iVOD / 157911

Field Value
IVOD_ID 157911
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157911
日期 2024-12-05
會議資料.會議代碼 委員會-11-2-36-18
會議資料.會議代碼:str 第11屆第2會期司法及法制委員會第18次全體委員會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 第11屆第2會期司法及法制委員會第18次全體委員會議
影片種類 Clip
開始時間 2024-12-05T14:40:03+08:00
結束時間 2024-12-05T14:51:24+08:00
影片長度 00:11:21
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/66a8e59aed318d218d28907e7acbfb40d143e698449c70dc90a1da7b6f6bcb9daa60440c46ce58cc5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 張啓楷
委員發言時間 14:40:03 - 14:51:24
會議時間 2024-12-05T09:00:00+08:00
會議名稱 立法院第11屆第2會期司法及法制委員會第18次全體委員會議(事由:一、併案審查 (一)委員賴士葆等31人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (二)委員賴士葆等19人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (三)委員張智倫等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (四)委員張嘉郡等23人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (五)委員賴士葆等26人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。 (六)委員徐欣瑩等20人擬具「公務人員退休資遣撫卹法第三十七條、第三十八條及第六十七條條文修正草案」案。 (七)委員邱鎮軍等25人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (八)國民黨黨團擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (九)委員林思銘等26人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十)委員陳超明等19人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十一)委員許宇甄等20人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。 (十二)委員黃健豪等18人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十三)委員張智倫等19人擬具「公務人員退休資遣撫卹法第三條、第八條及第三十七條條文修正草案」案。 (十四)委員馬文君等20人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十五)委員傅崐萁等21人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十六)委員王鴻薇等25人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。 (十七)委員黃建賓等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十八)委員陳玉珍等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十九)委員王鴻薇等19人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。 (二十)委員羅智強等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 二、併案審查 (一)委員李彥秀等18人擬具「公務人員任用法第三十六條之一條文修正草案」案。 (二)委員翁曉玲等22人擬具「公務人員任用法第二十八條之一條文修正草案」案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 12.38346875
transcript.pyannote[0].end 13.91909375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 17.58096875
transcript.pyannote[1].end 18.39096875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 21.29346875
transcript.pyannote[2].end 30.69284375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 33.13971875
transcript.pyannote[3].end 37.03784375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 37.59471875
transcript.pyannote[4].end 55.88721875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 56.83221875
transcript.pyannote[5].end 63.39659375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 65.13471875
transcript.pyannote[6].end 66.40034375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 67.44659375
transcript.pyannote[7].end 70.63596875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 70.80471875
transcript.pyannote[8].end 74.23034375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 74.63534375
transcript.pyannote[9].end 75.74909375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 76.37346875
transcript.pyannote[10].end 81.67221875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 82.07721875
transcript.pyannote[11].end 86.51534375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 87.27471875
transcript.pyannote[12].end 90.58221875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 91.22346875
transcript.pyannote[13].end 94.53096875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 94.95284375
transcript.pyannote[14].end 95.89784375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 96.53909375
transcript.pyannote[15].end 97.23096875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 97.83846875
transcript.pyannote[16].end 103.79534375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 104.08221875
transcript.pyannote[17].end 111.05159375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 111.47346875
transcript.pyannote[18].end 112.65471875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 113.11034375
transcript.pyannote[19].end 130.66034375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 131.33534375
transcript.pyannote[20].end 135.04784375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 136.22909375
transcript.pyannote[21].end 138.28784375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 138.47346875
transcript.pyannote[22].end 142.54034375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 143.50221875
transcript.pyannote[23].end 144.80159375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 146.15159375
transcript.pyannote[24].end 147.67034375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 148.96971875
transcript.pyannote[25].end 150.25221875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 150.89346875
transcript.pyannote[26].end 152.59784375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 153.12096875
transcript.pyannote[27].end 154.11659375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 154.80846875
transcript.pyannote[28].end 156.17534375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 156.49596875
transcript.pyannote[29].end 158.33534375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 158.84159375
transcript.pyannote[30].end 163.53284375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 164.30909375
transcript.pyannote[31].end 165.27096875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 165.96284375
transcript.pyannote[32].end 166.94159375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 167.58284375
transcript.pyannote[33].end 170.02971875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 170.18159375
transcript.pyannote[34].end 175.00784375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 176.10471875
transcript.pyannote[35].end 178.34909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 178.97346875
transcript.pyannote[36].end 181.47096875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 183.90096875
transcript.pyannote[37].end 184.74471875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 185.72346875
transcript.pyannote[38].end 191.59596875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 192.40596875
transcript.pyannote[39].end 193.46909375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 194.16096875
transcript.pyannote[40].end 196.00034375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 196.35471875
transcript.pyannote[41].end 196.74284375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 197.78909375
transcript.pyannote[42].end 200.35409375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 201.16409375
transcript.pyannote[43].end 206.49659375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 207.40784375
transcript.pyannote[44].end 208.87596875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 209.83784375
transcript.pyannote[45].end 211.32284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 211.57596875
transcript.pyannote[46].end 212.43659375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 213.76971875
transcript.pyannote[47].end 217.00971875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 217.19534375
transcript.pyannote[48].end 221.19471875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 221.78534375
transcript.pyannote[49].end 224.68784375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 225.86909375
transcript.pyannote[50].end 227.26971875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 227.87721875
transcript.pyannote[51].end 229.32846875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 230.15534375
transcript.pyannote[52].end 231.94409375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 232.72034375
transcript.pyannote[53].end 233.81721875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 234.54284375
transcript.pyannote[54].end 247.82346875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 249.00471875
transcript.pyannote[55].end 250.28721875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 250.82721875
transcript.pyannote[56].end 254.70846875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 255.75471875
transcript.pyannote[57].end 256.54784375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 256.95284375
transcript.pyannote[58].end 257.83034375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 258.47159375
transcript.pyannote[59].end 259.80471875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 260.69909375
transcript.pyannote[60].end 266.92596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 267.31409375
transcript.pyannote[61].end 270.52034375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 270.85784375
transcript.pyannote[62].end 272.32596875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 273.27096875
transcript.pyannote[63].end 275.32971875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 275.65034375
transcript.pyannote[64].end 276.81471875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 276.96659375
transcript.pyannote[65].end 279.10971875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 280.39221875
transcript.pyannote[66].end 281.69159375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 281.72534375
transcript.pyannote[67].end 283.66596875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 284.69534375
transcript.pyannote[68].end 285.06659375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 285.42096875
transcript.pyannote[69].end 286.28159375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 286.90596875
transcript.pyannote[70].end 289.28534375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 290.02784375
transcript.pyannote[71].end 293.45346875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 293.97659375
transcript.pyannote[72].end 296.54159375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 296.87909375
transcript.pyannote[73].end 298.70159375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 299.15721875
transcript.pyannote[74].end 300.37221875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 300.96284375
transcript.pyannote[75].end 302.88659375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 303.27471875
transcript.pyannote[76].end 304.03409375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 304.65846875
transcript.pyannote[77].end 309.28221875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 307.18971875
transcript.pyannote[78].end 308.86034375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 309.75471875
transcript.pyannote[79].end 312.11721875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 312.42096875
transcript.pyannote[80].end 314.59784375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 315.22221875
transcript.pyannote[81].end 316.80846875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 317.31471875
transcript.pyannote[82].end 319.00221875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 320.04846875
transcript.pyannote[83].end 321.31409375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 321.98909375
transcript.pyannote[84].end 322.84971875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 325.33034375
transcript.pyannote[85].end 328.60409375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 330.27471875
transcript.pyannote[86].end 334.10534375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 334.52721875
transcript.pyannote[87].end 344.29784375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 344.95596875
transcript.pyannote[88].end 345.93471875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 346.42409375
transcript.pyannote[89].end 347.45346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 348.28034375
transcript.pyannote[90].end 353.73096875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 354.84471875
transcript.pyannote[91].end 356.12721875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 356.71784375
transcript.pyannote[92].end 358.20284375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 359.40096875
transcript.pyannote[93].end 360.56534375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 361.10534375
transcript.pyannote[94].end 362.38784375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 363.80534375
transcript.pyannote[95].end 364.49721875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 365.03721875
transcript.pyannote[96].end 367.92284375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 368.85096875
transcript.pyannote[97].end 371.07846875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 371.24721875
transcript.pyannote[98].end 372.59721875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 371.31471875
transcript.pyannote[99].end 380.42721875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 374.58846875
transcript.pyannote[100].end 374.95971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 380.69721875
transcript.pyannote[101].end 384.15659375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 384.52784375
transcript.pyannote[102].end 385.70909375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 385.79346875
transcript.pyannote[103].end 386.14784375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 386.35034375
transcript.pyannote[104].end 386.70471875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 387.43034375
transcript.pyannote[105].end 390.56909375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 391.26096875
transcript.pyannote[106].end 395.81721875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 395.91846875
transcript.pyannote[107].end 410.26221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 396.05346875
transcript.pyannote[108].end 397.13346875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 402.33096875
transcript.pyannote[109].end 407.22471875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 411.02159375
transcript.pyannote[110].end 417.02909375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 417.41721875
transcript.pyannote[111].end 422.83409375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 421.56846875
transcript.pyannote[112].end 423.71159375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 423.71159375
transcript.pyannote[113].end 427.03596875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 423.76221875
transcript.pyannote[114].end 424.55534375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 427.22159375
transcript.pyannote[115].end 431.30534375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 431.87909375
transcript.pyannote[116].end 432.58784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 432.84096875
transcript.pyannote[117].end 441.97034375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 441.97034375
transcript.pyannote[118].end 451.87596875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 452.38221875
transcript.pyannote[119].end 453.29346875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 453.49596875
transcript.pyannote[120].end 458.44034375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 456.93846875
transcript.pyannote[121].end 458.27159375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 458.49096875
transcript.pyannote[122].end 468.48096875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 467.99159375
transcript.pyannote[123].end 475.82159375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 471.46784375
transcript.pyannote[124].end 472.37909375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 475.85534375
transcript.pyannote[125].end 481.27221875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 482.57159375
transcript.pyannote[126].end 484.29284375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 484.29284375
transcript.pyannote[127].end 484.74846875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 484.90034375
transcript.pyannote[128].end 484.91721875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 484.91721875
transcript.pyannote[129].end 485.38971875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 485.38971875
transcript.pyannote[130].end 493.59096875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 485.69346875
transcript.pyannote[131].end 485.89596875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 493.75971875
transcript.pyannote[132].end 496.99971875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 497.30346875
transcript.pyannote[133].end 524.37096875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 524.74221875
transcript.pyannote[134].end 528.74159375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 529.19721875
transcript.pyannote[135].end 531.10409375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 531.91409375
transcript.pyannote[136].end 532.45409375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 533.16284375
transcript.pyannote[137].end 535.39034375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 535.86284375
transcript.pyannote[138].end 540.13221875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 540.79034375
transcript.pyannote[139].end 542.08971875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 542.74784375
transcript.pyannote[140].end 543.72659375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 543.91221875
transcript.pyannote[141].end 545.46471875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 545.80221875
transcript.pyannote[142].end 548.75534375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 549.48096875
transcript.pyannote[143].end 550.78034375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 552.31596875
transcript.pyannote[144].end 555.13409375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 556.19721875
transcript.pyannote[145].end 556.95659375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 558.01971875
transcript.pyannote[146].end 559.03221875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 559.92659375
transcript.pyannote[147].end 570.23721875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 570.94596875
transcript.pyannote[148].end 571.77284375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 572.41409375
transcript.pyannote[149].end 573.30846875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 574.11846875
transcript.pyannote[150].end 586.01534375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 586.53846875
transcript.pyannote[151].end 590.16659375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 591.09471875
transcript.pyannote[152].end 592.73159375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 593.77784375
transcript.pyannote[153].end 594.92534375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 595.78596875
transcript.pyannote[154].end 597.06846875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 598.13159375
transcript.pyannote[155].end 601.82721875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 602.45159375
transcript.pyannote[156].end 605.59034375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 606.26534375
transcript.pyannote[157].end 606.72096875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 607.29471875
transcript.pyannote[158].end 615.49596875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 615.63096875
transcript.pyannote[159].end 617.82471875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 618.46596875
transcript.pyannote[160].end 625.65471875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 626.12721875
transcript.pyannote[161].end 628.96221875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 629.56971875
transcript.pyannote[162].end 639.49221875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 639.71159375
transcript.pyannote[163].end 645.19596875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 645.78659375
transcript.pyannote[164].end 651.40596875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 651.81096875
transcript.pyannote[165].end 682.05096875
transcript.whisperx[0].start 12.363
transcript.whisperx[0].end 13.884
transcript.whisperx[0].text 麻煩部長最近很多民調,你有看最近在討論說軍工價這個退休人員會不會砍得太兇,你有看最近那些民調嗎?
transcript.whisperx[1].start 33.168
transcript.whisperx[1].end 55.647
transcript.whisperx[1].text 大概大致上維持2比1吧認為砍太兇的差不多該停了認為繼續砍的大概2比1這是最新民調的趨勢特別是台灣民眾黨做的對於警察人員警察跟警消他們認為砍太多了這個比例不能再砍這個比例非常非常的高另外我們兩個都夠老了啦欸博定
transcript.whisperx[2].start 56.874
transcript.whisperx[2].end 57.434
transcript.whisperx[2].text 三(委員張智倫等16人擬具
transcript.whisperx[3].start 67.486
transcript.whisperx[3].end 68.726
transcript.whisperx[3].text 撫卹法第六十七條條文修正草案案
transcript.whisperx[4].start 87.298
transcript.whisperx[4].end 88.699
transcript.whisperx[4].text 三)委員張智倫等16人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.
transcript.whisperx[5].start 113.2
transcript.whisperx[5].end 129.977
transcript.whisperx[5].text 公務人員能服務35年的很少欸我看在座今天很多來的這個公務員能夠考進去公務員又可以35年退休很少欸你是35年你才有可以從從80%開始算結果民進黨把他從75%開始算你如果服務只有30年你從67.5%開始看你如果服務只有25年
transcript.whisperx[6].start 136.237
transcript.whisperx[6].end 142.421
transcript.whisperx[6].text 三)委員張智倫等16人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員張智倫等16人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員張智倫等16人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.
transcript.whisperx[7].start 164.363
transcript.whisperx[7].end 180.115
transcript.whisperx[7].text 撫卹法第六十七條條文修正草案.一)委員張智倫等19人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員張智倫等19人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員張智倫等19人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員張智倫等19人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員張智倫
transcript.whisperx[8].start 194.195
transcript.whisperx[8].end 212.242
transcript.whisperx[8].text 好 那我現在問一個最重要的問題等一等五令如果照本來考試立刻進行的前續部長考試院是主管機關也是最專業的嘛回到考試院這個版本今年是第六年嘛 對不對應該只有砍了5%啊可是現在砍多少
transcript.whisperx[9].start 213.837
transcript.whisperx[9].end 221.882
transcript.whisperx[9].text 現在一開始從75%已經5%砍在那邊了經過5年又砍了7.5%已經砍了12.5%了欸比考試院當初提出來的10年還多欸這樣對嗎?這樣會不會太狠了一般的公務員現在退休因為民進黨多數當初通過了這個我會算一次給大家看
transcript.whisperx[10].start 234.608
transcript.whisperx[10].end 259.616
transcript.whisperx[10].text 本來照今年是第六年那應該只有砍了5%一年1%對不對民進黨把80%的基準變成75%再加一年1.57.5就12.5啦比你考試院本來提的版本要砍十年的還狠所以是不是該停這是一個很重要的一個點第二個更重要我要提醒大家我為什麼一直在講考試院版
transcript.whisperx[11].start 260.728
transcript.whisperx[11].end 289.055
transcript.whisperx[11].text 考試院是我們的主管機關阿他當初有做財政會不會破產財務評估有評估嘛對不對阿現在董事長考試院出來的版本不會破產現在考試院來的人欸考試院是五錢分立獨立機關欸現在是民進黨執政民進黨所謂破產科技營業家都會破產你們回去看看當初你們提的我定答應我一件事情不是只有你請考試院所有人
transcript.whisperx[12].start 290.1
transcript.whisperx[12].end 308.909
transcript.whisperx[12].text 回忆看看當初考試院提出來的財務的評估當初用比較溫和的80%一年1%十年以後不會破產為什麼現在搞到 砍斷都為什麼會破產沒有合理啊好 更重要的 保定我要問你問題當初為什麼 保定我問你再來當初為什麼要當初為什麼要大砍經過這樣的年金財政說有問題嘛 對不對你也是專家
transcript.whisperx[13].start 320.243
transcript.whisperx[13].end 322.427
transcript.whisperx[13].text 現在財政有困難嗎?最近這幾年每年都超收對不對?每個人領到6千塊啊
transcript.whisperx[14].start 331.046
transcript.whisperx[14].end 353.402
transcript.whisperx[14].text 最近這五年平均操作的金額大家知道多少嗎?有時候操作幾百億,有時候操作四千多億、五千多億最近這五年平均操作多少錢?大致上一年,最近五年一年平均操作多少?大家知道這個數字嗎?大概幾千億吧?兩千七百億這個是為什麼台灣民眾黨這次說要裁劃法要修正的時候,中央下放給地方的,中央不會受到影響
transcript.whisperx[15].start 354.912
transcript.whisperx[15].end 355.753
transcript.whisperx[15].text 三)委員張智倫等16人擬具
transcript.whisperx[16].start 369.466
transcript.whisperx[16].end 390.286
transcript.whisperx[16].text 經過這幾年財政沒有困難嘛對不對?我覺得這是兩個層次的問題啦一個是基金本身的財務跟國家的財務是兩個不同的面向啦那當初的討論是基金的財務如果不做改革真的會有困難欸 寶定你會覺得那個前勞動部部長何培昌怎麼說?
transcript.whisperx[17].start 391.311
transcript.whisperx[17].end 393.153
transcript.whisperx[17].text 撫卹法第十四條條文修正草案.一)委員賴士葆等19人擬具
transcript.whisperx[18].start 411.032
transcript.whisperx[18].end 411.272
transcript.whisperx[18].text 三(委員張智倫等16人擬具
transcript.whisperx[19].start 432.026
transcript.whisperx[19].end 446.742
transcript.whisperx[19].text 這是第一項對不對第二個你拿去跟勞工比勞工撥補比你多那麼多你身為全市部部長你為什麼不去幫退休薪工交給立正呢我想我們在過程裡面對新制的缺口都有跟行政院充分的說明說
transcript.whisperx[20].start 447.563
transcript.whisperx[20].end 448.063
transcript.whisperx[20].text 三(委員張智倫等16人擬具
transcript.whisperx[21].start 468.055
transcript.whisperx[21].end 468.195
transcript.whisperx[21].text 法定人數不足
transcript.whisperx[22].start 482.608
transcript.whisperx[22].end 488.071
transcript.whisperx[22].text 所以我想這也是一種撥補啊所以我沒有說你不能夠撥補可是部長有沒有撥得太多了你五年你聽我說你五年現在今天有個關鍵字欸都2700億啊你說你五年省了2700億嘛對不對你現在說不能夠停下來喔停下來未來五年又少了2700億我現在就要跟你講你剛剛講這個大水庫是小水庫嘛
transcript.whisperx[23].start 509.764
transcript.whisperx[23].end 510.064
transcript.whisperx[23].text 法定人數不足
transcript.whisperx[24].start 533.08
transcript.whisperx[24].end 533.36
transcript.whisperx[24].text 三)委員張智倫等16人擬具
transcript.whisperx[25].start 559.966
transcript.whisperx[25].end 564.73
transcript.whisperx[25].text 三)委員張智倫等16人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員賴士葆等19人擬具:「公務人員退休資遣撫卹法第六十七條條文修正草案.一)委員
transcript.whisperx[26].start 586.73
transcript.whisperx[26].end 605.044
transcript.whisperx[26].text 這段時間光從106年算好了算到111年用特別預算大部分都擠債了兩兆兩千多億欸中華民國進度感冒進所以保證我們兩個是老朋友啊我們都是都過老了啦好不好我剛講的東西很簡單我講的一般民眾應該都聽得懂
transcript.whisperx[27].start 607.366
transcript.whisperx[27].end 625.346
transcript.whisperx[27].text 中華民國政府不是沒錢你從這張政府總預算成長七年來成長快兩倍每年超收五年來每一年超收平均起來2700億人家更重要了人家勞動部長說多麼的力在爭取啊你是全區部長喔都去爭取這個回來好不好
transcript.whisperx[28].start 626.187
transcript.whisperx[28].end 628.709
transcript.whisperx[28].text 撫卹法第六十七條條文修正草案.一)委員賴士葆等19人擬具:「公務人員退休資遣撫卹
transcript.whisperx[29].start 652.366
transcript.whisperx[29].end 678.505
transcript.whisperx[29].text 能夠不要再砍或者是用什麼方式一定要讓他們活得有尊嚴好不好然後他們的晚年所惜不能夠再受到影響了好不好也讓我們年輕人一方面是勞工有受到勞工也受到保障的同時讓我們年輕人也願意進到這個政府體系來阿不然老實講像現在很多金融很多金融家有時候都招生都招不出欸那個整個那個來來要進這個體系的人越來越少也不是中華民國之福好不好欸保定 請多多努力好不好
transcript.whisperx[30].start 679.066
transcript.whisperx[30].end 681.367
transcript.whisperx[30].text 撫卹法第六十七條條文修正草案案。
gazette.lineno 1014
gazette.blocks[0][0] 張委員啓楷:(14時40分)請施能傑部長。
gazette.blocks[1][0] 主席:麻煩施部長。
gazette.blocks[2][0] 施部長能傑:委員好。
gazette.blocks[3][0] 張委員啓楷:部長好。最近很多民調在討論軍公教退休人員年金會不會砍得太兇,你有看這些最新的民調嗎?
gazette.blocks[4][0] 施部長能傑:有些新聞會看到。
gazette.blocks[5][0] 張委員啓楷:大概大致上維持2比1,認為砍太兇了、差不多該停了的是2,認為繼續砍的大概是1,2比1,這是最新民調的趨勢,特別是台灣民眾黨做的,對於警察跟警消人員認為砍太多了、不能再砍的比例非常非常的高。
gazette.blocks[5][1] 另外我們兩個都夠老了,部長,記得當初要做年金改革的時候,在105年、106年那時候,考試院送過來這個版本是分10年,對不對?所得替代率如果服務30年是從75%,你剛才說的一開始是擔心領太多嘛,所以它把你的所得替代率從一開始就放在80%,1年減1%,對不對?到70%就要停嘛!例如你看右下角這個,如果本來是35年,它應該是1年只有降下來……降到後來只降到70%嘛;可是那段時間在審查,軍公教抗議,因為他們權益受到損害啊!所以後來通過的是段宜康提的,他說包圍越多砍越多,老實講那時候民進黨是絕對多數,通過的是民進黨的黨版啊!所以他的所得替代率是從80%開始算,得服務35年,問題是公務人員能服務35年的很少,我看今天在座很多公務員能夠考進公務系統,又可以35年退休,真的很少。要35年才可以從80%開始算,結果民進黨從75%開始砍;服務30年是從67.5%開始砍;如果服務只有25年,就從60%開始砍,你看多可憐。一開始只有25年的人,從60%開始砍,一年砍1.5%,只剩下45%。
gazette.blocks[5][2] 我今天為什麼說我們兩個夠老了?如果要年金改革,主管機關是誰?最專業的是誰?就是考試院,對不對?我們要用考試院的版本,不是這樣嗎?考試院的版本跟後來被民進黨大砍的版本有兩個非常不一樣的地方,第一個考試院的這個版本比較溫和,服務35年所得替代率從80%開始,一年只降1%,到10年的時候停下來,就是70%。可是你們那時候砍的是刀刀見骨,35年的年資從75%砍到了60%,已經砍了1倍──你們從80%降到75%,已經少了5%,本來一年降1%,你變成一年1.5%,就等於乘以2!
gazette.blocks[5][3] 我再問部長一個最重要的問題,你是考試院銓敘部長,考試院是主管機關也是最專業的,如果回到考試院版本,今年是第六年,應該是砍了5%,可是現在砍多少?一開始從75%開始算,5%已經砍在那邊了,經過五年又砍了7.5%,已經砍了12.5%,比考試院當初提出來的10年還多,這樣對嗎?會不會太狠?就因為民進黨當初是多數,通過了這個版本,我再算一遍給大家看。今年是第六年,應該只砍了5%,一年砍1%,對不對?可是民進黨把80%的基準變成75%,再加一年1.5%,7.5加5就12.5,比考試院本來提的版本要砍10年的,還狠!所以是不是該停下來?這是很重要的一個點。
gazette.blocks[5][4] 第二點更重要,我要提醒大家,我為什麼一直在講考試院版,考試院是我們的主管機關啊,當初也有做財政會不會破產的財務評估嘛,對不對?考試院是五權分立的獨立機關,為什麼當初考試院出來的版本說不會破產,現在是民進黨執政,民進黨說會破產,考試院的名聲都要破產?請部長答應我一件事情,不是只有你,請考試院所有人回去看看,當初考試院提出來的財務評估,是用比較溫和的80%,一年1%,10年以後不會破產;為什麼現在砍這麼多,還會破產?不合理啊!更重要的是,當初為什麼要大砍軍公教人員的年金,說是財政有問題,對不對?你也是專家,請問現在財政有困難嗎?最近幾年,年年都超收,對不對?每個人都有領到6,000塊!部長知道最近5年,平均超收的金額大概多少?有時候超收幾百億,有時候四千多億、五千多億,最近這5年平均一年超收多少,部長知道這個數字嗎?
gazette.blocks[6][0] 施部長能傑:大概幾千億吧!
gazette.blocks[7][0] 張委員啓楷:2,700億。這也是為什麼台灣民眾黨這次說財劃法的修正,中央下放給地方的,中央不會受到影響。因為最近5年來,我們的財政超收一年是2,700億,當初要年金改革,因為你說財政會破產,財政有困難,但是經過這幾年,財政沒有困難嘛,對不對?
gazette.blocks[8][0] 施部長能傑:委員,我覺得這是兩個層次的問題,基金本身的財務跟國家的財務是兩個不同的面向,當初的討論是基金的財務如果不做改革,真的會有困難。
gazette.blocks[9][0] 張委員啓楷:部長記得前勞動部部長何佩珊怎麼說嗎?撥補就是改革嘛!這幾年你是不是嚴重失職啊?你看勞工的勞退基金已經補了多少錢,你去比一下,一個禮拜內給我相關的資料……
gazette.blocks[10][0] 施部長能傑:委員,我們年改的兩千多億都是全數撥補……
gazette.blocks[11][0] 張委員啓楷:你在當銓敘部部長的任內,銓敘部跟考試院為軍公教爭取到多少撥補款項?你是小蝦米碰到大鯨魚嗎?當然勞工也是要被照顧的,我們沒有反對說要多撥補,可是跟它比起來,你們爭取的太少!結果你現在又說會破產……
gazette.blocks[12][0] 施部長能傑:我想撥補真的差很大……
gazette.blocks[13][0] 張委員啓楷:部長,現在邏輯上兩個最簡單的,第一個,你每年都在增加,所以當初所謂的財政困難已不存在;第二個,若去跟勞工比,勞工撥補的比你們多那麼多,身為銓敘部部長,你為什麼不去幫退休軍公教力爭呢?
gazette.blocks[14][0] 施部長能傑:我想我們在這個過程裡面對新制的缺口都有跟行政院充分的說明:基本上如果有10年的話,那當然會比較好,20年的話會多比較多;不過行政院是個大水庫,它必須要對整體的財務有一個……
gazette.blocks[15][0] 張委員啓楷:你們的水庫是怎麼樣的……
gazette.blocks[16][0] 施部長能傑:我再跟委員報告,這兩個真的是不一樣層次的問題,一個是基金財務的問題,一個是國家財政的問題,所以……
gazette.blocks[17][0] 張委員啓楷:勞保基金是不是也這樣?勞工為什麼可以補那麼多?你說是不一樣的池子,沒錯,可是國家也是有補助你,只是補得比較少啊!
gazette.blocks[18][0] 施部長能傑:我們年改所節省的2,774億全數回撥給基金,我想這也是一種撥補啊!
gazette.blocks[19][0] 張委員啓楷:所以我沒有說你不能再撥補,你聽我說,今天有一個關鍵字都是2,700億,你說你5年省了2,700億,對不對?你就說現在不能夠停下來,停下來的話,未來5年又少了2,700億。你剛剛講大水庫跟小水庫,基金是小水庫,這段時間政府有沒有從大水庫給你錢?也是有啊!我現在不是說不能進來,我說給得太少,是你嚴重失職,為了退休的軍公教你要去爭取更多,你去看看勞動部爭取到多少,所以你的層次是可以流動的嘛!你爭取太少,這是第一點。
gazette.blocks[19][1] 第二點,這個池子裡面的錢,你說5年2,700億太少,現在錢就是很多啊,現在就超收,有錢嘛!所以你更要去爭取,是不是這樣?我再給你看一個數據,106年軍公教開始改革的時候,政府的錢比較少,中央政府總預算的規模才一年一兆九千多億,那時候政府確實是沒有錢,很拮据;今年多少?快三兆了!明年快要三兆一千多億。106年開始進行年金改革到現在,中央政府總預算的規模成長快兩倍,政府怎麼沒錢?從超收、從中央政府總預算快速的增加,106年不到兩兆,現在是兩兆七千多億,明年要增加四千多億,來到三兆一千多億,怎麼會沒錢?光從106年開始算到111年,所用的特別預算,大部分都是舉債的,有兩兆兩千多億。中華民國政府怎麼會沒錢!部長,我們兩個是老朋友,我們也都夠老了,我剛剛講的東西很簡單,一般民眾應該都聽得懂。中華民國政府不是沒錢,從中央政府總預算成長的過程來看,這六、七年來成長快兩倍,5年來每一年超收平均2,700億。人家勞動部部長多賣力在爭取,你是銓敘部長,多去爭取一點回來,好不好?不要讓我們的軍公教生活那麼苦,你們砍得已經太兇了,照顧勞工的同時,也把退休的軍公教照顧好。退休的軍公教照顧好以後,才會有優秀的軍公教人員進來,才能服務你跟我,服務我們中華民國,我們人民的生活會更安定嘛!我們共同努力,一方面讓退休的軍公教活得有尊嚴,能夠不要再砍他們的退休金,或是用什麼方式,一定要讓他們活得有尊嚴,讓他們的晚年所需不再受影響;另外在勞工有受到保障的同時,也要讓我們的年輕人願意進到政府體系裡面,不然願意進這個體系的人越來越少,也不是中華民國之福,部長,一起努力,好不好?謝謝。
gazette.blocks[20][0] 施部長能傑:謝謝。
gazette.blocks[21][0] 主席:接下來請李坤城委員發言。
gazette.agenda.page_end 174
gazette.agenda.meet_id 委員會-11-2-36-18
gazette.agenda.speakers[0] 吳宗憲
gazette.agenda.speakers[1] 賴士葆
gazette.agenda.speakers[2] 翁曉玲
gazette.agenda.speakers[3] 張嘉郡
gazette.agenda.speakers[4] 羅智強
gazette.agenda.speakers[5] 黃建賓
gazette.agenda.speakers[6] 林思銘
gazette.agenda.speakers[7] 張智倫
gazette.agenda.speakers[8] 黃健豪
gazette.agenda.speakers[9] 許宇甄
gazette.agenda.speakers[10] 鍾佳濱
gazette.agenda.speakers[11] 吳思瑤
gazette.agenda.speakers[12] 陳俊宇
gazette.agenda.speakers[13] 莊瑞雄
gazette.agenda.speakers[14] 王義川
gazette.agenda.speakers[15] 李彥秀
gazette.agenda.speakers[16] 吳沛憶
gazette.agenda.speakers[17] 沈伯洋
gazette.agenda.speakers[18] 林宜瑾
gazette.agenda.speakers[19] 陳俊宇
gazette.agenda.speakers[20] 黃國昌
gazette.agenda.speakers[21] 楊瓊瓔
gazette.agenda.speakers[22] 洪孟楷
gazette.agenda.speakers[23] 林德福
gazette.agenda.speakers[24] 鄭天財Sra Kacaw
gazette.agenda.speakers[25] 張啓楷
gazette.agenda.speakers[26] 李坤城
gazette.agenda.speakers[27] 林楚茵
gazette.agenda.speakers[28] 張雅琳
gazette.agenda.speakers[29] 黃秀芳
gazette.agenda.speakers[30] 林淑芬
gazette.agenda.speakers[31] 陳秀寳
gazette.agenda.speakers[32] 郭昱晴
gazette.agenda.speakers[33] 陳素月
gazette.agenda.speakers[34] 徐富癸
gazette.agenda.speakers[35] 賴惠員
gazette.agenda.speakers[36] 吳秉叡
gazette.agenda.speakers[37] 許智傑
gazette.agenda.speakers[38] 陳培瑜
gazette.agenda.speakers[39] 郭國文
gazette.agenda.page_start 1
gazette.agenda.meetingDate[0] 2024-12-05
gazette.agenda.gazette_id 1140301
gazette.agenda.agenda_lcidc_ids[0] 1140301_00002
gazette.agenda.meet_name 立法院第11屆第2會期司法及法制委員會第18次全體委員會議紀錄
gazette.agenda.content 一、併案審查(一)委員賴士葆等31人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」 案、(二)委員賴士葆等19人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案、(三) 委員張智倫等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案、(四)委員張嘉 郡等23人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案、(五)委員賴士葆等26人 擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案、(六)委員徐欣瑩等20人擬具「公 務人員退休資遣撫卹法第三十七條、第三十八條及第六十七條條文修正草案」案、(七)委員邱鎮 軍等25 人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案、( 八) 國民黨黨團擬具 「公務人員退休資遣撫卹法第三十七條條文修正草案」案、(九)委員林思銘等26人擬具「公務人 員退休資遣撫卹法第六十七條條文修正草案」案、(十)委員陳超明等19人擬具「公務人員退休資 遣撫卹法第三十七條條文修正草案」案、(十一)委員許宇甄等20人擬具「公務人員退休資遣撫卹 法第三十七條及第六十七條條文修正草案」案、(十二)委員黃健豪等18人擬具「公務人員退休資 遣撫卹法第六十七條條文修正草案」案、(十三)委員張智倫等19人擬具「公務人員退休資遣撫卹 法第三條、第八條及第三十七條條文修正草案」案、(十四)委員馬文君等20人擬具「公務人員退 休資遣撫卹法第三十七條條文修正草案」案、(十五)委員傅崐萁等21人擬具「公務人員退休資遣 撫卹法第六十七條條文修正草案」案、(十六)委員王鴻薇等25人擬具「公務人員退休資遣撫卹法 第三十七條及第六十七條條文修正草案」案、(十七)委員黃建賓等16人擬具「公務人員退休資遣 撫卹法第三十七條條文修正草案」案、(十八)委員陳玉珍等16人擬具「公務人員退休資遣撫卹法 第三十七條條文修正草案」案、(十九)委員王鴻薇等19人擬具「公務人員退休資遣撫卹法第三十 八條條文修正草案」案、(二十)委員羅智強等16人擬具「公務人員退休資遣撫卹法第三十七條條 文修正草案」案;二、併案審查(一)委員李彥秀等18人擬具「公務人員任用法第三十六條之一條 文修正草案」案、(二)委員翁曉玲等22人擬具「公務人員任用法第二十八條之一條文修正草案」 案
gazette.agenda.agenda_id 1140301_00001