iVOD / 158665

Field Value
IVOD_ID 158665
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/158665
日期 2025-01-02
會議資料.會議代碼 委員會-11-2-26-17
會議資料.會議代碼:str 第11屆第2會期社會福利及衛生環境委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第2會期社會福利及衛生環境委員會第17次全體委員會議
影片種類 Clip
開始時間 2025-01-02T14:54:08+08:00
結束時間 2025-01-02T15:05:12+08:00
影片長度 00:11:04
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/186d177ad48e30e56efdf2dff7b62384c921d2cbf1168e401adefee6f0a6eb895b5cf774a2689c845ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊曜
委員發言時間 14:54:08 - 15:05:12
會議時間 2025-01-02T09:00:00+08:00
會議名稱 立法院第11屆第2會期社會福利及衛生環境委員會第17次全體委員會議(事由:請勞動部、衛生福利部、教育部就「推動友善職場、校園性騷擾與霸凌防治及長照悲歌並檢討現行長照制度缺失與長照3.0規劃」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 4.89096875
transcript.pyannote[0].end 6.81471875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 7.65846875
transcript.pyannote[1].end 8.90721875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 15.33659375
transcript.pyannote[2].end 21.32721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 22.17096875
transcript.pyannote[3].end 27.55409375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 27.58784375
transcript.pyannote[4].end 32.83596875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 33.35909375
transcript.pyannote[5].end 34.23659375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 34.65846875
transcript.pyannote[6].end 35.31659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 36.48096875
transcript.pyannote[7].end 39.77159375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 40.36221875
transcript.pyannote[8].end 44.64846875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 44.91846875
transcript.pyannote[9].end 47.23034375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 47.55096875
transcript.pyannote[10].end 53.49096875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 53.81159375
transcript.pyannote[11].end 68.49284375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 69.52221875
transcript.pyannote[12].end 74.97284375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 75.20909375
transcript.pyannote[13].end 80.27159375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 80.77784375
transcript.pyannote[14].end 83.20784375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 83.84909375
transcript.pyannote[15].end 101.82096875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 101.97284375
transcript.pyannote[16].end 109.38096875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 109.78596875
transcript.pyannote[17].end 110.35971875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 110.68034375
transcript.pyannote[18].end 111.38909375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 112.51971875
transcript.pyannote[19].end 114.61221875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 115.57409375
transcript.pyannote[20].end 117.27846875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 118.59471875
transcript.pyannote[21].end 120.70409375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 120.92346875
transcript.pyannote[22].end 124.26471875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 124.80471875
transcript.pyannote[23].end 132.07784375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 132.75284375
transcript.pyannote[24].end 133.52909375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 135.45284375
transcript.pyannote[25].end 136.98846875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 137.69721875
transcript.pyannote[26].end 140.24534375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 141.02159375
transcript.pyannote[27].end 141.86534375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 143.28284375
transcript.pyannote[28].end 145.02096875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 145.66221875
transcript.pyannote[29].end 146.64096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 147.23159375
transcript.pyannote[30].end 152.14221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 153.13784375
transcript.pyannote[31].end 157.15409375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 157.20471875
transcript.pyannote[32].end 160.95096875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 162.11534375
transcript.pyannote[33].end 163.14471875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 163.56659375
transcript.pyannote[34].end 164.96721875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 165.50721875
transcript.pyannote[35].end 166.21596875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 166.80659375
transcript.pyannote[36].end 168.22409375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 168.37596875
transcript.pyannote[37].end 169.05096875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 169.48971875
transcript.pyannote[38].end 170.80596875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 171.29534375
transcript.pyannote[39].end 171.97034375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 172.13909375
transcript.pyannote[40].end 173.62409375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 174.23159375
transcript.pyannote[41].end 176.10471875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 177.06659375
transcript.pyannote[42].end 178.06221875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 178.60221875
transcript.pyannote[43].end 193.19909375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 193.41846875
transcript.pyannote[44].end 209.21346875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 200.25284375
transcript.pyannote[45].end 200.84346875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 209.65221875
transcript.pyannote[46].end 217.97159375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 218.54534375
transcript.pyannote[47].end 220.80659375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 221.27909375
transcript.pyannote[48].end 223.64159375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 224.02971875
transcript.pyannote[49].end 237.19221875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 231.89346875
transcript.pyannote[50].end 232.63596875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 233.31096875
transcript.pyannote[51].end 233.34471875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 237.51284375
transcript.pyannote[52].end 243.41909375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 244.14471875
transcript.pyannote[53].end 254.33721875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 254.89409375
transcript.pyannote[54].end 255.04596875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 255.04596875
transcript.pyannote[55].end 255.50159375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 255.50159375
transcript.pyannote[56].end 267.02721875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 267.02721875
transcript.pyannote[57].end 271.54971875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 272.71409375
transcript.pyannote[58].end 274.33409375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 274.51971875
transcript.pyannote[59].end 274.85721875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 275.11034375
transcript.pyannote[60].end 278.28284375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 278.29971875
transcript.pyannote[61].end 298.83659375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 282.28221875
transcript.pyannote[62].end 282.53534375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 299.39346875
transcript.pyannote[63].end 301.65471875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 302.90346875
transcript.pyannote[64].end 321.19596875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 321.19596875
transcript.pyannote[65].end 339.03284375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 339.03284375
transcript.pyannote[66].end 342.37409375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 342.82971875
transcript.pyannote[67].end 345.64784375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 345.96846875
transcript.pyannote[68].end 350.30534375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 350.52471875
transcript.pyannote[69].end 351.62159375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 352.14471875
transcript.pyannote[70].end 355.90784375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 357.00471875
transcript.pyannote[71].end 359.75534375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 359.99159375
transcript.pyannote[72].end 363.29909375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 363.65346875
transcript.pyannote[73].end 365.23971875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 365.79659375
transcript.pyannote[74].end 371.06159375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 372.04034375
transcript.pyannote[75].end 374.82471875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 374.82471875
transcript.pyannote[76].end 382.43534375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 382.97534375
transcript.pyannote[77].end 392.18909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 393.18471875
transcript.pyannote[78].end 397.31909375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 397.50471875
transcript.pyannote[79].end 397.52159375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 397.52159375
transcript.pyannote[80].end 397.57221875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 397.57221875
transcript.pyannote[81].end 398.16284375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 398.16284375
transcript.pyannote[82].end 404.59221875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 404.59221875
transcript.pyannote[83].end 404.67659375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 404.71034375
transcript.pyannote[84].end 427.30596875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 427.08659375
transcript.pyannote[85].end 437.05971875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 427.69409375
transcript.pyannote[86].end 428.31846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 434.83221875
transcript.pyannote[87].end 441.78471875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 441.97034375
transcript.pyannote[88].end 444.51846875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 445.00784375
transcript.pyannote[89].end 453.49596875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 451.33596875
transcript.pyannote[90].end 452.93909375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 454.13721875
transcript.pyannote[91].end 454.98096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 454.98096875
transcript.pyannote[92].end 464.29596875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 455.63909375
transcript.pyannote[93].end 456.41534375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 458.32221875
transcript.pyannote[94].end 459.33471875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 464.44784375
transcript.pyannote[95].end 467.02971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 467.02971875
transcript.pyannote[96].end 467.70471875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 467.70471875
transcript.pyannote[97].end 467.77221875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 467.77221875
transcript.pyannote[98].end 480.17534375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 480.22596875
transcript.pyannote[99].end 482.67284375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 482.77409375
transcript.pyannote[100].end 484.96784375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 484.96784375
transcript.pyannote[101].end 492.07221875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 492.27471875
transcript.pyannote[102].end 503.85096875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 503.85096875
transcript.pyannote[103].end 507.58034375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 507.96846875
transcript.pyannote[104].end 509.47034375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 509.80784375
transcript.pyannote[105].end 525.26534375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 516.62534375
transcript.pyannote[106].end 518.31284375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 525.60284375
transcript.pyannote[107].end 525.61971875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 525.61971875
transcript.pyannote[108].end 525.88971875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 525.88971875
transcript.pyannote[109].end 525.92346875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 525.92346875
transcript.pyannote[110].end 525.97409375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 525.97409375
transcript.pyannote[111].end 526.02471875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 526.02471875
transcript.pyannote[112].end 526.21034375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 526.21034375
transcript.pyannote[113].end 526.26096875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 526.26096875
transcript.pyannote[114].end 526.31159375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 526.31159375
transcript.pyannote[115].end 526.41284375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 526.41284375
transcript.pyannote[116].end 558.89721875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 558.89721875
transcript.pyannote[117].end 558.91409375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 558.94784375
transcript.pyannote[118].end 564.73596875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 565.74846875
transcript.pyannote[119].end 577.89846875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 578.32034375
transcript.pyannote[120].end 580.90221875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 581.67846875
transcript.pyannote[121].end 583.88909375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 584.47971875
transcript.pyannote[122].end 585.03659375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 585.47534375
transcript.pyannote[123].end 589.32284375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 591.22971875
transcript.pyannote[124].end 591.95534375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 592.47846875
transcript.pyannote[125].end 594.04784375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 594.99284375
transcript.pyannote[126].end 596.05596875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 596.47784375
transcript.pyannote[127].end 597.82784375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 599.24534375
transcript.pyannote[128].end 599.88659375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 601.38846875
transcript.pyannote[129].end 604.24034375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 604.96596875
transcript.pyannote[130].end 605.79284375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 606.38346875
transcript.pyannote[131].end 606.60284375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 607.09221875
transcript.pyannote[132].end 609.58971875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 609.91034375
transcript.pyannote[133].end 612.88034375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 613.55534375
transcript.pyannote[134].end 614.95596875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 615.27659375
transcript.pyannote[135].end 616.13721875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 616.71096875
transcript.pyannote[136].end 620.91284375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 620.67659375
transcript.pyannote[137].end 625.28346875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 620.92971875
transcript.pyannote[138].end 626.21159375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 627.05534375
transcript.pyannote[139].end 628.23659375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 628.75971875
transcript.pyannote[140].end 629.38409375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 630.36284375
transcript.pyannote[141].end 631.83096875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 632.47221875
transcript.pyannote[142].end 634.10909375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 634.15971875
transcript.pyannote[143].end 635.96534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 636.31971875
transcript.pyannote[144].end 638.19284375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 638.76659375
transcript.pyannote[145].end 641.50034375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 642.19221875
transcript.pyannote[146].end 652.11471875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 652.63784375
transcript.pyannote[147].end 658.42596875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 657.58221875
transcript.pyannote[148].end 660.48471875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 662.12159375
transcript.pyannote[149].end 663.97784375
transcript.whisperx[0].start 5.056
transcript.whisperx[0].end 8.087
transcript.whisperx[0].text 這個主席主席請一下勞動部紅部長
transcript.whisperx[1].start 16.854
transcript.whisperx[1].end 33.72
transcript.whisperx[1].text 部長我們推動友善職場大概就是要從好多個面向包括平常的教育宣導包括鼓勵受害者勇於舉報
transcript.whisperx[2].start 36.856
transcript.whisperx[2].end 54.265
transcript.whisperx[2].text 舉報了以後要怎麼保護受害者到後續雇主應該要怎麼妥善的處理這是一個很大的問題,我們也有相關的法律在做規範
transcript.whisperx[3].start 57.466
transcript.whisperx[3].end 65.822
transcript.whisperx[3].text 我常講只有法律是沒有辦法完成任何一件事情的,還是必須要真正的落實法律才是重點
transcript.whisperx[4].start 69.725
transcript.whisperx[4].end 90.465
transcript.whisperx[4].text 推動友善職場應該也算是勞動部一個很重要的工作怎麼讓勞工甚至於是你們自己的員工在職場上獲得保障避免受到不必要的不管是性貧性輕或者是霸凌種種
transcript.whisperx[5].start 93.527
transcript.whisperx[5].end 115.855
transcript.whisperx[5].text 這個請部長就是長期來關注那我今天想要跟部長就我們就業服務法剛通過修正的相關問題跟部長做個討論那這個我們新修的就業服務法放寬了80歲以上
transcript.whisperx[6].start 118.649
transcript.whisperx[6].end 141.631
transcript.whisperx[6].text 的長者就是聘用外國籍的看護工不用經過醫療機關的就取消八十兩票的規定面聘部長我們八十全國八十歲以上的人口有多少你知道
transcript.whisperx[7].start 144.666
transcript.whisperx[7].end 160.154
transcript.whisperx[7].text 91萬91萬多91萬那根據統計呢大概有53萬其實是健康的對可是現在原本假如有巴士量表就是大概大概不到40萬人
transcript.whisperx[8].start 162.162
transcript.whisperx[8].end 175.715
transcript.whisperx[8].text 可能有需求我們說可能有需求那現在突然多出了多出了潛在的需求者53萬對這個缺口你要怎麼你要怎麼怎麼補
transcript.whisperx[9].start 177.396
transcript.whisperx[9].end 192.706
transcript.whisperx[9].text 跟姚委員說明我們當然現在會來跟外交部那一起跟我們這個外籍看護工的來源主要的來源國那來討論說那有沒有可能這個攻擊就是
transcript.whisperx[10].start 193.607
transcript.whisperx[10].end 208.355
transcript.whisperx[10].text 跨國勞動力的供給在提高的可能但是這真的不完全超支在我們我知道這跟在母國他的自己的管理量能包括他能夠引進的量能都有很大的關係包括也跟我們其實在國際的
transcript.whisperx[11].start 209.956
transcript.whisperx[11].end 228.873
transcript.whisperx[11].text 這個移工的市場上面的競爭力都有關係那我們當然會來試圖在供給上面還能不能再提高可是我們自己目前來評估的話跟需求增加這麼多來比需求的總體大概是潛在有53萬人他可以拿到申請的資格
transcript.whisperx[12].start 229.594
transcript.whisperx[12].end 253.941
transcript.whisperx[12].text 那但是當然不會每個人都來申請所以我們大概估計了一下就是說如果從這個過去失能的整體失能的長者的話大概有五成的人需要外籍看護工跟長照那所以如果來來對比的話我們大概評估也許兩到三成需要的話那大概十萬到十幾萬之間那這十幾萬跟我們
transcript.whisperx[13].start 254.921
transcript.whisperx[13].end 271.026
transcript.whisperx[13].text 十幾萬就已經算很多了對所以十萬到十幾萬之間跟我們能夠在供給端能夠提高的量看起來這是為什麼我們這麼擔心的原因因為看起來供需的失衡有可能會加劇對因為我自己本身也是
transcript.whisperx[14].start 272.762
transcript.whisperx[14].end 301.214
transcript.whisperx[14].text 外籍看護工的雇主所以我知道這幾年就是缺工已經原本就很嚴重對這是本來就有的現象不過是這樣的立法院的法律通過那行政部門就是變成只能去做因應我們在國際就是勞動力引進其實先天上我們本來就
transcript.whisperx[15].start 303.072
transcript.whisperx[15].end 320.869
transcript.whisperx[15].text 簡單的講就是我們的工資遠不如日韓啦對沒錯就是在競爭上本來就已經就已經屈居若市對對對那現在一下子要不過這個還是必須要努力去做啦好不好
transcript.whisperx[16].start 321.229
transcript.whisperx[16].end 342.021
transcript.whisperx[16].text 我們會來跟 兩個部分應該是講說供給端會跟這個外交部來做討論那但是就整體因應尤其是怎麼樣來優先的保障這個重症家庭他受到照顧的權益這部分我們會跟衛福部來做這個商議可是你們好像好像沒有
transcript.whisperx[17].start 342.921
transcript.whisperx[17].end 367.938
transcript.whisperx[17].text 沒有權力去做判斷哪一個判斷就是優先優先照顧重度必須要照顧的因為他現在就是變成變成大家的條件都一樣除非是長照的部分當然是比較有優先順序可是外籍看護工並沒有外籍看護工就會變成你不可能去設定說說他80歲以上
transcript.whisperx[18].start 372.697
transcript.whisperx[18].end 391.314
transcript.whisperx[18].text 誰優先優先你們可以嗎我們沒有我們可能沒有辦法硬性的去設定可是我們怎麼來幫助他們可以比較容易找得到留得住或者是增加留得住的條件我們當然會想往這個方向來去協助但是確實因為這個修法後其實它的衝擊
transcript.whisperx[19].start 393.826
transcript.whisperx[19].end 399.189
transcript.whisperx[19].text 這個還是會很大我們只能在這裡減緩衝擊我們可能沒有辦法完全的讓這個衝擊不會發生我們只能試圖減緩衝擊假如說可以
transcript.whisperx[20].start 408.334
transcript.whisperx[20].end 435.684
transcript.whisperx[20].text 有一個配套出來就是看要怎麼疏導讓真正重中度失能的長者可以優先取得優先顧到外籍看護工那當然是最好我們會希望往這個方向來試著一些政策工具怎麼使用可是就是這可能不是一個絕對的事情因為它可能沒有辦法變成是一個強力的管制
transcript.whisperx[21].start 437.566
transcript.whisperx[21].end 452.984
transcript.whisperx[21].text 對你們沒有辦法因為法律本來就不允許你這麼做是那你剛剛講的非硬性的疏導方式有沒有優先協助啦優先協助 對
transcript.whisperx[22].start 454.245
transcript.whisperx[22].end 477.852
transcript.whisperx[22].text 怎麼協助因為禮拜二才剛修法通告嘛那我們接下來會跟衛福部來研擬這個降低衝擊的跨部會降低衝擊的配套的做法不過我在想衛福部可以的就是只有透過長照制度來做啊跟外籍看護公司是兩條比較
transcript.whisperx[23].start 480.713
transcript.whisperx[23].end 507.187
transcript.whisperx[23].text 相類似可是並不重疊的線因為衛福部比較了解需求他比較了解照護需求那勞動部這邊我們的專長是在勞動力管理那這一整件事情的因應可能會需要你也了解照護需求對照護需求有相對應不同的策略然後怎麼樣透過勞動力管理大家一起來配合所以這需要兩個部一起來合作可是我的理解是衛福部
transcript.whisperx[24].start 508.227
transcript.whisperx[24].end 524.537
transcript.whisperx[24].text 衛福部可能可以做的就是就是在請不到勞工的時候怎麼用長照制度去做挹注他可能比較沒有辦法跟你搭配來做外籍看護跟僱主的篩選
transcript.whisperx[25].start 525.658
transcript.whisperx[25].end 540.719
transcript.whisperx[25].text 我的意思嗎對但我說實質的做法我覺得這是一個合作但是可能不是互相取代的但是它是一個合作所以衛福部有衛福部比較擅長比較了解的部分我們勞動部有比較我們擅長了解的部分
transcript.whisperx[26].start 541.159
transcript.whisperx[26].end 561.923
transcript.whisperx[26].text 怎麼樣子在不同的功能上面一起來分工合作我們現在只能試圖往降低衝擊的方向來想可是恐怕那個衝擊還是會發生這是我們最擔心的這也是為什麼我們在修法前一直要提醒大家嚴正要提醒大家這個修法是不是一個妥當的修法副作用可能會很大我就是再用一分鐘講其實這幾天
transcript.whisperx[27].start 566.271
transcript.whisperx[27].end 588.878
transcript.whisperx[27].text 因為澎湖老人也多啦其實已經有一些僱主會擔心嘛其實我自己也擔心為什麼呢 因為現在本來就就是這幾年就是一年一年比一年難聘那現在又大幅度的放寬會產生
transcript.whisperx[28].start 595.168
transcript.whisperx[28].end 607.261
transcript.whisperx[28].text 外籍看護工他可以選擇照顧者他選擇亞健康的照顧者他不選擇重症
transcript.whisperx[29].start 609.997
transcript.whisperx[29].end 625.947
transcript.whisperx[29].text 那他選擇可以給他額外津貼多一點的經濟上的強勢者就是薪資 薪資也會大家順著要拉高三的增加機會這個也合理 站在他的立場
transcript.whisperx[30].start 627.11
transcript.whisperx[30].end 639.482
transcript.whisperx[30].text 他也會選擇地區我覺得像離島偏鄉也會越來越難找得到家庭看護工那法律通過了接下來就請
transcript.whisperx[31].start 642.265
transcript.whisperx[31].end 657.934
transcript.whisperx[31].text 部長我想這個議題也不會只有今天問那請部長趕快回去做一定的政策方向的擬定好不好好 謝謝部長 謝謝主席