iVOD / 157540

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/4b9db3dc7042177ace7f003894c5684e6e756e96dd8ac7a32bae0214b15caa087676b3772217087c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 洪孟楷
委員發言時間 12:39:37 - 12:47:52
影片長度 495
會議時間 2024-11-27T09:00:00+08:00
會議名稱 立法院第11屆第2會期經濟委員會第17次全體委員會議(事由:審查114年度中央政府總預算案關於經濟部及所屬單位預算部分。(詢答))
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 6.03846875
transcript.pyannote[0].end 6.37596875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 11.48909375
transcript.pyannote[1].end 11.70846875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 12.14721875
transcript.pyannote[2].end 14.59409375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 16.11284375
transcript.pyannote[3].end 16.92284375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 17.14221875
transcript.pyannote[4].end 17.95221875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 18.47534375
transcript.pyannote[5].end 19.08284375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 19.23471875
transcript.pyannote[6].end 20.21346875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 20.73659375
transcript.pyannote[7].end 21.15846875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 21.37784375
transcript.pyannote[8].end 22.52534375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 23.28471875
transcript.pyannote[9].end 23.70659375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 25.09034375
transcript.pyannote[10].end 26.27159375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 33.49409375
transcript.pyannote[11].end 36.00846875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 36.26159375
transcript.pyannote[12].end 36.91971875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 36.97034375
transcript.pyannote[13].end 38.20221875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 38.69159375
transcript.pyannote[14].end 39.51846875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 39.68721875
transcript.pyannote[15].end 40.69971875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 44.12534375
transcript.pyannote[16].end 44.44596875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 44.96909375
transcript.pyannote[17].end 66.55221875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 68.57721875
transcript.pyannote[18].end 70.51784375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 70.92284375
transcript.pyannote[19].end 71.69909375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 71.69909375
transcript.pyannote[20].end 71.71596875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 71.71596875
transcript.pyannote[21].end 71.76659375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 71.76659375
transcript.pyannote[22].end 71.78346875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 71.95221875
transcript.pyannote[23].end 72.28971875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 72.47534375
transcript.pyannote[24].end 74.09534375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 74.09534375
transcript.pyannote[25].end 83.84909375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 84.13596875
transcript.pyannote[26].end 88.79346875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 88.79346875
transcript.pyannote[27].end 89.14784375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 88.92846875
transcript.pyannote[28].end 96.80909375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 97.31534375
transcript.pyannote[29].end 113.75159375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 114.61221875
transcript.pyannote[30].end 114.88221875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 115.82721875
transcript.pyannote[31].end 128.36534375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 129.10784375
transcript.pyannote[32].end 130.06971875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 130.33971875
transcript.pyannote[33].end 131.60534375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 132.09471875
transcript.pyannote[34].end 133.03971875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 133.03971875
transcript.pyannote[35].end 133.05659375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 133.05659375
transcript.pyannote[36].end 143.72159375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 144.46409375
transcript.pyannote[37].end 149.12159375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 149.66159375
transcript.pyannote[38].end 150.21846875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 150.21846875
transcript.pyannote[39].end 150.25221875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 150.53909375
transcript.pyannote[40].end 150.55596875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 150.55596875
transcript.pyannote[41].end 152.02409375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 152.02409375
transcript.pyannote[42].end 168.24096875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 153.86346875
transcript.pyannote[43].end 156.93471875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 159.92159375
transcript.pyannote[44].end 160.47846875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 162.87471875
transcript.pyannote[45].end 163.39784375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 168.76409375
transcript.pyannote[46].end 186.22971875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 186.55034375
transcript.pyannote[47].end 187.30971875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 187.91721875
transcript.pyannote[48].end 191.03909375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 187.95096875
transcript.pyannote[49].end 188.47409375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 191.64659375
transcript.pyannote[50].end 193.62096875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 194.22846875
transcript.pyannote[51].end 195.96659375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 195.96659375
transcript.pyannote[52].end 196.43909375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 196.05096875
transcript.pyannote[53].end 197.06346875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 197.18159375
transcript.pyannote[54].end 213.49971875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 201.31596875
transcript.pyannote[55].end 204.10034375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 204.16784375
transcript.pyannote[56].end 204.74159375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 211.94721875
transcript.pyannote[57].end 212.55471875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 213.28034375
transcript.pyannote[58].end 217.34721875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 213.68534375
transcript.pyannote[59].end 213.75284375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 213.78659375
transcript.pyannote[60].end 214.51221875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 217.65096875
transcript.pyannote[61].end 224.97471875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 221.61659375
transcript.pyannote[62].end 222.02159375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 223.69221875
transcript.pyannote[63].end 224.40096875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 224.97471875
transcript.pyannote[64].end 230.34096875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 230.34096875
transcript.pyannote[65].end 238.96409375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 238.96409375
transcript.pyannote[66].end 242.28846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 242.45721875
transcript.pyannote[67].end 242.74409375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 242.67659375
transcript.pyannote[68].end 249.62909375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 250.38846875
transcript.pyannote[69].end 255.77159375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 256.04159375
transcript.pyannote[70].end 266.26784375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 266.47034375
transcript.pyannote[71].end 266.94284375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 267.07784375
transcript.pyannote[72].end 267.90471875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 268.14096875
transcript.pyannote[73].end 268.76534375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 268.84971875
transcript.pyannote[74].end 269.49096875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 273.69284375
transcript.pyannote[75].end 274.26659375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 274.72221875
transcript.pyannote[76].end 275.11034375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 275.97096875
transcript.pyannote[77].end 276.44346875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 277.01721875
transcript.pyannote[78].end 280.86471875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 281.53971875
transcript.pyannote[79].end 285.03284375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 285.06659375
transcript.pyannote[80].end 287.91846875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 289.08284375
transcript.pyannote[81].end 289.90971875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 290.39909375
transcript.pyannote[82].end 292.67721875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 292.67721875
transcript.pyannote[83].end 296.22096875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 297.11534375
transcript.pyannote[84].end 302.31284375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 302.78534375
transcript.pyannote[85].end 304.13534375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 304.35471875
transcript.pyannote[86].end 308.45534375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 309.21471875
transcript.pyannote[87].end 309.50159375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 309.87284375
transcript.pyannote[88].end 316.80846875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 317.16284375
transcript.pyannote[89].end 319.87971875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 320.26784375
transcript.pyannote[90].end 327.50721875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 328.38471875
transcript.pyannote[91].end 340.02846875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 340.65284375
transcript.pyannote[92].end 341.17596875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 341.42909375
transcript.pyannote[93].end 356.12721875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 356.38034375
transcript.pyannote[94].end 363.26534375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 363.77159375
transcript.pyannote[95].end 368.73284375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 368.78346875
transcript.pyannote[96].end 372.58034375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 373.64346875
transcript.pyannote[97].end 376.22534375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 377.96346875
transcript.pyannote[98].end 378.77346875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 378.87471875
transcript.pyannote[99].end 380.37659375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 381.15284375
transcript.pyannote[100].end 383.22846875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 383.49846875
transcript.pyannote[101].end 388.05471875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 388.25721875
transcript.pyannote[102].end 417.87284375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 418.44659375
transcript.pyannote[103].end 420.06659375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 420.58971875
transcript.pyannote[104].end 423.59346875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 424.45409375
transcript.pyannote[105].end 425.70284375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 426.15846875
transcript.pyannote[106].end 427.82909375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 427.89659375
transcript.pyannote[107].end 429.19596875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 429.49971875
transcript.pyannote[108].end 432.19971875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 432.19971875
transcript.pyannote[109].end 432.25034375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 432.25034375
transcript.pyannote[110].end 432.26721875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 432.26721875
transcript.pyannote[111].end 432.33471875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 432.33471875
transcript.pyannote[112].end 434.10659375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 432.36846875
transcript.pyannote[113].end 435.57471875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 436.08096875
transcript.pyannote[114].end 437.31284375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 436.11471875
transcript.pyannote[115].end 436.85721875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 437.32971875
transcript.pyannote[116].end 448.97346875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 444.24846875
transcript.pyannote[117].end 444.33284375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 444.33284375
transcript.pyannote[118].end 444.68721875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 444.68721875
transcript.pyannote[119].end 444.87284375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 444.88971875
transcript.pyannote[120].end 444.92346875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 444.97409375
transcript.pyannote[121].end 445.05846875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 448.97346875
transcript.pyannote[122].end 450.50909375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 450.98159375
transcript.pyannote[123].end 455.25096875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 455.45346875
transcript.pyannote[124].end 456.75284375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 456.97221875
transcript.pyannote[125].end 467.53596875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 467.82284375
transcript.pyannote[126].end 468.12659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 468.12659375
transcript.pyannote[127].end 468.53159375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 468.53159375
transcript.pyannote[128].end 468.54846875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 468.54846875
transcript.pyannote[129].end 468.61596875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 468.61596875
transcript.pyannote[130].end 468.97034375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 468.97034375
transcript.pyannote[131].end 469.02096875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 469.02096875
transcript.pyannote[132].end 469.03784375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 469.03784375
transcript.pyannote[133].end 473.32409375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 473.32409375
transcript.pyannote[134].end 473.61096875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 473.61096875
transcript.pyannote[135].end 476.96909375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 476.96909375
transcript.pyannote[136].end 489.65909375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 485.47409375
transcript.pyannote[137].end 489.92909375
transcript.whisperx[0].start 11.496
transcript.whisperx[0].end 12.116
transcript.whisperx[0].text 請王總經理
transcript.whisperx[1].start 45.018
transcript.whisperx[1].end 45.679
transcript.whisperx[1].text 國務卿好 國務卿好 國務卿好
transcript.whisperx[2].start 68.652
transcript.whisperx[2].end 69.473
transcript.whisperx[2].text 大型的部份等等。
transcript.whisperx[3].start 85.055
transcript.whisperx[3].end 111.484
transcript.whisperx[3].text 換了智慧電表之後我們要做的就是要去做一個管理嘛就說來看一下是說哪一些機關有比較異常的使用狀況嘛所以我們先講啊勞動部北分署這個昨天勞動部新任部長到那個北分署長的辦公室去講是說爆料真的布置過當啊那甚至也有媒體之前報導講是說還有用綠植栽牆啊有利植物生長所以在辦公室內設軌道燈導致電費暴漲
transcript.whisperx[4].start 114.67
transcript.whisperx[4].end 131.346
transcript.whisperx[4].text 那過去到現在既然我們現在各部門也都已經有做這個智慧電表了難道我們沒有一些管理機制是可以去看是說哪一個部門他用電的狀況確實跟他的人員也好或說跟他的相關配置也好是不符合比例的嗎
transcript.whisperx[5].start 134.811
transcript.whisperx[5].end 147.735
transcript.whisperx[5].text 總不能說都要一般老百姓你們要節電用電不能要省電小機關學校要隨手關燈結果反而我們的大部會尤其是大關冷氣開直栽牆做軌道燈做
transcript.whisperx[6].start 149.896
transcript.whisperx[6].end 168.132
transcript.whisperx[6].text 來部長這個大概是這個特案特例啦特例還是通例我現在我是很懷疑耶部長或者是署長的辦公室都有自摘牆是啊我想應該不至於那麼大家那麼敢嘛阿我跟委員報告我們現在做這個智慧電表意思就是去monitor
transcript.whisperx[7].start 168.812
transcript.whisperx[7].end 188.773
transcript.whisperx[7].text 他現在的用電方式 那我們如果可以改善 那麼將來可以進步多少我們現在都還在建立標本 我現在跟委員報告 也請委員能夠幫忙因為我們現在所有公務機關 要做這些事情都要透過採購法很麻煩 有什麼比較好的方法 可以比較快來落實
transcript.whisperx[8].start 191.704
transcript.whisperx[8].end 201.807
transcript.whisperx[8].text 市長本席給建議你應該是先盤點一下是說我們用電的比如說哪幾個部會是用電大戶然後尤其是比較特殊他你怎麼會這個部會或是說哪個辦公室他都是列為前幾名然後來去做檢討嗎我們有10大標竿的這個包括醫院
transcript.whisperx[9].start 217.951
transcript.whisperx[9].end 241.5
transcript.whisperx[9].text 這同質性比較高的產業我們都有標出來醫院學校公共機構 這個資料能不能公布還是說能不能來讓國人知道也要求他們做改善 這個沒有問題這個我們我們是已經都是公開的資料我們要選哪幾個產業那哪幾家公司 產業是一個部分我現在講說以公部門以身作則
transcript.whisperx[10].start 242.74
transcript.whisperx[10].end 269.087
transcript.whisperx[10].text 對 我們在講說公部門以身作則 不然我之前還看到是說我們台電的董事長說官邸八台冷氣都不敢吹所以有人是這個樣子 那有人是有人是浪費用電 那我們當然要抓出來 所以因為部長你是產業界出身 我想你一定很了解本席現在講的 就說我怎麼樣用數字化管理去看各部會的狀況 所以這樣的資料可以提供什麼時候
transcript.whisperx[11].start 274.735
transcript.whisperx[11].end 296.578
transcript.whisperx[11].text 議員議員議員議員
transcript.whisperx[12].start 297.148
transcript.whisperx[12].end 307.986
transcript.whisperx[12].text 本席有查到還有很多的民眾是沒有換成智慧電表但是從去年今年一直都有所謂的超錯電表的新聞
transcript.whisperx[13].start 309.224
transcript.whisperx[13].end 312.988
transcript.whisperx[13].text 臺中8月114戶傳統電表超錯苗栗頭份也有超錯的問題本席最近辦公室也接獲有民眾說同期一樣的空間
transcript.whisperx[14].start 328.407
transcript.whisperx[14].end 342.153
transcript.whisperx[14].text 他的電費就比去年多了一千多塊那當然第一時間他跟台電反映台電講是說因為我們電價有漲啊等等相關他說但是他的數字沒有變所以這會衍生什麼這樣的狀況
transcript.whisperx[15].start 343.854
transcript.whisperx[15].end 344.414
transcript.whisperx[15].text 這是一般老百姓大家面臨到問題
transcript.whisperx[16].start 373.926
transcript.whisperx[16].end 401.502
transcript.whisperx[16].text 電視你台電在用阿 台電在跟我們說啦所以說你會變成是說到底我今天多用多少電那那個轉盤一直在轉如果說他沒有換成智慧電表是傳統電表的話他就一直在轉阿那你真的已經去問收到帳單的時候已經是兩個月前一個月前的事情了那個時候的那個數字跟現在數字也不一樣民眾會變成沒有辦法去確實或是查核說他到底有沒有超錯的一個狀況
transcript.whisperx[17].start 402.703
transcript.whisperx[17].end 423.115
transcript.whisperx[17].text 但是部長我要提出來是說從2022年2023年到2024年每年其實都有因為民眾認為說他的帳單真的是太異常了他就申訴最後鍥而不捨所以說才發現說是超錯那但是這個是民眾鍥而不捨啊你有一般的民眾可能他覺得說多一千塊
transcript.whisperx[18].start 424.482
transcript.whisperx[18].end 430.805
transcript.whisperx[18].text 臺電不會錯啦!臺電政府機關國營企業不會錯啦!他就攪了!應該會導入AI下去確認用這個大資料來比對然後來精進、來集合這些臺電做還是經濟部做?臺電會做
transcript.whisperx[19].start 451.038
transcript.whisperx[19].end 477.395
transcript.whisperx[19].text 部長 本市也提一下啦 內機內控就像如同你的工廠管理 良率的部分該抽檢也要抽檢啊 要多少 譬如說這件事要抽檢 適時的抽檢 不定時的抽檢用這樣子的良率來去回推說是不是我們是正常的 這個部分是不是能夠研究一個辦法這個可以 這個我們用標準局去做correlation就可以了 我們就直接做這個外部跟內部的correlation就可以了
transcript.whisperx[20].start 477.955
transcript.whisperx[20].end 484.063
transcript.whisperx[20].text 那針對AI或是這個你的標準局的這個部分是不是這個做法能夠提供給本席一個月內提供報告給本席
IVOD_ID 157540
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157540
日期 2024-11-27
會議資料.會議代碼 委員會-11-2-19-17
會議資料.屆 11
會議資料.會期 2
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.標題 第11屆第2會期經濟委員會第17次全體委員會議
影片種類 Clip
開始時間 2024-11-27T12:39:37+08:00
結束時間 2024-11-27T12:47:52+08:00
支援功能[0] ai-transcript