37221875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 3.77721875
transcript.pyannote[1].end 5.02596875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 6.00471875
transcript.pyannote[2].end 19.36971875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 19.80846875
transcript.pyannote[3].end 28.36409375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 31.26659375
transcript.pyannote[4].end 41.05409375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 39.78846875
transcript.pyannote[5].end 39.94034375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 39.94034375
transcript.pyannote[6].end 40.29471875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 40.29471875
transcript.pyannote[7].end 40.48034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 40.48034375
transcript.pyannote[8].end 41.03721875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 41.05409375
transcript.pyannote[9].end 41.50971875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 41.50971875
transcript.pyannote[10].end 41.59409375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 42.03284375
transcript.pyannote[11].end 42.55596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 42.55596875
transcript.pyannote[12].end 43.16346875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 43.16346875
transcript.pyannote[13].end 43.33221875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 43.33221875
transcript.pyannote[14].end 43.38284375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 43.38284375
transcript.pyannote[15].end 43.45034375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 44.63159375
transcript.pyannote[16].end 45.94784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 45.96471875
transcript.pyannote[17].end 59.22846875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 57.54096875
transcript.pyannote[18].end 57.57471875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 57.57471875
transcript.pyannote[19].end 58.28346875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 58.28346875
transcript.pyannote[20].end 58.30034375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 58.85721875
transcript.pyannote[21].end 60.89909375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 61.38846875
transcript.pyannote[22].end 62.56971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 63.05909375
transcript.pyannote[23].end 66.90659375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 67.51409375
transcript.pyannote[24].end 76.82909375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 77.06534375
transcript.pyannote[25].end 89.31659375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 90.56534375
transcript.pyannote[26].end 91.78034375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 91.78034375
transcript.pyannote[27].end 91.79721875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 91.79721875
transcript.pyannote[28].end 91.81409375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 91.81409375
transcript.pyannote[29].end 103.44096875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 91.96596875
transcript.pyannote[30].end 92.72534375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 101.80409375
transcript.pyannote[31].end 123.03284375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 107.20409375
transcript.pyannote[32].end 107.49096875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 109.02659375
transcript.pyannote[33].end 109.63409375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 109.83659375
transcript.pyannote[34].end 112.24971875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 114.37596875
transcript.pyannote[35].end 116.04659375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 118.12221875
transcript.pyannote[36].end 119.94471875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 121.85159375
transcript.pyannote[37].end 121.86846875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 121.90221875
transcript.pyannote[38].end 123.48846875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 123.21846875
transcript.pyannote[39].end 124.50096875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 126.28971875
transcript.pyannote[40].end 130.94721875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 131.79096875
transcript.pyannote[41].end 136.60034375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 137.29221875
transcript.pyannote[42].end 137.88284375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 138.86159375
transcript.pyannote[43].end 141.69659375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 145.02096875
transcript.pyannote[44].end 150.30284375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 149.89784375
transcript.pyannote[45].end 158.14971875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 150.94409375
transcript.pyannote[46].end 151.19721875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 153.64409375
transcript.pyannote[47].end 154.58909375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 155.14596875
transcript.pyannote[48].end 155.61846875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 158.09909375
transcript.pyannote[49].end 158.55471875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 158.55471875
transcript.pyannote[50].end 161.82846875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 162.63846875
transcript.pyannote[51].end 163.33034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 163.33034375
transcript.pyannote[52].end 163.63409375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 163.97159375
transcript.pyannote[53].end 181.87596875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 182.38221875
transcript.pyannote[54].end 185.45346875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 186.39846875
transcript.pyannote[55].end 186.48284375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 186.48284375
transcript.pyannote[56].end 186.49971875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 186.49971875
transcript.pyannote[57].end 187.32659375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 187.74846875
transcript.pyannote[58].end 192.74346875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 192.33846875
transcript.pyannote[59].end 192.79409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 192.79409375
transcript.pyannote[60].end 192.81096875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 192.81096875
transcript.pyannote[61].end 193.33409375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 193.43534375
transcript.pyannote[62].end 195.59534375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 194.59971875
transcript.pyannote[63].end 204.77534375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 205.18034375
transcript.pyannote[64].end 219.03471875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 223.25346875
transcript.pyannote[65].end 225.64971875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 225.64971875
transcript.pyannote[66].end 243.21659375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 242.60909375
transcript.pyannote[67].end 243.89159375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 244.73534375
transcript.pyannote[68].end 247.65471875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 247.72221875
transcript.pyannote[69].end 254.13471875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 249.24096875
transcript.pyannote[70].end 249.74721875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 254.57346875
transcript.pyannote[71].end 260.74971875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 260.47971875
transcript.pyannote[72].end 261.22221875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 261.22221875
transcript.pyannote[73].end 262.25159375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 262.06596875
transcript.pyannote[74].end 263.70284375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 264.24284375
transcript.pyannote[75].end 264.81659375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 267.29721875
transcript.pyannote[76].end 268.66409375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 269.76096875
transcript.pyannote[77].end 273.18659375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 273.70971875
transcript.pyannote[78].end 274.26659375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 274.82346875
transcript.pyannote[79].end 276.71346875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 276.93284375
transcript.pyannote[80].end 278.75534375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 279.19409375
transcript.pyannote[81].end 280.51034375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 281.21909375
transcript.pyannote[82].end 281.59034375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 289.89284375
transcript.pyannote[83].end 300.10221875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 300.10221875
transcript.pyannote[84].end 321.51659375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 322.73159375
transcript.pyannote[85].end 324.84096875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 325.19534375
transcript.pyannote[86].end 332.13096875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 332.28284375
transcript.pyannote[87].end 334.35846875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 335.20221875
transcript.pyannote[88].end 337.91909375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 338.91471875
transcript.pyannote[89].end 348.34784375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 348.58409375
transcript.pyannote[90].end 353.08971875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 354.59159375
transcript.pyannote[91].end 371.85471875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 371.39909375
transcript.pyannote[92].end 373.06971875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 373.06971875
transcript.pyannote[93].end 396.44159375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 396.93096875
transcript.pyannote[94].end 402.71909375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 403.56284375
transcript.pyannote[95].end 421.83846875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 422.88471875
transcript.pyannote[96].end 430.96784375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 432.04784375
transcript.pyannote[97].end 435.59159375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 436.95846875
transcript.pyannote[98].end 438.44346875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 438.52784375
transcript.pyannote[99].end 441.39659375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 441.80159375
transcript.pyannote[100].end 446.93159375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 447.30284375
transcript.pyannote[101].end 454.67721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 455.38596875
transcript.pyannote[102].end 465.07221875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 465.76409375
transcript.pyannote[103].end 467.65409375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 468.05909375
transcript.pyannote[104].end 483.44909375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 483.61784375
transcript.pyannote[105].end 486.62159375
transcript.whisperx[0].start 4.346
transcript.whisperx[0].end 26.216
transcript.whisperx[0].text 陳副處長好 我今天要問的題目是我們台灣的公車要全面電動化這件事情交通部有沒有認真在推動好 我們先看這一張今天你們交的報告陳市長 國發會說到去年的11月台灣電動車的普及率31.5 對嗎
transcript.whisperx[1].start 31.288
transcript.whisperx[1].end 42.699
transcript.whisperx[1].text 他這31.5就是剛才我們在很多都特別提到的就是包含這個在營運中的跟核定的台灣的大客車有幾輛啊
transcript.whisperx[2].start 44.514
transcript.whisperx[2].end 45.995
transcript.whisperx[2].text 市區的電動公車是有11700輛來 部長你看你們的報告你們報告說要汰換電動大客車14500輛
transcript.whisperx[3].start 67.591
transcript.whisperx[3].end 78.798
transcript.whisperx[3].text 你們定義的是14500輛嘛 對不對那到去年的年底你們說你們已經領牌的是1926嘛1926除以14500輛是13.28好 我想跟你計較這些數字就是說國華會的數字啊應該也是交通部給的
transcript.whisperx[4].start 91.993
transcript.whisperx[4].end 103.797
transcript.whisperx[4].text 稍微再跟委員說明一下那個原則上會多出來那個4000多部吧那個是公路客運的部分啦我們是在對啦我知道啦但是國化會把電動大客車它就這樣寫嘛但是我們一般對大客車的定義不是這樣嘛因為對
transcript.whisperx[5].start 112.02
transcript.whisperx[5].end 137.566
transcript.whisperx[5].text 因為大客車 遊覽車也是大客車所以這些文字精準一點 好不好因為國外會看到的數字也是你們給的 好不好那我們看下一張原來設定50%要電動化是指市區公車嗎那公路客運是交通部公路局管的要做嗎
transcript.whisperx[6].start 138.905
transcript.whisperx[6].end 161.296
transcript.whisperx[6].text 那為什麼公路客運都不來申請電動車跟我們報告目前大概重點先擺在這個市區公車的部分沒有重點嘛市區公車是市政府管的嘛六都市政府管的嘛對不對那公路客運是公路局管的嘛那為什麼公路客運的業者不申請
transcript.whisperx[7].start 162.934
transcript.whisperx[7].end 185.189
transcript.whisperx[7].text 電動公車跟我們報告並不是說客運業者不申請最主要就是說目前適合公路客運跟國道客運的電動的車的車型目前還在開發中應該這個今年第一季會有這個經過審議合格的這個車型出來因為在性能上面的要求會有不一樣
transcript.whisperx[8].start 186.748
transcript.whisperx[8].end 203.193
transcript.whisperx[8].text 那遊覽車呢遊覽車更是一個高性能的部分所以現在沒有遊覽車的電動車現行在科學園區大概有將近50輛這個電動遊覽但是他是用地地板另外就是專門跑這個
transcript.whisperx[9].start 205.294
transcript.whisperx[9].end 218.545
transcript.whisperx[9].text 市區公車六都剛剛蔡奇昌副院長有提到那個數量沒有機會讓你們解釋你們知道為什麼會有些都沒有嗎為什麼有一些很低為什麼有一些很高嗎
transcript.whisperx[10].start 223.294
transcript.whisperx[10].end 243.315
transcript.whisperx[10].text 你不要笑啊 你知道答案你就講啊好 這個部分我大概跟委員報告一下因為就是說確實電動公車的一個這個推產各縣市都這個不太一樣啊那但是這個就是關鍵是什麼關鍵在於就是說確實像有一些這個縣市它起步可能推的比較不是啦
transcript.whisperx[11].start 244.844
transcript.whisperx[11].end 263.511
transcript.whisperx[11].text 就是車公里成本不一樣嗎?編的補貼不一樣嗎?現在全台灣對電動公車車公里成本給最高的是誰?我印象中應該是台中或者是台南吧台南啦台南給蠻高的56.34啦第二名第二名是桃園啦
transcript.whisperx[12].start 269.81
transcript.whisperx[12].end 280.577
transcript.whisperx[12].text 桃園52.7再加購車補助桃園喔桃園給最高的車公里喔然後呢又給購車補助喔結果他是六都最後一名為什麼
transcript.whisperx[13].start 290.65
transcript.whisperx[13].end 314.128
transcript.whisperx[13].text 當時有關那個車子應該是想說一開始的時候我們大概只有幾行所以很多的客運業者大概在觀望其他的車型我跟你講關鍵就是地方政府的這些加碼補助跟對車工裡的計算不一樣就會導致各城市的客運業者願不願意把柴油公車連線到的時候換成電動公車
transcript.whisperx[14].start 316.209
transcript.whisperx[14].end 337.483
transcript.whisperx[14].text 所以你們要去盤點這六都他們對這個車公里成本的計算到底哪裡不一樣 因為你們只做這個購車補助嘛 對不對好 那剛剛我再請問一下 那購車補助車子買來了要充電的那個場地啊 各縣市政府跟客運業者有沒有遇到困難
transcript.whisperx[15].start 338.956
transcript.whisperx[15].end 341.62
transcript.whisperx[15].text 放月子有沒有想要因為他們的車都要休息嘛他們都要充電嘛那充電的地方有沒有遇到抗爭遇到人家不讓他設那這個都丟給縣市政府還是公路局會介入來協助
transcript.whisperx[16].start 354.599
transcript.whisperx[16].end 358.123
transcript.whisperx[16].text 所以當時就是要求地方政府在提計劃書的時候就對於這個要就是說協助這個客人業者來找這個設停車場跟充電場這個部分要有整體的規劃所以這是縣市政府負責
transcript.whisperx[17].start 373.12
transcript.whisperx[17].end 402.395
transcript.whisperx[17].text 對然後另外一個部分有場地之後要設充電樁這些供電用電的等等部分的話公務局在公務局這邊跟台電有一個平台他們每個會開會那只要就是說客運業者有申請要設這個充電樁的一個場站在台電各分區都列為專案計畫在做這個列管都是優先來做一個協助我們現在對推動電動的市區公車的進度實在是非常的緩慢
transcript.whisperx[18].start 403.595
transcript.whisperx[18].end 421.385
transcript.whisperx[18].text 你們應該也會認為很緩慢所以這個部分我知道你們補助不會無窮無盡最新一期的補助那個付款的條件是越來越差所以對這些客運業者來說他們願意再加碼繼續買的那個意願會越來越低那可是你們離目標離國安會幫你們訂的環境部幫你們訂的行政院幫你們訂的那個數字會越來越遠
transcript.whisperx[19].start 432.113
transcript.whisperx[19].end 435.615
transcript.whisperx[19].text 會越來越遠 因為最早期馬來西亞電動公車也都到齊了那很多是中國車 對不對很多是大量的中國車 那些也都到齊了所以接下來呢 你們怎麼在 你們的經費有限補助會越來越少然後呢 給客運業者的補助的時程 就是說分期付款越拉越多期
transcript.whisperx[20].start 455.444
transcript.whisperx[20].end 463.608
transcript.whisperx[20].text 造成這業者不願意買可是國安會訂了目標環境部訂了目標行政院訂了目標那我們的運輸部門越來越難達成
transcript.whisperx[21].start 465.799
transcript.whisperx[21].end 484.726
transcript.whisperx[21].text 那到最後全部會怪運輸部門因為運輸部門本來就是這個排碳最大宗大概就在運輸部門後面國外會都一直點頭所以你們要記得一定要想辦法跟上來不能讓其他的部門住宅部門這些部門笑我們好不好交通部要加油謝謝