video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/66a8e59aed318d215260bd6822b5d7f0d143e698449c70dc5012e4539fd53d17fa5ec6075ae9718d5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
王世堅 |
委員發言時間 |
17:50:47 - 17:57:12 |
影片長度 |
385 |
會議時間 |
2024-12-05T09:00:00+08:00 |
會議名稱 |
立法院第11屆第2會期司法及法制委員會第18次全體委員會議(事由:一、併案審查
(一)委員賴士葆等31人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(二)委員賴士葆等19人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。
(三)委員張智倫等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(四)委員張嘉郡等23人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(五)委員賴士葆等26人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。
(六)委員徐欣瑩等20人擬具「公務人員退休資遣撫卹法第三十七條、第三十八條及第六十七條條文修正草案」案。
(七)委員邱鎮軍等25人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(八)國民黨黨團擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(九)委員林思銘等26人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。
(十)委員陳超明等19人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(十一)委員許宇甄等20人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。
(十二)委員黃健豪等18人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。
(十三)委員張智倫等19人擬具「公務人員退休資遣撫卹法第三條、第八條及第三十七條條文修正草案」案。
(十四)委員馬文君等20人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(十五)委員傅崐萁等21人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。
(十六)委員王鴻薇等25人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。
(十七)委員黃建賓等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(十八)委員陳玉珍等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(十九)委員王鴻薇等19人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。
(二十)委員羅智強等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
二、併案審查
(一)委員李彥秀等18人擬具「公務人員任用法第三十六條之一條文修正草案」案。
(二)委員翁曉玲等22人擬具「公務人員任用法第二十八條之一條文修正草案」案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
6.08909375 |
transcript.pyannote[0].end |
6.10596875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
6.10596875 |
transcript.pyannote[1].end |
8.23221875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
6.42659375 |
transcript.pyannote[2].end |
6.74721875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
6.84846875 |
transcript.pyannote[3].end |
6.86534375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
6.91596875 |
transcript.pyannote[4].end |
11.01659375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
13.71659375 |
transcript.pyannote[5].end |
17.17596875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
18.12096875 |
transcript.pyannote[6].end |
19.04909375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
19.75784375 |
transcript.pyannote[7].end |
20.92221875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
21.66471875 |
transcript.pyannote[8].end |
23.80784375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
24.19596875 |
transcript.pyannote[9].end |
31.58721875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
32.19471875 |
transcript.pyannote[10].end |
34.08471875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
34.77659375 |
transcript.pyannote[11].end |
35.02971875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
35.65409375 |
transcript.pyannote[12].end |
36.29534375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
36.71721875 |
transcript.pyannote[13].end |
41.47596875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
42.45471875 |
transcript.pyannote[14].end |
45.37409375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
46.23471875 |
transcript.pyannote[15].end |
47.87159375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
47.97284375 |
transcript.pyannote[16].end |
48.00659375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
48.15846875 |
transcript.pyannote[17].end |
51.31409375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
51.68534375 |
transcript.pyannote[18].end |
54.19971875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
55.36409375 |
transcript.pyannote[19].end |
57.50721875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
59.27909375 |
transcript.pyannote[20].end |
59.48159375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
60.32534375 |
transcript.pyannote[21].end |
62.36721875 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
63.16034375 |
transcript.pyannote[22].end |
64.79721875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
65.64096875 |
transcript.pyannote[23].end |
66.38346875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
66.78846875 |
transcript.pyannote[24].end |
67.66596875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
68.56034375 |
transcript.pyannote[25].end |
69.04971875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
70.34909375 |
transcript.pyannote[26].end |
77.11596875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
77.90909375 |
transcript.pyannote[27].end |
82.92096875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
83.96721875 |
transcript.pyannote[28].end |
88.57409375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
89.45159375 |
transcript.pyannote[29].end |
89.95784375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
91.20659375 |
transcript.pyannote[30].end |
94.61534375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
95.10471875 |
transcript.pyannote[31].end |
105.26346875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
106.07346875 |
transcript.pyannote[32].end |
110.81534375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
111.06846875 |
transcript.pyannote[33].end |
115.86096875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
115.97909375 |
transcript.pyannote[34].end |
116.02971875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
116.06346875 |
transcript.pyannote[35].end |
125.95221875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
129.27659375 |
transcript.pyannote[36].end |
130.94721875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
131.67284375 |
transcript.pyannote[37].end |
135.82409375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
136.80284375 |
transcript.pyannote[38].end |
138.16971875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
138.35534375 |
transcript.pyannote[39].end |
139.08096875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
140.39721875 |
transcript.pyannote[40].end |
144.76784375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
145.27409375 |
transcript.pyannote[41].end |
147.95721875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
149.15534375 |
transcript.pyannote[42].end |
157.01909375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
157.42409375 |
transcript.pyannote[43].end |
158.70659375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
159.21284375 |
transcript.pyannote[44].end |
163.92096875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
165.01784375 |
transcript.pyannote[45].end |
178.07909375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
178.33221875 |
transcript.pyannote[46].end |
180.03659375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
180.23909375 |
transcript.pyannote[47].end |
183.95159375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
185.47034375 |
transcript.pyannote[48].end |
188.03534375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
188.64284375 |
transcript.pyannote[49].end |
189.62159375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
191.05596875 |
transcript.pyannote[50].end |
192.35534375 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
194.22846875 |
transcript.pyannote[51].end |
195.81471875 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
196.82721875 |
transcript.pyannote[52].end |
200.30346875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
201.46784375 |
transcript.pyannote[53].end |
203.89784375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
205.39971875 |
transcript.pyannote[54].end |
210.05721875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
211.50846875 |
transcript.pyannote[55].end |
212.48721875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
212.62221875 |
transcript.pyannote[56].end |
215.10284375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
215.74409375 |
transcript.pyannote[57].end |
217.95471875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
219.16971875 |
transcript.pyannote[58].end |
220.40159375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
222.24096875 |
transcript.pyannote[59].end |
226.13909375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
226.52721875 |
transcript.pyannote[60].end |
234.17159375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
235.13346875 |
transcript.pyannote[61].end |
236.63534375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
238.54221875 |
transcript.pyannote[62].end |
240.48284375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
242.91284375 |
transcript.pyannote[63].end |
243.94221875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
244.48221875 |
transcript.pyannote[64].end |
244.97159375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
245.12346875 |
transcript.pyannote[65].end |
248.98784375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
249.24096875 |
transcript.pyannote[66].end |
250.45596875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
251.94096875 |
transcript.pyannote[67].end |
255.46784375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
257.72909375 |
transcript.pyannote[68].end |
259.75409375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
262.03221875 |
transcript.pyannote[69].end |
263.31471875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
264.07409375 |
transcript.pyannote[70].end |
264.66471875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
265.47471875 |
transcript.pyannote[71].end |
267.24659375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
267.63471875 |
transcript.pyannote[72].end |
268.39409375 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
268.96784375 |
transcript.pyannote[73].end |
269.82846875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
270.65534375 |
transcript.pyannote[74].end |
271.90409375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
272.83221875 |
transcript.pyannote[75].end |
273.91221875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
274.31721875 |
transcript.pyannote[76].end |
279.76784375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
280.56096875 |
transcript.pyannote[77].end |
284.00346875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
285.18471875 |
transcript.pyannote[78].end |
287.59784375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
288.81284375 |
transcript.pyannote[79].end |
295.76534375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
295.88346875 |
transcript.pyannote[80].end |
297.52034375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
298.70159375 |
transcript.pyannote[81].end |
300.03471875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
300.52409375 |
transcript.pyannote[82].end |
307.22346875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
307.98284375 |
transcript.pyannote[83].end |
309.18096875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
310.02471875 |
transcript.pyannote[84].end |
310.76721875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
311.18909375 |
transcript.pyannote[85].end |
314.26034375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
315.05346875 |
transcript.pyannote[86].end |
318.63096875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
319.13721875 |
transcript.pyannote[87].end |
320.94284375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
322.02284375 |
transcript.pyannote[88].end |
323.91284375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
324.67221875 |
transcript.pyannote[89].end |
325.29659375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
326.46096875 |
transcript.pyannote[90].end |
328.03034375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
328.03034375 |
transcript.pyannote[91].end |
328.16534375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
328.67159375 |
transcript.pyannote[92].end |
328.89096875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
328.89096875 |
transcript.pyannote[93].end |
329.76846875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
330.54471875 |
transcript.pyannote[94].end |
332.46846875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
332.82284375 |
transcript.pyannote[95].end |
339.23534375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
339.60659375 |
transcript.pyannote[96].end |
348.22971875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
348.49971875 |
transcript.pyannote[97].end |
350.77784375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
351.04784375 |
transcript.pyannote[98].end |
352.66784375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
352.66784375 |
transcript.pyannote[99].end |
358.69221875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
354.40596875 |
transcript.pyannote[100].end |
355.06409375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
357.35909375 |
transcript.pyannote[101].end |
368.20971875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
360.10971875 |
transcript.pyannote[102].end |
362.52284375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
369.25596875 |
transcript.pyannote[103].end |
369.81284375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
370.16721875 |
transcript.pyannote[104].end |
371.11221875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
371.56784375 |
transcript.pyannote[105].end |
372.32721875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
372.49596875 |
transcript.pyannote[106].end |
375.80346875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
376.27596875 |
transcript.pyannote[107].end |
376.57971875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
377.11971875 |
transcript.pyannote[108].end |
377.91284375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
378.90846875 |
transcript.pyannote[109].end |
380.78159375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
381.18659375 |
transcript.pyannote[110].end |
381.22034375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
381.22034375 |
transcript.pyannote[111].end |
384.51096875 |
transcript.whisperx[0].start |
6.502 |
transcript.whisperx[0].end |
33.877 |
transcript.whisperx[0].text |
謝謝主席我請那個部長他一直在麻煩部長委員好那個部長我頭一次跟你碰面齁那我不得不全序部阿組長我們全國公務員的全序那對數字對統計計算要非常的精確了解要很堂堂的就對了 |
transcript.whisperx[1].start |
35.708 |
transcript.whisperx[1].end |
40.292 |
transcript.whisperx[1].text |
但是你提出一些數字來解釋但是你這些數字錯誤你等於是幫倒忙欸 |
transcript.whisperx[2].start |
60.37 |
transcript.whisperx[2].end |
87.984 |
transcript.whisperx[2].text |
欸 你的數字你知道為什麼我們年輕改革要從公務人員先改起因為軍工教保的所得替代率非常高跟我們民間勞保的差距那麼大導致民間勞工這種相對剝奪感很重但是在你的數字裡面我唸一段給你聽啦 |
transcript.whisperx[3].start |
91.301 |
transcript.whisperx[3].end |
104.307 |
transcript.whisperx[3].text |
所得替代率七成高於五萬一現職人員大概有民間六萬五的八成這些講講講講到最後你說民間 |
transcript.whisperx[4].start |
106.124 |
transcript.whisperx[4].end |
110.487 |
transcript.whisperx[4].text |
平均勞退保合計三萬七千五 |
transcript.whisperx[5].start |
136.854 |
transcript.whisperx[5].end |
147.583 |
transcript.whisperx[5].text |
第一個數字你說這個勞保的部分退休金請領人數今年7月182000人請領總金額請領353億平均每個人19000你是這個數字這個數字是沒錯問題是你後續勞退的部分你完全搞錯 |
transcript.whisperx[6].start |
165.46 |
transcript.whisperx[6].end |
173.383 |
transcript.whisperx[6].text |
繞退請領690件總金額1,251萬平均每人領取18,141元。部長你搞清楚欸18,141元是三個月份欸繞退是三個月份請領一次欸你有沒有搞錯這麼明顯的錯誤 |
transcript.whisperx[7].start |
194.264 |
transcript.whisperx[7].end |
219.937 |
transcript.whisperx[7].text |
你回去把這個數字搞清楚也就是說勞退就算有勞退的喔就算有得領勞退的三個月一次一萬八千元等於才六千元欸一個月你把勞工退休等於額外把它多出來一萬兩千元沒有那麼多欸 |
transcript.whisperx[8].start |
222.621 |
transcript.whisperx[8].end |
236.332 |
transcript.whisperx[8].text |
勞保加勞退最高領到的就是兩萬五然後75歲以上的老人家因為我們勞退是從民國92年才開始你非常清楚的啊他們根本沒有勞退你回去問你的長輩就知道那你為什麼要把勞保形容成說有三萬七千五有這麼高胡說八道 |
transcript.whisperx[9].start |
251.954 |
transcript.whisperx[9].end |
255.216 |
transcript.whisperx[9].text |
這個數字別人搞錯沒關係你不能搞錯你直施全國公務員的權序拜託你數字應該很精通不是嗎?勞退有得領的已經很少了因為過去平均我們中小企業存活年限是7年 |
transcript.whisperx[10].start |
280.632 |
transcript.whisperx[10].end |
296.972 |
transcript.whisperx[10].text |
撫卹法第六十七條條文修正草案案(事由.立法院第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11屆第12會期司法及法制委員會第11 |
transcript.whisperx[11].start |
298.752 |
transcript.whisperx[11].end |
324.93 |
transcript.whisperx[11].text |
你回去問清楚問清楚你的手下你再來寫這一份報告可不可以差一萬二差多少欸你讓全國勞工人家他沒領那麼多的時時領的他覺得跟退休公務人員相對剝奪感那麼高而你美化了這個數字不是嗎 |
transcript.whisperx[12].start |
326.519 |
transcript.whisperx[12].end |
328.641 |
transcript.whisperx[12].text |
所以我覺得這個報告不及格啦! |
transcript.whisperx[13].start |
328.641 |
transcript.whisperx[13].end |
347.298 |
transcript.whisperx[13].text |
歐陽部長啦!我想您的指教我虛心接受那我在報告裡面引用的確實沒有去查引用媒體來引述勞保局的一個資料所以如果這個數字您講的是正確的話我非常道歉這個數字 |
transcript.whisperx[14].start |
348.55 |
transcript.whisperx[14].end |
348.951 |
transcript.whisperx[14].text |
三)委員賴士葆等 |
transcript.whisperx[15].start |
369.298 |
transcript.whisperx[15].end |
373.041 |
transcript.whisperx[15].text |
條文賴士葆等19人擬具:「公務人員退休資遣撫卹法第六十七條條文賴士 |
IVOD_ID |
157951 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/157951 |
日期 |
2024-12-05 |
會議資料.會議代碼 |
委員會-11-2-36-18 |
會議資料.屆 |
11 |
會議資料.會期 |
2 |
會議資料.會次 |
18 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
36 |
會議資料.標題 |
第11屆第2會期司法及法制委員會第18次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-12-05T17:50:47+08:00 |
結束時間 |
2024-12-05T17:57:12+08:00 |
支援功能[0] |
ai-transcript |