iVOD / 158754

Field Value
IVOD_ID 158754
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/158754
日期 2025-01-08
會議資料.會議代碼 委員會-11-2-19-22
會議資料.會議代碼:str 第11屆第2會期經濟委員會第22次全體委員會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 22
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第2會期經濟委員會第22次全體委員會議
影片種類 Clip
開始時間 2025-01-08T10:30:48+08:00
結束時間 2025-01-08T10:38:54+08:00
影片長度 00:08:06
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/740a0dd0b202cb588c2d15e41664c816a56fd3a12bc29fbb2e7e046cfb2de4f78c182ccf94525d475ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 謝衣鳯
委員發言時間 10:30:48 - 10:38:54
會議時間 2025-01-08T09:00:00+08:00
會議名稱 立法院第11屆第2會期經濟委員會第22次全體委員會議(事由:一、審查114年度中央政府總預算案附屬單位預算非營業部分關於經濟部主管:經濟作業基金、水資源作業基金、經濟特別收入基金、核能發電後端營運基金。(詢答) 二、審查114年度中央政府總預算案附屬單位預算營業部分關於經濟部主管:台灣糖業股份有限公司、台灣中油股份有限公司。(詢答) 【1月8日及9日兩天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 1.53284375
transcript.pyannote[0].end 2.37659375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 7.75971875
transcript.pyannote[1].end 9.97034375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 10.35846875
transcript.pyannote[2].end 11.08409375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 19.20096875
transcript.pyannote[3].end 19.62284375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 20.19659375
transcript.pyannote[4].end 21.22596875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 21.39471875
transcript.pyannote[5].end 22.71096875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 24.22971875
transcript.pyannote[6].end 25.14096875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 26.62596875
transcript.pyannote[7].end 27.23346875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 27.67221875
transcript.pyannote[8].end 28.61721875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 30.23721875
transcript.pyannote[9].end 33.03846875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 33.32534375
transcript.pyannote[10].end 34.30409375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 34.40534375
transcript.pyannote[11].end 35.45159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 35.51909375
transcript.pyannote[12].end 45.40784375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 45.86346875
transcript.pyannote[13].end 53.01846875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 54.60471875
transcript.pyannote[14].end 55.09409375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 55.49909375
transcript.pyannote[15].end 62.28284375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 63.37971875
transcript.pyannote[16].end 70.11284375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 70.50096875
transcript.pyannote[17].end 77.38596875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 78.26346875
transcript.pyannote[18].end 79.36034375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 79.66409375
transcript.pyannote[19].end 82.48221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 83.10659375
transcript.pyannote[20].end 85.41846875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 86.54909375
transcript.pyannote[21].end 90.00846875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 90.97034375
transcript.pyannote[22].end 98.26034375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 98.64846875
transcript.pyannote[23].end 101.88846875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 102.42846875
transcript.pyannote[24].end 105.46596875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 105.73596875
transcript.pyannote[25].end 106.96784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 105.92159375
transcript.pyannote[26].end 109.61721875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 107.81159375
transcript.pyannote[27].end 108.13221875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 109.22909375
transcript.pyannote[28].end 111.86159375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 112.40159375
transcript.pyannote[29].end 112.89096875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 112.82346875
transcript.pyannote[30].end 120.14721875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 120.78846875
transcript.pyannote[31].end 121.58159375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 121.81784375
transcript.pyannote[32].end 122.54346875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 123.35346875
transcript.pyannote[33].end 125.37846875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 126.57659375
transcript.pyannote[34].end 130.05284375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 130.64346875
transcript.pyannote[35].end 134.57534375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 135.06471875
transcript.pyannote[36].end 139.28346875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 139.92471875
transcript.pyannote[37].end 141.12284375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 141.89909375
transcript.pyannote[38].end 143.01284375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 143.01284375
transcript.pyannote[39].end 144.04221875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 144.49784375
transcript.pyannote[40].end 148.53096875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 148.53096875
transcript.pyannote[41].end 157.45784375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 157.91346875
transcript.pyannote[42].end 162.90846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 162.90846875
transcript.pyannote[43].end 163.31346875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 163.46534375
transcript.pyannote[44].end 168.15659375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 168.73034375
transcript.pyannote[45].end 171.73409375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 172.76346875
transcript.pyannote[46].end 173.47221875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 174.24846875
transcript.pyannote[47].end 176.94846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 177.55596875
transcript.pyannote[48].end 182.02784375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 183.44534375
transcript.pyannote[49].end 186.90471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 187.02284375
transcript.pyannote[50].end 187.61346875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 187.90034375
transcript.pyannote[51].end 189.75659375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 189.06471875
transcript.pyannote[52].end 192.18659375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 191.15721875
transcript.pyannote[53].end 191.98409375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 192.18659375
transcript.pyannote[54].end 195.49409375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 197.13096875
transcript.pyannote[55].end 198.05909375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 198.26159375
transcript.pyannote[56].end 203.23971875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 203.84721875
transcript.pyannote[57].end 205.46721875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 206.05784375
transcript.pyannote[58].end 207.23909375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 208.20096875
transcript.pyannote[59].end 209.53409375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 210.12471875
transcript.pyannote[60].end 211.86284375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 212.06534375
transcript.pyannote[61].end 212.47034375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 212.47034375
transcript.pyannote[62].end 213.53346875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 213.63471875
transcript.pyannote[63].end 214.07346875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 214.56284375
transcript.pyannote[64].end 217.22909375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 217.83659375
transcript.pyannote[65].end 219.99659375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 220.58721875
transcript.pyannote[66].end 222.44346875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 222.61221875
transcript.pyannote[67].end 224.50221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 225.71721875
transcript.pyannote[68].end 229.04159375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 230.22284375
transcript.pyannote[69].end 231.65721875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 232.02846875
transcript.pyannote[70].end 235.35284375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 234.55971875
transcript.pyannote[71].end 238.15409375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 238.79534375
transcript.pyannote[72].end 239.99346875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 240.07784375
transcript.pyannote[73].end 244.21221875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 244.21221875
transcript.pyannote[74].end 244.22909375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 245.44409375
transcript.pyannote[75].end 245.46096875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 245.46096875
transcript.pyannote[76].end 248.11034375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 248.48159375
transcript.pyannote[77].end 253.67909375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 254.06721875
transcript.pyannote[78].end 254.82659375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 255.24846875
transcript.pyannote[79].end 255.68721875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 256.14284375
transcript.pyannote[80].end 256.53096875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 256.75034375
transcript.pyannote[81].end 266.57159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 267.21284375
transcript.pyannote[82].end 278.92409375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 279.26159375
transcript.pyannote[83].end 280.05471875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 280.35846875
transcript.pyannote[84].end 282.02909375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 282.46784375
transcript.pyannote[85].end 286.73721875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 288.15471875
transcript.pyannote[86].end 290.56784375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 290.63534375
transcript.pyannote[87].end 297.45284375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 298.31346875
transcript.pyannote[88].end 301.90784375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 302.44784375
transcript.pyannote[89].end 303.79784375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 305.24909375
transcript.pyannote[90].end 308.16846875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 308.92784375
transcript.pyannote[91].end 310.54784375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 310.76721875
transcript.pyannote[92].end 315.03659375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 315.27284375
transcript.pyannote[93].end 316.36971875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 315.49221875
transcript.pyannote[94].end 315.96471875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 316.36971875
transcript.pyannote[95].end 327.86159375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 327.86159375
transcript.pyannote[96].end 331.74284375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 332.72159375
transcript.pyannote[97].end 336.61971875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 336.29909375
transcript.pyannote[98].end 336.82221875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 336.78846875
transcript.pyannote[99].end 340.23096875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 340.45034375
transcript.pyannote[100].end 341.02409375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 340.93971875
transcript.pyannote[101].end 344.60159375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 344.60159375
transcript.pyannote[102].end 344.97284375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 344.63534375
transcript.pyannote[103].end 356.14409375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 356.44784375
transcript.pyannote[104].end 379.73534375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 380.17409375
transcript.pyannote[105].end 381.03471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 381.28784375
transcript.pyannote[106].end 382.51971875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 382.90784375
transcript.pyannote[107].end 386.31659375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 386.48534375
transcript.pyannote[108].end 387.46409375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 387.88596875
transcript.pyannote[109].end 390.82221875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 391.36221875
transcript.pyannote[110].end 392.89784375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 393.37034375
transcript.pyannote[111].end 394.21409375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 394.75409375
transcript.pyannote[112].end 398.26409375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 398.61846875
transcript.pyannote[113].end 401.16659375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 402.09471875
transcript.pyannote[114].end 402.60096875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 403.36034375
transcript.pyannote[115].end 404.59221875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 404.59221875
transcript.pyannote[116].end 404.60909375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 404.89596875
transcript.pyannote[117].end 405.23346875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 405.31784375
transcript.pyannote[118].end 405.79034375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 406.38096875
transcript.pyannote[119].end 429.95534375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 429.19596875
transcript.pyannote[120].end 441.93659375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 431.47409375
transcript.pyannote[121].end 433.29659375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 434.47784375
transcript.pyannote[122].end 434.89971875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 442.40909375
transcript.pyannote[123].end 446.79659375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 447.25221875
transcript.pyannote[124].end 457.29284375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 448.90596875
transcript.pyannote[125].end 449.49659375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 455.87534375
transcript.pyannote[126].end 455.90909375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 456.14534375
transcript.pyannote[127].end 456.56721875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 457.83284375
transcript.pyannote[128].end 464.41409375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 465.20721875
transcript.pyannote[129].end 466.13534375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 466.60784375
transcript.pyannote[130].end 475.26471875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 475.36596875
transcript.pyannote[131].end 475.95659375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 475.61909375
transcript.pyannote[132].end 481.87971875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 482.31846875
transcript.pyannote[133].end 483.14534375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 483.14534375
transcript.pyannote[134].end 483.21284375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 483.39846875
transcript.pyannote[135].end 484.81596875
transcript.whisperx[0].start 8.153
transcript.whisperx[0].end 28.403
transcript.whisperx[0].text 謝謝主席我想要請郭部長請郭部長郭部長早啊我要跟你直球對決我要問你啊川普即將要上任
transcript.whisperx[1].start 30.299
transcript.whisperx[1].end 52.617
transcript.whisperx[1].text 那他過去說全方位的提高關稅現在他說只針對攸關國家或者是經濟安全的特定產業我問你是什麼那未來如果他採取這樣子的關稅的時候那對於台灣我們的危機在哪裡請說
transcript.whisperx[2].start 56.183
transcript.whisperx[2].end 76.758
transcript.whisperx[2].text 首先回答這個委員關切的這個命題我想對台灣的威脅就我們到目前所了解的程度雖然他1月20號才會上去但是我們從他周邊所用的人跟這一些任職在新的他的內閣的人的行為來看
transcript.whisperx[3].start 78.305
transcript.whisperx[3].end 89.137
transcript.whisperx[3].text 他的這個讓美國更加偉大的這個做法關稅大概這個關稅的部分大概只是他在選舉前講的
transcript.whisperx[4].start 91.078
transcript.whisperx[4].end 119.871
transcript.whisperx[4].text 深圳的1月20號以後它落實的部分就像剛才委員所詮詢的可能會有一種不同不過這些命題我們想這個國家安全的部分相對的是比較多的對於國家安全的關稅提高是比較多的是不是所以它應該都是針對中國針對中國所以我們在內部討論的這個方式就這樣就是說我們如何幫助
transcript.whisperx[5].start 120.891
transcript.whisperx[5].end 140.623
transcript.whisperx[5].text 我們台商在台商對這個川普他對這個粗糙的部分他很考慮所以我們怎麼樣移轉協助我們的廠商移轉到他可能會增加關稅的這個區域那麼移動到
transcript.whisperx[6].start 141.94
transcript.whisperx[6].end 161.998
transcript.whisperx[6].text 不會增加關稅的地方從會增加關稅移動到不會增加關稅這是你們的做法嗎是不是譬如說在選前他一直在講他會對他最鄰近的兩個國家墨西哥跟加拿大課與高的關稅跟對中國課與更高的關稅
transcript.whisperx[7].start 163.739
transcript.whisperx[7].end 179.383
transcript.whisperx[7].text 這是他講的所以我們會針對他這樣一個假設的情境來跟廠商做一些討論我們盡量讓廠商的傷害是最小的以我們討論到目前的結論來講的話
transcript.whisperx[8].start 183.893
transcript.whisperx[8].end 206.706
transcript.whisperx[8].text 對臺灣影響比較大的應該是ICT的相關的產業ICT的產業另外一個他只關心ICT啊就是傳產的然後第二個傳產的部分呢應該是在汽車因為川普啊我們根據很多的這個研究者那經濟學家的分析川普是比較可能是比較
transcript.whisperx[9].start 208.243
transcript.whisperx[9].end 228.713
transcript.whisperx[9].text 他的印象之中也就是80年代的美國可能是他的picture80年代美國非常強大的時候那麼一直存在他的腦海裡面所以這樣子的一個關鍵我們是有跡可循的所以他認為80年代美國最強大的是什麼汽車業 建築業
transcript.whisperx[10].start 232.119
transcript.whisperx[10].end 243.985
transcript.whisperx[10].text 所以他想要把汽車移回去美國生產是嗎沒有錯所以你可以看到這個Mask回去了他現在要增加的部分都在美國
transcript.whisperx[11].start 245.486
transcript.whisperx[11].end 265.861
transcript.whisperx[11].text 好那我再問你你認識OTN過去的總代表我們鄧正宗總代表嗎他在他提出了他對於川普上台之後有可能發生的問題他有提出一點他說如果未來
transcript.whisperx[12].start 267.302
transcript.whisperx[12].end 286.335
transcript.whisperx[12].text 川普要求台灣跟他一起打擊大陸的時候是不是會減少要我們減少對大陸的進口而增加對美國的進口你認為這時候台灣要怎麼因應會不會對於我們的物價造成影響
transcript.whisperx[13].start 288.188
transcript.whisperx[13].end 308.14
transcript.whisperx[13].text 我們現在對中國的投資跟對美國的投資已經非常大的改變在過去的這幾年內所以我們要從中國進口的東西其實是已經不多了我們對中國的輸出也不多了
transcript.whisperx[14].start 309.013
transcript.whisperx[14].end 331.14
transcript.whisperx[14].text 其實鄧先生所提出來的這個觀點我們會參考你說的不多其實我們還是大部分當然對比於過去幾年來已經大幅度的降低但是還是很大程度的從大陸進口因為我們從中國大陸進口的東西一定會
transcript.whisperx[15].start 332.779
transcript.whisperx[15].end 339.841
transcript.whisperx[15].text 想殲滅是比較嚴重的延遲對我們國內的事業一定有非常大的影響
transcript.whisperx[16].start 341.024
transcript.whisperx[16].end 367.48
transcript.whisperx[16].text 因為中國對出國的東西強化它的補助所以造成我們國內我們如果開放讓中國的東西進口到台灣的話我們台灣很多的傳產很多的這個中小企業可能都沒有辦法存活下去所以在這個部分的話經濟部會有一套保護國內中小微企業繼續發展的一個方式那我們相信透過我們現在這個雙軸轉型的方法
transcript.whisperx[17].start 370.382
transcript.whisperx[17].end 391.892
transcript.whisperx[17].text 一個用AI來提升我們台灣企業的這個加值型的這個活動第二個透過我們的節能減碳的補助來降低我們這些中小微企業的製造成本第三個我們可能會擴大加速我們國內的這個基建基礎建設
transcript.whisperx[18].start 395.208
transcript.whisperx[18].end 400.797
transcript.whisperx[18].text 那基礎建設擴大加速的話就會讓我們的中小微企業
transcript.whisperx[19].start 402.148
transcript.whisperx[19].end 426.963
transcript.whisperx[19].text 得到國內自己的訂單好這是理想的狀態啦但是我們必須要了解美國自己有沒有辦法減少從大陸的進口美國自己也從大陸進口非常多的東西啊是不是那如果他們從大陸降低從大陸進口會不會反而造成他美國的通膨呢
transcript.whisperx[20].start 427.703
transcript.whisperx[20].end 445.352
transcript.whisperx[20].text 這也是他們應該要考量的但是美國的通膨我們發現美國在抗過去的通膨非常的厲害在過去COVID-19造成了這麼大的通膨美國發債所以讓他現在的通膨的影響只有在2點多%所以這個就是他們美國的經濟的這個
transcript.whisperx[21].start 447.994
transcript.whisperx[21].end 464.128
transcript.whisperx[21].text 處理的模式啦我相信在未來就是他對中國實以高關稅但是這個不是完全沒有替代性的所以我認為他們有辦法這個因應中國他提高關稅的方式第二個
transcript.whisperx[22].start 465.27
transcript.whisperx[22].end 484.629
transcript.whisperx[22].text 大部分基礎的這些生活所需的設施中國雖然價格很便宜但是品質還是堪慮所以這個替代性相當的高我相信美國他們會有方法來面對這樣的一個現象好 謝謝好 謝謝委員指教