iVOD / 157908

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/66a8e59aed318d2131d75abf871a887dd143e698449c70dc90a1da7b6f6bcb9d0a3ad233f9b498fc5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 14:33:48 - 14:39:44
影片長度 356
會議時間 2024-12-05T09:00:00+08:00
會議名稱 立法院第11屆第2會期司法及法制委員會第18次全體委員會議(事由:一、併案審查 (一)委員賴士葆等31人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (二)委員賴士葆等19人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (三)委員張智倫等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (四)委員張嘉郡等23人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (五)委員賴士葆等26人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。 (六)委員徐欣瑩等20人擬具「公務人員退休資遣撫卹法第三十七條、第三十八條及第六十七條條文修正草案」案。 (七)委員邱鎮軍等25人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (八)國民黨黨團擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (九)委員林思銘等26人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十)委員陳超明等19人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十一)委員許宇甄等20人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。 (十二)委員黃健豪等18人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十三)委員張智倫等19人擬具「公務人員退休資遣撫卹法第三條、第八條及第三十七條條文修正草案」案。 (十四)委員馬文君等20人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十五)委員傅崐萁等21人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十六)委員王鴻薇等25人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。 (十七)委員黃建賓等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十八)委員陳玉珍等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十九)委員王鴻薇等19人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。 (二十)委員羅智強等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 二、併案審查 (一)委員李彥秀等18人擬具「公務人員任用法第三十六條之一條文修正草案」案。 (二)委員翁曉玲等22人擬具「公務人員任用法第二十八條之一條文修正草案」案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 9.98721875
transcript.pyannote[0].end 11.03346875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 13.91909375
transcript.pyannote[1].end 17.44596875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 17.83409375
transcript.pyannote[2].end 19.04909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 19.38659375
transcript.pyannote[3].end 19.79159375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 21.05721875
transcript.pyannote[4].end 21.44534375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 22.27221875
transcript.pyannote[5].end 24.38159375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 24.75284375
transcript.pyannote[6].end 28.04346875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 28.22909375
transcript.pyannote[7].end 30.81096875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 31.06409375
transcript.pyannote[8].end 44.17596875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 46.52159375
transcript.pyannote[9].end 47.66909375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 48.07409375
transcript.pyannote[10].end 49.20471875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 50.16659375
transcript.pyannote[11].end 54.65534375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 55.56659375
transcript.pyannote[12].end 56.29221875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 56.79846875
transcript.pyannote[13].end 62.33346875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 63.24471875
transcript.pyannote[14].end 63.51471875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 64.03784375
transcript.pyannote[15].end 64.45971875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 64.81409375
transcript.pyannote[16].end 66.95721875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 67.69971875
transcript.pyannote[17].end 68.57721875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 68.69534375
transcript.pyannote[18].end 72.86346875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 73.28534375
transcript.pyannote[19].end 75.64784375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 76.06971875
transcript.pyannote[20].end 80.69346875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 81.57096875
transcript.pyannote[21].end 84.05159375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 84.57471875
transcript.pyannote[22].end 86.51534375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 87.22409375
transcript.pyannote[23].end 92.60721875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 93.11346875
transcript.pyannote[24].end 94.85159375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 95.54346875
transcript.pyannote[25].end 96.43784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 97.14659375
transcript.pyannote[26].end 100.26846875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 100.85909375
transcript.pyannote[27].end 101.60159375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 102.36096875
transcript.pyannote[28].end 105.26346875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 105.97221875
transcript.pyannote[29].end 109.29659375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 111.11909375
transcript.pyannote[30].end 113.63346875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 114.83159375
transcript.pyannote[31].end 115.72596875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 116.70471875
transcript.pyannote[32].end 120.70409375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 121.17659375
transcript.pyannote[33].end 125.09159375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 125.22659375
transcript.pyannote[34].end 129.54659375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 130.20471875
transcript.pyannote[35].end 130.79534375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 131.52096875
transcript.pyannote[36].end 131.99346875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 133.14096875
transcript.pyannote[37].end 136.19534375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 136.92096875
transcript.pyannote[38].end 138.86159375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 139.24971875
transcript.pyannote[39].end 140.26221875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 140.65034375
transcript.pyannote[40].end 143.28284375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 143.78909375
transcript.pyannote[41].end 144.22784375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 144.71721875
transcript.pyannote[42].end 146.79284375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 147.29909375
transcript.pyannote[43].end 148.69971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 149.49284375
transcript.pyannote[44].end 150.85971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 151.66971875
transcript.pyannote[45].end 152.61471875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 153.10409375
transcript.pyannote[46].end 154.03221875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 154.52159375
transcript.pyannote[47].end 156.44534375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 157.22159375
transcript.pyannote[48].end 157.82909375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 158.11596875
transcript.pyannote[49].end 158.82471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 159.78659375
transcript.pyannote[50].end 160.66409375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 160.69784375
transcript.pyannote[51].end 163.39784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 163.88721875
transcript.pyannote[52].end 164.61284375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 165.18659375
transcript.pyannote[53].end 166.19909375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 166.60409375
transcript.pyannote[54].end 167.49846875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 168.07221875
transcript.pyannote[55].end 169.08471875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 169.97909375
transcript.pyannote[56].end 171.54846875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 172.51034375
transcript.pyannote[57].end 174.04596875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 174.33284375
transcript.pyannote[58].end 175.02471875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 175.42971875
transcript.pyannote[59].end 179.41221875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 180.18846875
transcript.pyannote[60].end 180.64409375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 180.79596875
transcript.pyannote[61].end 181.85909375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 182.82096875
transcript.pyannote[62].end 183.44534375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 184.32284375
transcript.pyannote[63].end 185.36909375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 186.12846875
transcript.pyannote[64].end 186.92159375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 188.08596875
transcript.pyannote[65].end 188.84534375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 189.55409375
transcript.pyannote[66].end 190.34721875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 190.98846875
transcript.pyannote[67].end 192.16971875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 192.45659375
transcript.pyannote[68].end 196.48971875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 196.74284375
transcript.pyannote[69].end 198.16034375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 199.27409375
transcript.pyannote[70].end 202.24409375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 203.27346875
transcript.pyannote[71].end 206.53034375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 206.96909375
transcript.pyannote[72].end 207.77909375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 208.60596875
transcript.pyannote[73].end 209.17971875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 209.82096875
transcript.pyannote[74].end 211.01909375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 211.89659375
transcript.pyannote[75].end 218.64659375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 218.89971875
transcript.pyannote[76].end 221.00909375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 221.54909375
transcript.pyannote[77].end 222.37596875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 223.01721875
transcript.pyannote[78].end 225.12659375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 225.71721875
transcript.pyannote[79].end 227.87721875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 228.31596875
transcript.pyannote[80].end 231.04971875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 231.18471875
transcript.pyannote[81].end 234.25596875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 234.96471875
transcript.pyannote[82].end 235.28534375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 235.75784375
transcript.pyannote[83].end 237.78284375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 238.67721875
transcript.pyannote[84].end 239.13284375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 239.70659375
transcript.pyannote[85].end 241.27596875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 241.79909375
transcript.pyannote[86].end 245.29221875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 246.42284375
transcript.pyannote[87].end 247.30034375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 248.68409375
transcript.pyannote[88].end 251.51909375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 252.39659375
transcript.pyannote[89].end 253.37534375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 253.93221875
transcript.pyannote[90].end 256.05846875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 256.36221875
transcript.pyannote[91].end 257.94846875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 258.31971875
transcript.pyannote[92].end 259.43346875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 260.05784375
transcript.pyannote[93].end 261.05346875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 261.50909375
transcript.pyannote[94].end 262.77471875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 263.50034375
transcript.pyannote[95].end 266.23409375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 266.90909375
transcript.pyannote[96].end 267.76971875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 269.11971875
transcript.pyannote[97].end 270.58784375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 272.25846875
transcript.pyannote[98].end 275.90346875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 276.88221875
transcript.pyannote[99].end 281.50596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 282.61971875
transcript.pyannote[100].end 284.05409375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 284.37471875
transcript.pyannote[101].end 286.04534375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 287.10846875
transcript.pyannote[102].end 290.61846875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 291.78284375
transcript.pyannote[103].end 292.42409375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 293.80784375
transcript.pyannote[104].end 300.23721875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 301.21596875
transcript.pyannote[105].end 302.68409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 303.10596875
transcript.pyannote[106].end 305.72159375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 306.09284375
transcript.pyannote[107].end 307.47659375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 307.86471875
transcript.pyannote[108].end 308.40471875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 308.80971875
transcript.pyannote[109].end 309.51846875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 310.04159375
transcript.pyannote[110].end 311.20596875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 312.18471875
transcript.pyannote[111].end 318.22596875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 318.74909375
transcript.pyannote[112].end 322.76534375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 323.54159375
transcript.pyannote[113].end 324.40221875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 326.57909375
transcript.pyannote[114].end 329.31284375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 329.97096875
transcript.pyannote[115].end 336.75471875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 337.53096875
transcript.pyannote[116].end 339.89346875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 340.34909375
transcript.pyannote[117].end 342.15471875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 342.61034375
transcript.pyannote[118].end 354.06846875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 356.24534375
transcript.pyannote[119].end 356.97096875
transcript.whisperx[0].start 10.892
transcript.whisperx[0].end 14.154
transcript.whisperx[0].text 撫卹法定人數不足
transcript.whisperx[1].start 25.453
transcript.whisperx[1].end 42.122
transcript.whisperx[1].text 這個還是要諮詢部長因為這個是你的業務主要的業務人事長是間接也是主要好我們這個上次我有跟你提過那時候是主要是諮詢秘書長考試院的秘書長105年6月8號
transcript.whisperx[2].start 50.199
transcript.whisperx[2].end 52.7
transcript.whisperx[2].text 法第六十七條條文修正草案.一)立法院第18次全體委員會議第18次全體委員會議第18次全體委員會議
transcript.whisperx[3].start 67.688
transcript.whisperx[3].end 69.169
transcript.whisperx[3].text 撫卹法第十七條條文修正草案案案 。
transcript.whisperx[4].start 87.667
transcript.whisperx[4].end 115.667
transcript.whisperx[4].text 還有勞工也在這個包括移民企業雇主相關的這些代表都成為總統府國家年金改革委員會然後由副總統當時的副總統陳建仁擔任這個召集委員召集人總共召開了多少次的會議呢二十次啊
transcript.whisperx[5].start 117.499
transcript.whisperx[5].end 135.599
transcript.whisperx[5].text 總共召開了二十次的會議。第二十次的會議是在105年11月10號。所以這個時間是很密集的、很積極的來去開會。那為什麼還要找勞工呢?因為一樣的。
transcript.whisperx[6].start 136.963
transcript.whisperx[6].end 154.556
transcript.whisperx[6].text 撫卹法第十七條條文修正草案.一)立法院第11屆第12會期司法及法制委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體委員會第18次全體
transcript.whisperx[7].start 159.861
transcript.whisperx[7].end 188.579
transcript.whisperx[7].text 所謂的那個勞保或是工保這些也都面臨今天一直談論的這些破產的問題都有勞工的也不是也是所以起碼我們如果從現在的數據來看勞工因為當時執政的政府當時的行政院
transcript.whisperx[8].start 189.582
transcript.whisperx[8].end 200.931
transcript.whisperx[8].text 撫卹法第六十七條條文修正草案案 案件,並不提出相關年改的這些勞保的勞工的部分所以這幾年撥補2670億透過人民的納稅錢去撥補這個我支持我支持但是為什麼
transcript.whisperx[9].start 213.007
transcript.whisperx[9].end 237.139
transcript.whisperx[9].text 針對軍公教警消卻不是同一個方式去解決,卻不是用撥補的方式,這個就是非常大的一個偏頗。對軍公教警消而言,尤其是已經退休的軍公教警消還受及既往啊。好,我們就接下來談
transcript.whisperx[10].start 240.178
transcript.whisperx[10].end 266.894
transcript.whisperx[10].text 這個總統府所成立的國家年金改革委員會開了20次會議考試院依據也就是參考依據了這個年改會議國家年金改革委員會的相關的這些討論的結果你們提出了當時的考試院提出了版本送到立法院來審查
transcript.whisperx[11].start 269.564
transcript.whisperx[11].end 292.007
transcript.whisperx[11].text 審查的結果當時民進黨的立法委員絕對多數在這個場合司法法制委員會三天三夜開會結果用誰的版本是用段宜康及其他民進黨立委所提出來的版本來通過
transcript.whisperx[12].start 293.834
transcript.whisperx[12].end 299.455
transcript.whisperx[12].text 法定人數不足以採取公務人員退休資遣撫卹法定人數不足以採取公務人員退休資遣撫卹法定人數不足以採取公務人員退休
transcript.whisperx[13].start 324.081
transcript.whisperx[13].end 337.851
transcript.whisperx[13].text 卻是立法委員的版本而不是總統府的國家年金改革委員會所以這個部分既然實施已經這麼多年了就應該要來再檢討
transcript.whisperx[14].start 340.854
transcript.whisperx[14].end 353.866
transcript.whisperx[14].text 現在這個時刻就是檢討的時刻所以我們要好好的審查這一段時間我們立委的一些提案以上
IVOD_ID 157908
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157908
日期 2024-12-05
會議資料.會議代碼 委員會-11-2-36-18
會議資料.屆 11
會議資料.會期 2
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.標題 第11屆第2會期司法及法制委員會第18次全體委員會議
影片種類 Clip
開始時間 2024-12-05T14:33:48+08:00
結束時間 2024-12-05T14:39:44+08:00
支援功能[0] ai-transcript