iVOD / 157629

Field Value
IVOD_ID 157629
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157629
日期 2024-11-28
會議資料.會議代碼 委員會-11-2-35-19
會議資料.會議代碼:str 第11屆第2會期外交及國防委員會第19次全體委員會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 19
會議資料.種類 委員會
會議資料.委員會代碼[0] 35
會議資料.委員會代碼:str[0] 外交及國防委員會
會議資料.標題 第11屆第2會期外交及國防委員會第19次全體委員會議
影片種類 Clip
開始時間 2024-11-28T12:00:46+08:00
結束時間 2024-11-28T12:10:28+08:00
影片長度 00:09:42
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/9b765842ec257966d4149738d4e5c54bfde9c36da10785a7100fefa9c0a589fc8401a8fd86e0fba65ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 12:00:46 - 12:10:28
會議時間 2024-11-28T09:00:00+08:00
會議名稱 立法院第11屆第2會期外交及國防委員會第19次全體委員會議【含秘密會議】(事由:一、審查114年度中央政府總預算案關於外交部主管收支公開及機密部分。(僅詢答) 二、繼續處理院會交付外交部113年度中央政府總預算決議(十八)「對外之捐助」預算凍結100萬元案。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.06471875
transcript.pyannote[0].end 0.80721875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.17846875
transcript.pyannote[1].end 2.51159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 2.86596875
transcript.pyannote[2].end 3.89534375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 4.82346875
transcript.pyannote[3].end 5.85284375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 10.84784375
transcript.pyannote[4].end 11.30346875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 11.92784375
transcript.pyannote[5].end 13.83471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 14.39159375
transcript.pyannote[6].end 16.46721875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 16.97346875
transcript.pyannote[7].end 17.41221875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 17.63159375
transcript.pyannote[8].end 18.05346875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 19.06596875
transcript.pyannote[9].end 24.12846875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 24.61784375
transcript.pyannote[10].end 25.96784375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 25.96784375
transcript.pyannote[11].end 26.17034375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 26.67659375
transcript.pyannote[12].end 32.02596875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 32.86971875
transcript.pyannote[13].end 35.82284375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 36.81846875
transcript.pyannote[14].end 38.50596875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 39.51846875
transcript.pyannote[15].end 41.64471875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 42.57284375
transcript.pyannote[16].end 43.83846875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 45.66096875
transcript.pyannote[17].end 46.55534375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 46.74096875
transcript.pyannote[18].end 48.14159375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 48.41159375
transcript.pyannote[19].end 48.63096875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 48.90096875
transcript.pyannote[20].end 50.35221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 50.41971875
transcript.pyannote[21].end 50.68971875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 51.02721875
transcript.pyannote[22].end 53.92971875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 54.72284375
transcript.pyannote[23].end 55.22909375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 56.03909375
transcript.pyannote[24].end 62.53596875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 63.00846875
transcript.pyannote[25].end 65.53971875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 66.28221875
transcript.pyannote[26].end 67.66596875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 68.40846875
transcript.pyannote[27].end 69.74159375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 70.50096875
transcript.pyannote[28].end 71.37846875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 72.89721875
transcript.pyannote[29].end 74.58471875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 74.78721875
transcript.pyannote[30].end 76.84596875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 78.12846875
transcript.pyannote[31].end 81.35159375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 84.01784375
transcript.pyannote[32].end 86.24534375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 87.22409375
transcript.pyannote[33].end 88.99596875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 90.02534375
transcript.pyannote[34].end 92.06721875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 92.67471875
transcript.pyannote[35].end 92.87721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 93.09659375
transcript.pyannote[36].end 95.44221875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 95.96534375
transcript.pyannote[37].end 97.14659375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 97.63596875
transcript.pyannote[38].end 100.31909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 100.90971875
transcript.pyannote[39].end 101.78721875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 102.37784375
transcript.pyannote[40].end 104.67284375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 105.41534375
transcript.pyannote[41].end 107.52471875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 108.43596875
transcript.pyannote[42].end 109.33034375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 110.32596875
transcript.pyannote[43].end 111.20346875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 111.42284375
transcript.pyannote[44].end 117.05909375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 117.49784375
transcript.pyannote[45].end 119.86034375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 120.40034375
transcript.pyannote[46].end 121.98659375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 123.25221875
transcript.pyannote[47].end 124.16346875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 125.34471875
transcript.pyannote[48].end 128.21346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 128.21346875
transcript.pyannote[49].end 130.39034375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 130.87971875
transcript.pyannote[50].end 132.56721875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 133.25909375
transcript.pyannote[51].end 134.67659375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 135.75659375
transcript.pyannote[52].end 136.44846875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 136.49909375
transcript.pyannote[53].end 136.70159375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 137.17409375
transcript.pyannote[54].end 143.01284375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 138.84471875
transcript.pyannote[55].end 141.03846875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 141.03846875
transcript.pyannote[56].end 141.05534375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 141.94971875
transcript.pyannote[57].end 142.81034375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 143.70471875
transcript.pyannote[58].end 143.97471875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 143.97471875
transcript.pyannote[59].end 145.69596875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 146.57346875
transcript.pyannote[60].end 147.83909375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 148.21034375
transcript.pyannote[61].end 149.79659375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 150.28596875
transcript.pyannote[62].end 152.59784375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 153.35721875
transcript.pyannote[63].end 155.48346875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 156.14159375
transcript.pyannote[64].end 157.76159375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 159.61784375
transcript.pyannote[65].end 160.24221875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 160.47846875
transcript.pyannote[66].end 161.42346875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 161.64284375
transcript.pyannote[67].end 162.48659375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 163.92096875
transcript.pyannote[68].end 170.78909375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 167.80221875
transcript.pyannote[69].end 170.75534375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 171.68346875
transcript.pyannote[70].end 174.09659375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 171.78471875
transcript.pyannote[71].end 172.84784375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 173.94471875
transcript.pyannote[72].end 174.06284375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 174.09659375
transcript.pyannote[73].end 174.82221875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 175.04159375
transcript.pyannote[74].end 175.34534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 175.58159375
transcript.pyannote[75].end 175.93596875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 176.25659375
transcript.pyannote[76].end 177.77534375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 178.63596875
transcript.pyannote[77].end 179.80034375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 180.49221875
transcript.pyannote[78].end 181.74096875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 182.58471875
transcript.pyannote[79].end 183.14159375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 184.52534375
transcript.pyannote[80].end 185.67284375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 186.34784375
transcript.pyannote[81].end 187.10721875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 187.49534375
transcript.pyannote[82].end 187.74846875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 188.30534375
transcript.pyannote[83].end 188.81159375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 189.08159375
transcript.pyannote[84].end 190.12784375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 192.45659375
transcript.pyannote[85].end 192.62534375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 192.99659375
transcript.pyannote[86].end 193.87409375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 194.86971875
transcript.pyannote[87].end 196.72596875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 197.01284375
transcript.pyannote[88].end 199.07159375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 199.93221875
transcript.pyannote[89].end 201.82221875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 202.53096875
transcript.pyannote[90].end 203.02034375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 203.56034375
transcript.pyannote[91].end 205.93971875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 206.49659375
transcript.pyannote[92].end 208.38659375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 208.69034375
transcript.pyannote[93].end 211.12034375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 211.79534375
transcript.pyannote[94].end 213.73596875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 214.56284375
transcript.pyannote[95].end 214.98471875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 215.87909375
transcript.pyannote[96].end 216.62159375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 216.79034375
transcript.pyannote[97].end 219.15284375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 220.09784375
transcript.pyannote[98].end 221.27909375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 221.98784375
transcript.pyannote[99].end 223.54034375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 224.02971875
transcript.pyannote[100].end 225.26159375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 225.63284375
transcript.pyannote[101].end 227.32034375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 227.89409375
transcript.pyannote[102].end 228.70409375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 229.42971875
transcript.pyannote[103].end 230.30721875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 230.69534375
transcript.pyannote[104].end 231.91034375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 232.31534375
transcript.pyannote[105].end 238.52534375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 239.48721875
transcript.pyannote[106].end 242.23784375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 242.32221875
transcript.pyannote[107].end 243.87471875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 244.21221875
transcript.pyannote[108].end 246.42284375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 246.89534375
transcript.pyannote[109].end 255.94034375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 255.95721875
transcript.pyannote[110].end 263.95596875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 264.22596875
transcript.pyannote[111].end 265.37346875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 266.16659375
transcript.pyannote[112].end 268.83284375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 268.19159375
transcript.pyannote[113].end 270.45284375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 269.81159375
transcript.pyannote[114].end 270.36846875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 270.45284375
transcript.pyannote[115].end 270.53721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 270.77346875
transcript.pyannote[116].end 274.72221875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 275.14409375
transcript.pyannote[117].end 278.89034375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 279.73409375
transcript.pyannote[118].end 282.01221875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 282.73784375
transcript.pyannote[119].end 283.75034375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 284.57721875
transcript.pyannote[120].end 284.71221875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 284.71221875
transcript.pyannote[121].end 295.14096875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 295.51221875
transcript.pyannote[122].end 296.89596875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 298.22909375
transcript.pyannote[123].end 299.51159375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 300.99659375
transcript.pyannote[124].end 301.99221875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 302.21159375
transcript.pyannote[125].end 303.51096875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 303.93284375
transcript.pyannote[126].end 307.78034375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 308.53971875
transcript.pyannote[127].end 311.42534375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 312.97784375
transcript.pyannote[128].end 313.18034375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 313.55159375
transcript.pyannote[129].end 314.54721875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 314.54721875
transcript.pyannote[130].end 314.59784375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 314.59784375
transcript.pyannote[131].end 314.93534375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 314.93534375
transcript.pyannote[132].end 322.96784375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 318.27659375
transcript.pyannote[133].end 319.03596875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 323.10284375
transcript.pyannote[134].end 323.62596875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 324.19971875
transcript.pyannote[135].end 325.53284375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 326.14034375
transcript.pyannote[136].end 332.73846875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 328.65471875
transcript.pyannote[137].end 329.02596875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 333.21096875
transcript.pyannote[138].end 336.28221875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 335.25284375
transcript.pyannote[139].end 337.56471875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 338.10471875
transcript.pyannote[140].end 338.15534375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 338.22284375
transcript.pyannote[141].end 338.25659375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 338.35784375
transcript.pyannote[142].end 351.97596875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 343.55534375
transcript.pyannote[143].end 345.52971875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 352.31346875
transcript.pyannote[144].end 356.00909375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 356.32971875
transcript.pyannote[145].end 358.87784375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 358.87784375
transcript.pyannote[146].end 367.26471875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 360.64971875
transcript.pyannote[147].end 361.59471875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 362.45534375
transcript.pyannote[148].end 363.56909375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 364.09221875
transcript.pyannote[149].end 364.42971875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 366.38721875
transcript.pyannote[150].end 371.55096875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 371.92221875
transcript.pyannote[151].end 373.42409375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 372.17534375
transcript.pyannote[152].end 373.35659375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 373.99784375
transcript.pyannote[153].end 379.34721875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 378.46971875
transcript.pyannote[154].end 379.26284375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 380.27534375
transcript.pyannote[155].end 385.89471875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 385.89471875
transcript.pyannote[156].end 393.75846875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 386.46846875
transcript.pyannote[157].end 386.97471875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 394.24784375
transcript.pyannote[158].end 399.76596875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 399.15846875
transcript.pyannote[159].end 399.46221875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 399.51284375
transcript.pyannote[160].end 399.68159375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 399.76596875
transcript.pyannote[161].end 413.87346875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 407.42721875
transcript.pyannote[162].end 408.72659375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 411.67971875
transcript.pyannote[163].end 413.92409375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 414.66659375
transcript.pyannote[164].end 417.53534375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 417.92346875
transcript.pyannote[165].end 421.24784375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 421.24784375
transcript.pyannote[166].end 430.96784375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 425.36534375
transcript.pyannote[167].end 425.98971875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 427.66034375
transcript.pyannote[168].end 431.20409375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 431.52471875
transcript.pyannote[169].end 433.12784375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 433.44846875
transcript.pyannote[170].end 435.52409375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 435.89534375
transcript.pyannote[171].end 437.22846875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 437.43096875
transcript.pyannote[172].end 438.69659375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 439.23659375
transcript.pyannote[173].end 440.65409375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 441.16034375
transcript.pyannote[174].end 445.49721875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 445.80096875
transcript.pyannote[175].end 448.46721875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 450.07034375
transcript.pyannote[176].end 450.84659375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 451.80846875
transcript.pyannote[177].end 457.09034375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 457.51221875
transcript.pyannote[178].end 461.47784375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 457.90034375
transcript.pyannote[179].end 458.71034375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 458.79471875
transcript.pyannote[180].end 459.97596875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 460.68471875
transcript.pyannote[181].end 476.96909375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 473.84721875
transcript.pyannote[182].end 478.75784375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 478.99409375
transcript.pyannote[183].end 479.02784375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 479.02784375
transcript.pyannote[184].end 480.10784375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 480.63096875
transcript.pyannote[185].end 487.90409375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 487.90409375
transcript.pyannote[186].end 488.05596875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 488.05596875
transcript.pyannote[187].end 488.20784375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 488.20784375
transcript.pyannote[188].end 489.28784375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 490.26659375
transcript.pyannote[189].end 491.22846875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 491.24534375
transcript.pyannote[190].end 491.59971875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 491.73471875
transcript.pyannote[191].end 493.60784375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 494.16471875
transcript.pyannote[192].end 496.08846875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 496.42596875
transcript.pyannote[193].end 497.77596875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 498.26534375
transcript.pyannote[194].end 501.77534375
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 501.91034375
transcript.pyannote[195].end 502.45034375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 502.58534375
transcript.pyannote[196].end 506.75346875
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 507.52971875
transcript.pyannote[197].end 508.96409375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 507.61409375
transcript.pyannote[198].end 509.09909375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 509.09909375
transcript.pyannote[199].end 509.18346875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 509.18346875
transcript.pyannote[200].end 509.30159375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 509.30159375
transcript.pyannote[201].end 509.31846875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 509.31846875
transcript.pyannote[202].end 511.79909375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 510.29721875
transcript.pyannote[203].end 512.54159375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 512.98034375
transcript.pyannote[204].end 514.29659375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 515.10659375
transcript.pyannote[205].end 516.54096875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 516.81096875
transcript.pyannote[206].end 518.93721875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 518.93721875
transcript.pyannote[207].end 519.47721875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 519.47721875
transcript.pyannote[208].end 519.56159375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 519.56159375
transcript.pyannote[209].end 534.14159375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 532.85909375
transcript.pyannote[210].end 536.94284375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 534.39471875
transcript.pyannote[211].end 534.42846875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 538.22534375
transcript.pyannote[212].end 539.59221875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 539.59221875
transcript.pyannote[213].end 539.60909375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 540.30096875
transcript.pyannote[214].end 541.02659375
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 541.02659375
transcript.pyannote[215].end 542.89971875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 543.64221875
transcript.pyannote[216].end 554.02034375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 551.77596875
transcript.pyannote[217].end 563.74034375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 555.23534375
transcript.pyannote[218].end 555.82596875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 559.94346875
transcript.pyannote[219].end 568.60034375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 564.33096875
transcript.pyannote[220].end 566.38971875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 567.62159375
transcript.pyannote[221].end 567.99284375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 568.93784375
transcript.pyannote[222].end 574.08471875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 574.08471875
transcript.pyannote[223].end 577.94909375
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 574.84409375
transcript.pyannote[224].end 578.45534375
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 579.46784375
transcript.pyannote[225].end 581.44221875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 581.25659375
transcript.pyannote[226].end 581.59409375
transcript.whisperx[0].start 0.089
transcript.whisperx[0].end 5.334
transcript.whisperx[0].text 主席,謝謝主席,有請外交部林部長。請林佳龍部長。委員好。我請教部長,部長你好。委員好。我們跟日本關係怎麼樣?日本?理念相近,而且很平凡的經貿文化交流。
transcript.whisperx[1].start 25.133
transcript.whisperx[1].end 31.478
transcript.whisperx[1].text 關係很好啊我們哪一位長官啊過去的長官啊你的前任的外交部長還說這個他是我們的大哥哥啊關係這麼好啊結果他們的人啊把我們台灣人當大陸人啊有人跟我投訴啊
transcript.whisperx[2].start 45.697
transcript.whisperx[2].end 49.981
transcript.whisperx[2].text 他在日本瑞穗銀行你知道吧日本很大的銀行啊他去存錢他就要跟他寫你要寫ID啊號碼寫我們的身份證啊我們的或者是我們的護照啊寫他說不對啊你要寫12個digit你要寫12位數12位數什麼意思你知道什麼意思嗎
transcript.whisperx[3].start 72.975
transcript.whisperx[3].end 76.318
transcript.whisperx[3].text 十二位數我沒有辦過欸十二位數是大陸的啦大陸的十二位數啦台灣沒有十二位數啦那這個運農委員派是老客戶欸運農委員就跟他講你要改改
transcript.whisperx[4].start 90.063
transcript.whisperx[4].end 91.985
transcript.whisperx[4].text 你們是中國、中國、台灣的你講關係多好一個這麼樣子的一個大的日本的一個銀行結果居然強迫我們要寫10號個digit我們不寫不給他辦了這事情你知道嗎
transcript.whisperx[5].start 110.37
transcript.whisperx[5].end 112.993
transcript.whisperx[5].text 委員這個個案是不是很普遍還是他很特別?什麼叫很普遍很特別?
transcript.whisperx[6].start 135.796
transcript.whisperx[6].end 155.471
transcript.whisperx[6].text 他如果是是比較特別的情形沒有什麼特別就普通的客戶啊跟他是一般的狀況一般的客戶啊一般的客戶而且是老客戶啊老客戶都弄錯可見得一直在錯啊人家可能有人就算了就這樣子問題他說我拿不出中國的護照啊我拿不出12個Digital啊這個你要不要幫忙去處理啊瑞穗銀行
transcript.whisperx[7].start 163.951
transcript.whisperx[7].end 164.511
transcript.whisperx[7].text 你不是娶過聖溫森(聖塔魯西亞(你娶過嗎(對(你打什麼飛機(
transcript.whisperx[8].start 193.058
transcript.whisperx[8].end 198.442
transcript.whisperx[8].text 來囉我已經給你啦給你看啦你用A320你有包機只有載19個人裡面有沙發有客廳有夠豪華的耶聽說可以有洗澡的地方喔比照一點鐘就還美金兩萬二勒
transcript.whisperx[9].start 220.591
transcript.whisperx[9].end 224.294
transcript.whisperx[9].text 馬英九用ATF70機載70個人一個小時15萬泰幣。蔡英文是Bombardier環球6000載14個人每一個小時50萬泰幣。阿你每一個小時就差不多70萬阿?
transcript.whisperx[10].start 239.537
transcript.whisperx[10].end 241.978
transcript.whisperx[10].text 每個小時70萬啊 哇 這個林佳龍林佳龍部長你的class你的class比馬英九還高 比蔡英文還高高了這麼多 你是做什麼偉大的事情啊我所知道你原來是去採點啊怎麼用這麼豪華奢侈的飛機這樣好不好 花台灣人的錢這樣花好不好啊 部長啊派頭這麼大喔
transcript.whisperx[11].start 266.389
transcript.whisperx[11].end 283.424
transcript.whisperx[11].text 這個我來瞭解一下因為這涉及到委員比如說我們去南泰應該是不一樣的情形但是那個因為畸形的那個名稱我要再查一下
transcript.whisperx[12].start 284.636
transcript.whisperx[12].end 288.938
transcript.whisperx[12].text 稍稍謙虛,臺灣很有錢是有錢的,沒有那麼有錢,這樣你自己想我馬英九一個小時15萬,蔡英文一個小時50萬,林佳龍一個小時70萬,你還要做總統嗎?我不希望,不幸連中,這個你派頭太粗了,一個外交部長,而且我所知道你去那裡是裁點,是說我去看嘛,總統要來,
transcript.whisperx[13].start 314.812
transcript.whisperx[13].end 336.149
transcript.whisperx[13].text 因為我去過很多地方包括南派包括加海包括中南美洲那這個涉及到航空公司到底用什麼機型你們的人在拍你馬屁啦我就給你告訴你這個數字而且涉及到人數跟他的航線你人數有啊19個人啊
transcript.whisperx[14].start 338.973
transcript.whisperx[14].end 345.436
transcript.whisperx[14].text 阿這個航線有Diata美國Diata有包機美國的American Airline AA有包機你都可以Automotive可以挑AA可以挑Diata可以挑都有包機的服務阿你就不要你取一個最貴的隨隨跟你安排的
transcript.whisperx[15].start 358.423
transcript.whisperx[15].end 359.624
transcript.whisperx[15].text 報告委員我們辦理包機我們都有請相關的管處去
transcript.whisperx[16].start 380.285
transcript.whisperx[16].end 390.175
transcript.whisperx[16].text 我們負責我們在美國有幾個管處我已經幫你查了路線American Airlines有這個包機為什麼不用American Airlines為什麼不用Delta Airlines都有包機又省很多錢你就用這個最貴的
transcript.whisperx[17].start 398.703
transcript.whisperx[17].end 401.724
transcript.whisperx[17].text 報告委員這不是拍馬屁我們經過住處回報的一些資訊我們有比較這個我們絕(你們挑最貴的他是一個基於安全因素安全阿不然你跟那個包機沒有安全阿
transcript.whisperx[18].start 414.724
transcript.whisperx[18].end 415.905
transcript.whisperx[18].text 部長啊!你要約束一下你的市長啊!這樣子陷你於不義啊!說這個林佳龍企圖心啊!
transcript.whisperx[19].start 435.759
transcript.whisperx[19].end 436.46
transcript.whisperx[19].text 我想管處或我們各司的評估我會來瞭解
transcript.whisperx[20].start 457.517
transcript.whisperx[20].end 476.551
transcript.whisperx[20].text 你去了解來給我一個報告可以嗎?給我們國防委員會一個報告可以嗎?我跟委員講齁其實這趟其實在南泰不是這個樣子那你說講的是拉美的話因為涉及到有一個行程是到這一個海地那當然這個涉及到安全的評估海地我去過海地我跟馬英九去過沒有你講那麼偉大啦
transcript.whisperx[21].start 479.633
transcript.whisperx[21].end 486.916
transcript.whisperx[21].text 委員我再詳細了解。我也同意委員。你多久時候給我一個報告?順便報告。好不好?多久?兩禮拜可以嗎?可以。兩禮拜。因為我這個在幫你。我對你很好。我讓你澄清一下。不然的話你會說多金部長。我知道你家很有錢。多金部長要準備當總統的。其實感覺不好。
transcript.whisperx[22].start 507.588
transcript.whisperx[22].end 511.251
transcript.whisperx[22].text 我再給你強調你要去查為什麼不用American Airlines
transcript.whisperx[23].start 538.474
transcript.whisperx[23].end 554.806
transcript.whisperx[23].text 為什麼不用Data?都有包機服務,為什麼不用?一樣可以啊!如果有更好的選擇,我想外管應該把它列入。阿如果就現有的他們的選項,那我想委員剛剛的關鍵...好啦,你等一下寫報告給我啦!主要我就跟你講啦!因為他們大概想說你浩大喜功,家裡又有錢,我們是要做總統!阿該給阿伯個贊的啦!就這樣啦!拍你馬屁啦!就這樣啦!
transcript.whisperx[24].start 566.534
transcript.whisperx[24].end 571.742
transcript.whisperx[24].text 還有各方面的條件我們這種跟委員都選舉出來的我們很好安頓
gazette.lineno 451
gazette.blocks[0][0] 賴委員士葆:(12時)謝謝主席。有請外交部林部長。
gazette.blocks[1][0] 主席:請林佳龍部長。
gazette.blocks[2][0] 林部長佳龍:委員好。
gazette.blocks[3][0] 賴委員士葆:部長,你好。我請教部長我們跟日本的關係是怎麼樣?
gazette.blocks[4][0] 林部長佳龍:理念相近,而且很頻繁地經貿、文化交流。
gazette.blocks[5][0] 賴委員士葆:關係很好啊。過去的長官,你的前任外交部長還說它是我們的大哥哥,關係這麼好,結果他們的人把我們臺灣人當大陸人。有人跟我投訴,日本瑞穗銀行你知道吧?
gazette.blocks[6][0] 林部長佳龍:是。
gazette.blocks[7][0] 賴委員士葆:是日本很大的銀行,他去存錢,銀行行員就要他寫ID號碼,就是我們的身分證字號或我們的護照號碼,他寫了以後對方就說:「不對啊!你要寫12個digit,你要寫十二位數。」十二位數是什麼意思?你知道什麼意思嗎?
gazette.blocks[8][0] 林部長佳龍:我沒有辦過。
gazette.blocks[9][0] 賴委員士葆:十二位數是大陸的,大陸的ID才是十二位數,臺灣沒有十二位數。他還是老客戶耶,這個銀行員就跟他講:「你要改,你們是中國臺灣的。」欸!你講臺日關係多好,一個這麼大的日本銀行,結果居然還強迫我們的人要寫12個digit,不寫就不給他辦,這個事情你知道嗎?
gazette.blocks[10][0] 林部長佳龍:我現在才知道。
gazette.blocks[11][0] 賴委員士葆:現在才知道。可見臺日的關係不怎麼樣,沒有你講得那麼好,這麼大的銀行都把臺灣視為中國的一部分,把臺灣人視為中國人,他這麼一弄,結果這樣子一個……
gazette.blocks[12][0] 林部長佳龍:委員,這個個案是很普遍還是很特別?
gazette.blocks[13][0] 賴委員士葆:什麼叫很普遍、很特別?
gazette.blocks[14][0] 林部長佳龍:如果是比較特別的情形,沒有什麼特別的情形……
gazette.blocks[15][0] 賴委員士葆:沒有什麼特別,就普通的客戶啊。
gazette.blocks[16][0] 林部長佳龍:就是一般的狀況……
gazette.blocks[17][0] 賴委員士葆:一般的客戶,而且是老客戶啊。老客戶都弄錯,可見得一直在錯啊。有人可能就算了,就這樣子,問題是這個人說他拿不出中國的護照,拿不出12個digit,你要不要幫忙去處理瑞穗銀行的事啊?
gazette.blocks[18][0] 林部長佳龍:我個人是很樂意,如果涉及到臺日關係,那我們當然要更……
gazette.blocks[19][0] 賴委員士葆:當然涉及臺日關係,我才找你啊,對不對?
gazette.blocks[20][0] 林部長佳龍:委員的資料是不是也給我參考?
gazette.blocks[21][0] 賴委員士葆:我把資料給你。
gazette.blocks[21][1] 好,你不是去過聖文森嗎?聖露西亞你去過嗎?
gazette.blocks[22][0] 林部長佳龍:對。
gazette.blocks[23][0] 賴委員士葆:對啊。你搭什麼飛機?
gazette.blocks[24][0] 林部長佳龍:那個機型我們再查一下。
gazette.blocks[25][0] 賴委員士葆:來,我已經給你了,你用A320neo包機,只有載19個人,裡面有沙發,有客廳,有夠豪華,聽說還可以有洗澡的地方,一個小時就要美金兩萬二。馬英九用ATR-72,載70個人,一個小時15萬元臺幣。蔡英文是搭龐巴迪的環球6000,載14個人,一個小時50萬元臺幣。你每一個小時就差不多70萬,林佳龍部長,你的class比馬英九還高,比蔡英文還高,高了這麼多,你是做什麼偉大的事情啊?我所知道你原來是去踩點,怎麼用這麼豪華奢侈的飛機?這樣好嗎?臺灣人的錢這樣花,好不好啊?部長。派頭這麼大喔?
gazette.blocks[26][0] 林部長佳龍:這個我來瞭解一下,因為這涉及到我們去……
gazette.blocks[27][0] 賴委員士葆:你已經搭過了,你經搭完了,你看……
gazette.blocks[28][0] 林部長佳龍:委員,比如說我們去南太,跟你說的應該是不一樣的情形,機型的名稱我要再查一下。
gazette.blocks[29][0] 賴委員士葆:要省一點啦,臺灣有錢是有錢,也沒有那麼有錢。你想想,馬英九搭的飛機一個小時15萬,蔡英文一個小時50萬,林佳龍一個小時70萬,哇!你下次要做總統喔?我不希望不幸言中。你派頭太大了,一個外交部長,而且我所知道,你去那裡是踩點、是去看看,下次總統要來,搭這麼好的飛機,而且……
gazette.blocks[30][0] 林部長佳龍:因為我去過很多地方,包括南太,包括加海,包括中南美洲,這個涉及到航空公司到底用什麼機型……
gazette.blocks[31][0] 賴委員士葆:你們的人要拍你馬屁啦!我就告訴你這個數字……
gazette.blocks[32][0] 林部長佳龍:這個人數跟航線……
gazette.blocks[33][0] 賴委員士葆:人數有啊,19個人。這個航線有美國的Delta的包機,美國的American Airline的包機,你都可以挑,有AA可以挑,有Delta可以挑,都有包機的服務,你就不要,你取一個最貴的,誰給你安排的?你想一下。
gazette.blocks[34][0] 林部長佳龍:要看去哪一區啦,如果是南太,是亞太司……
gazette.blocks[35][0] 賴委員士葆:亞太司拍你馬屁。
gazette.blocks[36][0] 林部長佳龍:去加勒比海是拉美司。
gazette.blocks[37][0] 賴委員士葆:拉美司拍你馬屁,變成這個樣子,司長要不要報告一下?司長,你是怎麼安排的?
gazette.blocks[38][0] 張副司長自信:報告委員,我們辦理包機,都有請相關的館處去……
gazette.blocks[39][0] 賴委員士葆:什麼館處?
gazette.blocks[40][0] 張副司長自信:我們在美國有幾個館處……
gazette.blocks[41][0] 賴委員士葆:我已經幫你查了路線,American Airline有包機,為什麼不用American Airline?為什麼不用Delta Airline?都有包機,省很多錢,你就要用這個最貴的,拍馬屁也拍成這個樣子。
gazette.blocks[42][0] 張副司長自信:這不是拍馬屁。
gazette.blocks[43][0] 賴委員士葆:當然是拍馬屁。
gazette.blocks[44][0] 張副司長自信:我們經過駐處回報的一些資訊,我們也有比較……
gazette.blocks[45][0] 賴委員士葆:你們挑最貴的。
gazette.blocks[46][0] 張副司長自信:這個是最貴的包機,但是是基於安全因素……
gazette.blocks[47][0] 賴委員士葆:American Airline的包機沒有安全嗎?美國會揍你喔,因為你說American Airline不安全。奇怪,Delta不安全喔?只有你們這個才安全?
gazette.blocks[48][0] 張副司長自信:不是,我們是基於駐處回報的一些資訊去做選擇,然後選擇比較安全的,基於部長出……
gazette.blocks[49][0] 賴委員士葆:部長,約束一下你的司長,這樣子陷你於不義,說林佳龍企圖心昭然若揭,以後想要做總統。你看總統的規格,你看,馬英九的包機15萬,蔡英文50萬,林佳龍70萬,還沒有做總統就每小時70萬,做總統就會100萬,會害死你。
gazette.blocks[50][0] 林部長佳龍:我想,館處或者是我們各司的評估,我們會來瞭解。
gazette.blocks[51][0] 賴委員士葆:你去瞭解,給我一個報告,可以嗎?給我們國防委員會一個報告。
gazette.blocks[52][0] 林部長佳龍:我跟委員講,其實在南太不是這個樣子,你講的是拉美的話,因為有一個行程是到海地,那當然涉及到安全的評估,依我們的專業,我也不能夠……
gazette.blocks[53][0] 賴委員士葆:海地我也去過,我跟馬英九去過,沒有你講得那麼偉大啦!你說成這樣。
gazette.blocks[54][0] 林部長佳龍:委員,我再詳細瞭解,我也同意委員……
gazette.blocks[55][0] 賴委員士葆:你多久的時問給我一個書面報告?好不好?
gazette.blocks[56][0] 林部長佳龍:好,我儘快。
gazette.blocks[57][0] 賴委員士葆:兩個禮拜可以嗎?
gazette.blocks[58][0] 林部長佳龍:可以。
gazette.blocks[59][0] 賴委員士葆:可以?
gazette.blocks[60][0] 林部長佳龍:好。
gazette.blocks[61][0] 賴委員士葆:因為我在幫你,我對你那麼好,我幫你澄清一下,不然的話,你會被說是多金部長,我知道你家很有錢,被說是多金部長,要準備當總統,給人的感覺不好,太早。
gazette.blocks[62][0] 林部長佳龍:他們有一些任務上的需要,我再……
gazette.blocks[63][0] 賴委員士葆:這個還有任務喔?有機密喔?裡面放間諜喔?不要這樣啦,你這個是踩點啦,沒什麼任務,任務是踩點啦。
gazette.blocks[64][0] 林部長佳龍:因為有一些真的是,包括像加勒比海有一些跳島之間的行程安排,如果沒有用整合的話,可能預算會更高,那到底是基於什麼樣的考量,我會來瞭解,再跟委員報告。
gazette.blocks[65][0] 賴委員士葆:我再給你強調,你要去查為什麼不用American Airline?為什麼不用Delta?都有包機服務,為什麼不用?一樣可以啊!
gazette.blocks[66][0] 林部長佳龍:如果有更好的選擇,我想外館應該把它列入,如果就他們現有的選項,那我想委員剛剛的關切,我們來瞭解。
gazette.blocks[67][0] 賴委員士葆:好啦,你等一下寫報告給我,主要我就跟你講,因為他們大概想說你好大喜功,家裡又有錢,又想要當總統。
gazette.blocks[68][0] 林部長佳龍:不會啦。
gazette.blocks[69][0] 賴委員士葆:就拍你馬屁啦,就是這樣啦。
gazette.blocks[70][0] 林部長佳龍:其實是考慮各種機場跑道,還有各方面的條件。我們跟委員一樣,都是選舉出來的,我們很好……
gazette.blocks[71][0] 賴委員士葆:我們差很多,你很有錢,我沒有錢,你這麼說。
gazette.blocks[72][0] 林部長佳龍:沒有,我們很好安頓的。謝謝委員。
gazette.blocks[73][0] 主席:謝謝賴士葆委員。林部長請回。
gazette.blocks[73][1] 接下來我們請黃國昌委員上台質詢。
gazette.agenda.page_end 150
gazette.agenda.meet_id 委員會-11-2-35-19
gazette.agenda.speakers[0] 林憶君
gazette.agenda.speakers[1] 羅美玲
gazette.agenda.speakers[2] 陳冠廷
gazette.agenda.speakers[3] 王定宇
gazette.agenda.speakers[4] 林楚茵
gazette.agenda.speakers[5] 馬文君
gazette.agenda.speakers[6] 徐巧芯
gazette.agenda.speakers[7] 賴士葆
gazette.agenda.speakers[8] 黃國昌
gazette.agenda.speakers[9] 楊瓊瓔
gazette.agenda.speakers[10] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[11] 羅廷瑋
gazette.agenda.speakers[12] 羅智強
gazette.agenda.speakers[13] 邱志偉
gazette.agenda.speakers[14] 葉元之
gazette.agenda.speakers[15] 沈伯洋
gazette.agenda.speakers[16] 黃仁
gazette.agenda.speakers[17] 王鴻薇
gazette.agenda.page_start 97
gazette.agenda.meetingDate[0] 2024-11-28
gazette.agenda.gazette_id 11310701
gazette.agenda.agenda_lcidc_ids[0] 11310701_00003
gazette.agenda.meet_name 立法院第11屆第2會期外交及國防委員會第19次全體委員會議(含秘密會議)紀錄
gazette.agenda.content 一、審查114年度中央政府總預算案關於外交部主管收支公開及機密部分(僅詢答);二、繼續 處理院會交付外交部113年度中央政府總預算決議(十八)「對外之捐助」預算凍結100萬元案
gazette.agenda.agenda_id 11310701_00002