IVOD_ID |
158780 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/158780 |
日期 |
2025-01-08 |
會議資料.會議代碼 |
委員會-11-2-23-19 |
會議資料.會議代碼:str |
第11屆第2會期交通委員會第19次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
2 |
會議資料.會次 |
19 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
23 |
會議資料.委員會代碼:str[0] |
交通委員會 |
會議資料.標題 |
第11屆第2會期交通委員會第19次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2025-01-08T12:29:16+08:00 |
結束時間 |
2025-01-08T12:37:22+08:00 |
影片長度 |
00:08:06 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/740a0dd0b202cb58ef1cecd1a1713e899b82b4e80112db25e734c898429ef19ac918614e2a6c40d45ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
王義川 |
委員發言時間 |
12:29:16 - 12:37:22 |
會議時間 |
2025-01-08T09:00:00+08:00 |
會議名稱 |
立法院第11屆第2會期交通委員會第19次全體委員會議(事由:邀請交通部部長陳世凱、國家發展委員會、環境部、經濟部及國家科學及技術委員會就「陸海空交通運輸業因應凈零排放轉型之改善措施」進行專題報告,並備質詢。) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
2.00534375 |
transcript.pyannote[0].end |
3.37221875 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
3.77721875 |
transcript.pyannote[1].end |
5.02596875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
6.00471875 |
transcript.pyannote[2].end |
19.36971875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
19.80846875 |
transcript.pyannote[3].end |
28.36409375 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
31.26659375 |
transcript.pyannote[4].end |
41.05409375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
39.78846875 |
transcript.pyannote[5].end |
39.94034375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
39.94034375 |
transcript.pyannote[6].end |
40.29471875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
40.29471875 |
transcript.pyannote[7].end |
40.48034375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
40.48034375 |
transcript.pyannote[8].end |
41.03721875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
41.05409375 |
transcript.pyannote[9].end |
41.50971875 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
41.50971875 |
transcript.pyannote[10].end |
41.59409375 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
42.03284375 |
transcript.pyannote[11].end |
42.55596875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
42.55596875 |
transcript.pyannote[12].end |
43.16346875 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
43.16346875 |
transcript.pyannote[13].end |
43.33221875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
43.33221875 |
transcript.pyannote[14].end |
43.38284375 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
43.38284375 |
transcript.pyannote[15].end |
43.45034375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
44.63159375 |
transcript.pyannote[16].end |
45.94784375 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
45.96471875 |
transcript.pyannote[17].end |
59.22846875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
57.54096875 |
transcript.pyannote[18].end |
57.57471875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
57.57471875 |
transcript.pyannote[19].end |
58.28346875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
58.28346875 |
transcript.pyannote[20].end |
58.30034375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
58.85721875 |
transcript.pyannote[21].end |
60.89909375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
61.38846875 |
transcript.pyannote[22].end |
62.56971875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
63.05909375 |
transcript.pyannote[23].end |
66.90659375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
67.51409375 |
transcript.pyannote[24].end |
76.82909375 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
77.06534375 |
transcript.pyannote[25].end |
89.31659375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
90.56534375 |
transcript.pyannote[26].end |
91.78034375 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
91.78034375 |
transcript.pyannote[27].end |
91.79721875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
91.79721875 |
transcript.pyannote[28].end |
91.81409375 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
91.81409375 |
transcript.pyannote[29].end |
103.44096875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
91.96596875 |
transcript.pyannote[30].end |
92.72534375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
101.80409375 |
transcript.pyannote[31].end |
123.03284375 |
transcript.pyannote[32].speaker |
SPEAKER_02 |
transcript.pyannote[32].start |
107.20409375 |
transcript.pyannote[32].end |
107.49096875 |
transcript.pyannote[33].speaker |
SPEAKER_02 |
transcript.pyannote[33].start |
109.02659375 |
transcript.pyannote[33].end |
109.63409375 |
transcript.pyannote[34].speaker |
SPEAKER_02 |
transcript.pyannote[34].start |
109.83659375 |
transcript.pyannote[34].end |
112.24971875 |
transcript.pyannote[35].speaker |
SPEAKER_02 |
transcript.pyannote[35].start |
114.37596875 |
transcript.pyannote[35].end |
116.04659375 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
118.12221875 |
transcript.pyannote[36].end |
119.94471875 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
121.85159375 |
transcript.pyannote[37].end |
121.86846875 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
121.90221875 |
transcript.pyannote[38].end |
123.48846875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
123.21846875 |
transcript.pyannote[39].end |
124.50096875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
126.28971875 |
transcript.pyannote[40].end |
130.94721875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
131.79096875 |
transcript.pyannote[41].end |
136.60034375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
137.29221875 |
transcript.pyannote[42].end |
137.88284375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
138.86159375 |
transcript.pyannote[43].end |
141.69659375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
145.02096875 |
transcript.pyannote[44].end |
150.30284375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
149.89784375 |
transcript.pyannote[45].end |
158.14971875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
150.94409375 |
transcript.pyannote[46].end |
151.19721875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
153.64409375 |
transcript.pyannote[47].end |
154.58909375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
155.14596875 |
transcript.pyannote[48].end |
155.61846875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
158.09909375 |
transcript.pyannote[49].end |
158.55471875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
158.55471875 |
transcript.pyannote[50].end |
161.82846875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
162.63846875 |
transcript.pyannote[51].end |
163.33034375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
163.33034375 |
transcript.pyannote[52].end |
163.63409375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
163.97159375 |
transcript.pyannote[53].end |
181.87596875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
182.38221875 |
transcript.pyannote[54].end |
185.45346875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
186.39846875 |
transcript.pyannote[55].end |
186.48284375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
186.48284375 |
transcript.pyannote[56].end |
186.49971875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
186.49971875 |
transcript.pyannote[57].end |
187.32659375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
187.74846875 |
transcript.pyannote[58].end |
192.74346875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
192.33846875 |
transcript.pyannote[59].end |
192.79409375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
192.79409375 |
transcript.pyannote[60].end |
192.81096875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
192.81096875 |
transcript.pyannote[61].end |
193.33409375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
193.43534375 |
transcript.pyannote[62].end |
195.59534375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
194.59971875 |
transcript.pyannote[63].end |
204.77534375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
205.18034375 |
transcript.pyannote[64].end |
219.03471875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
223.25346875 |
transcript.pyannote[65].end |
225.64971875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
225.64971875 |
transcript.pyannote[66].end |
243.21659375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
242.60909375 |
transcript.pyannote[67].end |
243.89159375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
244.73534375 |
transcript.pyannote[68].end |
247.65471875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
247.72221875 |
transcript.pyannote[69].end |
254.13471875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
249.24096875 |
transcript.pyannote[70].end |
249.74721875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
254.57346875 |
transcript.pyannote[71].end |
260.74971875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
260.47971875 |
transcript.pyannote[72].end |
261.22221875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
261.22221875 |
transcript.pyannote[73].end |
262.25159375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
262.06596875 |
transcript.pyannote[74].end |
263.70284375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
264.24284375 |
transcript.pyannote[75].end |
264.81659375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
267.29721875 |
transcript.pyannote[76].end |
268.66409375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
269.76096875 |
transcript.pyannote[77].end |
273.18659375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
273.70971875 |
transcript.pyannote[78].end |
274.26659375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
274.82346875 |
transcript.pyannote[79].end |
276.71346875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
276.93284375 |
transcript.pyannote[80].end |
278.75534375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
279.19409375 |
transcript.pyannote[81].end |
280.51034375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
281.21909375 |
transcript.pyannote[82].end |
281.59034375 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
289.89284375 |
transcript.pyannote[83].end |
300.10221875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
300.10221875 |
transcript.pyannote[84].end |
321.51659375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
322.73159375 |
transcript.pyannote[85].end |
324.84096875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
325.19534375 |
transcript.pyannote[86].end |
332.13096875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
332.28284375 |
transcript.pyannote[87].end |
334.35846875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
335.20221875 |
transcript.pyannote[88].end |
337.91909375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
338.91471875 |
transcript.pyannote[89].end |
348.34784375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
348.58409375 |
transcript.pyannote[90].end |
353.08971875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
354.59159375 |
transcript.pyannote[91].end |
371.85471875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
371.39909375 |
transcript.pyannote[92].end |
373.06971875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
373.06971875 |
transcript.pyannote[93].end |
396.44159375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
396.93096875 |
transcript.pyannote[94].end |
402.71909375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
403.56284375 |
transcript.pyannote[95].end |
421.83846875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
422.88471875 |
transcript.pyannote[96].end |
430.96784375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
432.04784375 |
transcript.pyannote[97].end |
435.59159375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
436.95846875 |
transcript.pyannote[98].end |
438.44346875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
438.52784375 |
transcript.pyannote[99].end |
441.39659375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
441.80159375 |
transcript.pyannote[100].end |
446.93159375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
447.30284375 |
transcript.pyannote[101].end |
454.67721875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
455.38596875 |
transcript.pyannote[102].end |
465.07221875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
465.76409375 |
transcript.pyannote[103].end |
467.65409375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
468.05909375 |
transcript.pyannote[104].end |
483.44909375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
483.61784375 |
transcript.pyannote[105].end |
486.62159375 |
transcript.whisperx[0].start |
4.346 |
transcript.whisperx[0].end |
26.216 |
transcript.whisperx[0].text |
陳副處長好 我今天要問的題目是我們台灣的公車要全面電動化這件事情交通部有沒有認真在推動好 我們先看這一張今天你們交的報告陳市長 國發會說到去年的11月台灣電動車的普及率31.5 對嗎 |
transcript.whisperx[1].start |
31.288 |
transcript.whisperx[1].end |
42.699 |
transcript.whisperx[1].text |
他這31.5就是剛才我們在很多都特別提到的就是包含這個在營運中的跟核定的台灣的大客車有幾輛啊 |
transcript.whisperx[2].start |
44.514 |
transcript.whisperx[2].end |
45.995 |
transcript.whisperx[2].text |
市區的電動公車是有11700輛來 部長你看你們的報告你們報告說要汰換電動大客車14500輛 |
transcript.whisperx[3].start |
67.591 |
transcript.whisperx[3].end |
78.798 |
transcript.whisperx[3].text |
你們定義的是14500輛嘛 對不對那到去年的年底你們說你們已經領牌的是1926嘛1926除以14500輛是13.28好 我想跟你計較這些數字就是說國華會的數字啊應該也是交通部給的 |
transcript.whisperx[4].start |
91.993 |
transcript.whisperx[4].end |
103.797 |
transcript.whisperx[4].text |
稍微再跟委員說明一下那個原則上會多出來那個4000多部吧那個是公路客運的部分啦我們是在對啦我知道啦但是國化會把電動大客車它就這樣寫嘛但是我們一般對大客車的定義不是這樣嘛因為對 |
transcript.whisperx[5].start |
112.02 |
transcript.whisperx[5].end |
137.566 |
transcript.whisperx[5].text |
因為大客車 遊覽車也是大客車所以這些文字精準一點 好不好因為國外會看到的數字也是你們給的 好不好那我們看下一張原來設定50%要電動化是指市區公車嗎那公路客運是交通部公路局管的要做嗎 |
transcript.whisperx[6].start |
138.905 |
transcript.whisperx[6].end |
161.296 |
transcript.whisperx[6].text |
那為什麼公路客運都不來申請電動車跟我們報告目前大概重點先擺在這個市區公車的部分沒有重點嘛市區公車是市政府管的嘛六都市政府管的嘛對不對那公路客運是公路局管的嘛那為什麼公路客運的業者不申請 |
transcript.whisperx[7].start |
162.934 |
transcript.whisperx[7].end |
185.189 |
transcript.whisperx[7].text |
電動公車跟我們報告並不是說客運業者不申請最主要就是說目前適合公路客運跟國道客運的電動的車的車型目前還在開發中應該這個今年第一季會有這個經過審議合格的這個車型出來因為在性能上面的要求會有不一樣 |
transcript.whisperx[8].start |
186.748 |
transcript.whisperx[8].end |
203.193 |
transcript.whisperx[8].text |
那遊覽車呢遊覽車更是一個高性能的部分所以現在沒有遊覽車的電動車現行在科學園區大概有將近50輛這個電動遊覽但是他是用地地板另外就是專門跑這個 |
transcript.whisperx[9].start |
205.294 |
transcript.whisperx[9].end |
218.545 |
transcript.whisperx[9].text |
市區公車六都剛剛蔡奇昌副院長有提到那個數量沒有機會讓你們解釋你們知道為什麼會有些都沒有嗎為什麼有一些很低為什麼有一些很高嗎 |
transcript.whisperx[10].start |
223.294 |
transcript.whisperx[10].end |
243.315 |
transcript.whisperx[10].text |
你不要笑啊 你知道答案你就講啊好 這個部分我大概跟委員報告一下因為就是說確實電動公車的一個這個推產各縣市都這個不太一樣啊那但是這個就是關鍵是什麼關鍵在於就是說確實像有一些這個縣市它起步可能推的比較不是啦 |
transcript.whisperx[11].start |
244.844 |
transcript.whisperx[11].end |
263.511 |
transcript.whisperx[11].text |
就是車公里成本不一樣嗎?編的補貼不一樣嗎?現在全台灣對電動公車車公里成本給最高的是誰?我印象中應該是台中或者是台南吧台南啦台南給蠻高的56.34啦第二名第二名是桃園啦 |
transcript.whisperx[12].start |
269.81 |
transcript.whisperx[12].end |
280.577 |
transcript.whisperx[12].text |
桃園52.7再加購車補助桃園喔桃園給最高的車公里喔然後呢又給購車補助喔結果他是六都最後一名為什麼 |
transcript.whisperx[13].start |
290.65 |
transcript.whisperx[13].end |
314.128 |
transcript.whisperx[13].text |
當時有關那個車子應該是想說一開始的時候我們大概只有幾行所以很多的客運業者大概在觀望其他的車型我跟你講關鍵就是地方政府的這些加碼補助跟對車工裡的計算不一樣就會導致各城市的客運業者願不願意把柴油公車連線到的時候換成電動公車 |
transcript.whisperx[14].start |
316.209 |
transcript.whisperx[14].end |
337.483 |
transcript.whisperx[14].text |
所以你們要去盤點這六都他們對這個車公里成本的計算到底哪裡不一樣 因為你們只做這個購車補助嘛 對不對好 那剛剛我再請問一下 那購車補助車子買來了要充電的那個場地啊 各縣市政府跟客運業者有沒有遇到困難 |
transcript.whisperx[15].start |
338.956 |
transcript.whisperx[15].end |
341.62 |
transcript.whisperx[15].text |
放月子有沒有想要因為他們的車都要休息嘛他們都要充電嘛那充電的地方有沒有遇到抗爭遇到人家不讓他設那這個都丟給縣市政府還是公路局會介入來協助 |
transcript.whisperx[16].start |
354.599 |
transcript.whisperx[16].end |
358.123 |
transcript.whisperx[16].text |
所以當時就是要求地方政府在提計劃書的時候就對於這個要就是說協助這個客人業者來找這個設停車場跟充電場這個部分要有整體的規劃所以這是縣市政府負責 |
transcript.whisperx[17].start |
373.12 |
transcript.whisperx[17].end |
402.395 |
transcript.whisperx[17].text |
對然後另外一個部分有場地之後要設充電樁這些供電用電的等等部分的話公務局在公務局這邊跟台電有一個平台他們每個會開會那只要就是說客運業者有申請要設這個充電樁的一個場站在台電各分區都列為專案計畫在做這個列管都是優先來做一個協助我們現在對推動電動的市區公車的進度實在是非常的緩慢 |
transcript.whisperx[18].start |
403.595 |
transcript.whisperx[18].end |
421.385 |
transcript.whisperx[18].text |
你們應該也會認為很緩慢所以這個部分我知道你們補助不會無窮無盡最新一期的補助那個付款的條件是越來越差所以對這些客運業者來說他們願意再加碼繼續買的那個意願會越來越低那可是你們離目標離國安會幫你們訂的環境部幫你們訂的行政院幫你們訂的那個數字會越來越遠 |
transcript.whisperx[19].start |
432.113 |
transcript.whisperx[19].end |
435.615 |
transcript.whisperx[19].text |
會越來越遠 因為最早期馬來西亞電動公車也都到齊了那很多是中國車 對不對很多是大量的中國車 那些也都到齊了所以接下來呢 你們怎麼在 你們的經費有限補助會越來越少然後呢 給客運業者的補助的時程 就是說分期付款越拉越多期 |
transcript.whisperx[20].start |
455.444 |
transcript.whisperx[20].end |
463.608 |
transcript.whisperx[20].text |
造成這業者不願意買可是國安會訂了目標環境部訂了目標行政院訂了目標那我們的運輸部門越來越難達成 |
transcript.whisperx[21].start |
465.799 |
transcript.whisperx[21].end |
484.726 |
transcript.whisperx[21].text |
那到最後全部會怪運輸部門因為運輸部門本來就是這個排碳最大宗大概就在運輸部門後面國外會都一直點頭所以你們要記得一定要想辦法跟上來不能讓其他的部門住宅部門這些部門笑我們好不好交通部要加油謝謝 |