video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/4b9db3dc7042177ace7f003894c5684e6e756e96dd8ac7a32bae0214b15caa087676b3772217087c5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
洪孟楷 |
委員發言時間 |
12:39:37 - 12:47:52 |
影片長度 |
495 |
會議時間 |
2024-11-27T09:00:00+08:00 |
會議名稱 |
立法院第11屆第2會期經濟委員會第17次全體委員會議(事由:審查114年度中央政府總預算案關於經濟部及所屬單位預算部分。(詢答)) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
6.03846875 |
transcript.pyannote[0].end |
6.37596875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
11.48909375 |
transcript.pyannote[1].end |
11.70846875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
12.14721875 |
transcript.pyannote[2].end |
14.59409375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
16.11284375 |
transcript.pyannote[3].end |
16.92284375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
17.14221875 |
transcript.pyannote[4].end |
17.95221875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
18.47534375 |
transcript.pyannote[5].end |
19.08284375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
19.23471875 |
transcript.pyannote[6].end |
20.21346875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
20.73659375 |
transcript.pyannote[7].end |
21.15846875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
21.37784375 |
transcript.pyannote[8].end |
22.52534375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
23.28471875 |
transcript.pyannote[9].end |
23.70659375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
25.09034375 |
transcript.pyannote[10].end |
26.27159375 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
33.49409375 |
transcript.pyannote[11].end |
36.00846875 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
36.26159375 |
transcript.pyannote[12].end |
36.91971875 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
36.97034375 |
transcript.pyannote[13].end |
38.20221875 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
38.69159375 |
transcript.pyannote[14].end |
39.51846875 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
39.68721875 |
transcript.pyannote[15].end |
40.69971875 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
44.12534375 |
transcript.pyannote[16].end |
44.44596875 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
44.96909375 |
transcript.pyannote[17].end |
66.55221875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
68.57721875 |
transcript.pyannote[18].end |
70.51784375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
70.92284375 |
transcript.pyannote[19].end |
71.69909375 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
71.69909375 |
transcript.pyannote[20].end |
71.71596875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
71.71596875 |
transcript.pyannote[21].end |
71.76659375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
71.76659375 |
transcript.pyannote[22].end |
71.78346875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
71.95221875 |
transcript.pyannote[23].end |
72.28971875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
72.47534375 |
transcript.pyannote[24].end |
74.09534375 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
74.09534375 |
transcript.pyannote[25].end |
83.84909375 |
transcript.pyannote[26].speaker |
SPEAKER_02 |
transcript.pyannote[26].start |
84.13596875 |
transcript.pyannote[26].end |
88.79346875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
88.79346875 |
transcript.pyannote[27].end |
89.14784375 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
88.92846875 |
transcript.pyannote[28].end |
96.80909375 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
97.31534375 |
transcript.pyannote[29].end |
113.75159375 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
114.61221875 |
transcript.pyannote[30].end |
114.88221875 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
115.82721875 |
transcript.pyannote[31].end |
128.36534375 |
transcript.pyannote[32].speaker |
SPEAKER_02 |
transcript.pyannote[32].start |
129.10784375 |
transcript.pyannote[32].end |
130.06971875 |
transcript.pyannote[33].speaker |
SPEAKER_02 |
transcript.pyannote[33].start |
130.33971875 |
transcript.pyannote[33].end |
131.60534375 |
transcript.pyannote[34].speaker |
SPEAKER_02 |
transcript.pyannote[34].start |
132.09471875 |
transcript.pyannote[34].end |
133.03971875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
133.03971875 |
transcript.pyannote[35].end |
133.05659375 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
133.05659375 |
transcript.pyannote[36].end |
143.72159375 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
144.46409375 |
transcript.pyannote[37].end |
149.12159375 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
149.66159375 |
transcript.pyannote[38].end |
150.21846875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
150.21846875 |
transcript.pyannote[39].end |
150.25221875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
150.53909375 |
transcript.pyannote[40].end |
150.55596875 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
150.55596875 |
transcript.pyannote[41].end |
152.02409375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
152.02409375 |
transcript.pyannote[42].end |
168.24096875 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
153.86346875 |
transcript.pyannote[43].end |
156.93471875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
159.92159375 |
transcript.pyannote[44].end |
160.47846875 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
162.87471875 |
transcript.pyannote[45].end |
163.39784375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
168.76409375 |
transcript.pyannote[46].end |
186.22971875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
186.55034375 |
transcript.pyannote[47].end |
187.30971875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
187.91721875 |
transcript.pyannote[48].end |
191.03909375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
187.95096875 |
transcript.pyannote[49].end |
188.47409375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
191.64659375 |
transcript.pyannote[50].end |
193.62096875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
194.22846875 |
transcript.pyannote[51].end |
195.96659375 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
195.96659375 |
transcript.pyannote[52].end |
196.43909375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
196.05096875 |
transcript.pyannote[53].end |
197.06346875 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
197.18159375 |
transcript.pyannote[54].end |
213.49971875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
201.31596875 |
transcript.pyannote[55].end |
204.10034375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
204.16784375 |
transcript.pyannote[56].end |
204.74159375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
211.94721875 |
transcript.pyannote[57].end |
212.55471875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
213.28034375 |
transcript.pyannote[58].end |
217.34721875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
213.68534375 |
transcript.pyannote[59].end |
213.75284375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
213.78659375 |
transcript.pyannote[60].end |
214.51221875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
217.65096875 |
transcript.pyannote[61].end |
224.97471875 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
221.61659375 |
transcript.pyannote[62].end |
222.02159375 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
223.69221875 |
transcript.pyannote[63].end |
224.40096875 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
224.97471875 |
transcript.pyannote[64].end |
230.34096875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
230.34096875 |
transcript.pyannote[65].end |
238.96409375 |
transcript.pyannote[66].speaker |
SPEAKER_02 |
transcript.pyannote[66].start |
238.96409375 |
transcript.pyannote[66].end |
242.28846875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
242.45721875 |
transcript.pyannote[67].end |
242.74409375 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
242.67659375 |
transcript.pyannote[68].end |
249.62909375 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
250.38846875 |
transcript.pyannote[69].end |
255.77159375 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
256.04159375 |
transcript.pyannote[70].end |
266.26784375 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
266.47034375 |
transcript.pyannote[71].end |
266.94284375 |
transcript.pyannote[72].speaker |
SPEAKER_02 |
transcript.pyannote[72].start |
267.07784375 |
transcript.pyannote[72].end |
267.90471875 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
268.14096875 |
transcript.pyannote[73].end |
268.76534375 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
268.84971875 |
transcript.pyannote[74].end |
269.49096875 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
273.69284375 |
transcript.pyannote[75].end |
274.26659375 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
274.72221875 |
transcript.pyannote[76].end |
275.11034375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
275.97096875 |
transcript.pyannote[77].end |
276.44346875 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
277.01721875 |
transcript.pyannote[78].end |
280.86471875 |
transcript.pyannote[79].speaker |
SPEAKER_02 |
transcript.pyannote[79].start |
281.53971875 |
transcript.pyannote[79].end |
285.03284375 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
285.06659375 |
transcript.pyannote[80].end |
287.91846875 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
289.08284375 |
transcript.pyannote[81].end |
289.90971875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
290.39909375 |
transcript.pyannote[82].end |
292.67721875 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
292.67721875 |
transcript.pyannote[83].end |
296.22096875 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
297.11534375 |
transcript.pyannote[84].end |
302.31284375 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
302.78534375 |
transcript.pyannote[85].end |
304.13534375 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
304.35471875 |
transcript.pyannote[86].end |
308.45534375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
309.21471875 |
transcript.pyannote[87].end |
309.50159375 |
transcript.pyannote[88].speaker |
SPEAKER_02 |
transcript.pyannote[88].start |
309.87284375 |
transcript.pyannote[88].end |
316.80846875 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
317.16284375 |
transcript.pyannote[89].end |
319.87971875 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
320.26784375 |
transcript.pyannote[90].end |
327.50721875 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
328.38471875 |
transcript.pyannote[91].end |
340.02846875 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
340.65284375 |
transcript.pyannote[92].end |
341.17596875 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
341.42909375 |
transcript.pyannote[93].end |
356.12721875 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
356.38034375 |
transcript.pyannote[94].end |
363.26534375 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
363.77159375 |
transcript.pyannote[95].end |
368.73284375 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
368.78346875 |
transcript.pyannote[96].end |
372.58034375 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
373.64346875 |
transcript.pyannote[97].end |
376.22534375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
377.96346875 |
transcript.pyannote[98].end |
378.77346875 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
378.87471875 |
transcript.pyannote[99].end |
380.37659375 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
381.15284375 |
transcript.pyannote[100].end |
383.22846875 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
383.49846875 |
transcript.pyannote[101].end |
388.05471875 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
388.25721875 |
transcript.pyannote[102].end |
417.87284375 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
418.44659375 |
transcript.pyannote[103].end |
420.06659375 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
420.58971875 |
transcript.pyannote[104].end |
423.59346875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
424.45409375 |
transcript.pyannote[105].end |
425.70284375 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
426.15846875 |
transcript.pyannote[106].end |
427.82909375 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
427.89659375 |
transcript.pyannote[107].end |
429.19596875 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
429.49971875 |
transcript.pyannote[108].end |
432.19971875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
432.19971875 |
transcript.pyannote[109].end |
432.25034375 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
432.25034375 |
transcript.pyannote[110].end |
432.26721875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
432.26721875 |
transcript.pyannote[111].end |
432.33471875 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
432.33471875 |
transcript.pyannote[112].end |
434.10659375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
432.36846875 |
transcript.pyannote[113].end |
435.57471875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
436.08096875 |
transcript.pyannote[114].end |
437.31284375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
436.11471875 |
transcript.pyannote[115].end |
436.85721875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
437.32971875 |
transcript.pyannote[116].end |
448.97346875 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
444.24846875 |
transcript.pyannote[117].end |
444.33284375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
444.33284375 |
transcript.pyannote[118].end |
444.68721875 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
444.68721875 |
transcript.pyannote[119].end |
444.87284375 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
444.88971875 |
transcript.pyannote[120].end |
444.92346875 |
transcript.pyannote[121].speaker |
SPEAKER_02 |
transcript.pyannote[121].start |
444.97409375 |
transcript.pyannote[121].end |
445.05846875 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
448.97346875 |
transcript.pyannote[122].end |
450.50909375 |
transcript.pyannote[123].speaker |
SPEAKER_02 |
transcript.pyannote[123].start |
450.98159375 |
transcript.pyannote[123].end |
455.25096875 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
455.45346875 |
transcript.pyannote[124].end |
456.75284375 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
456.97221875 |
transcript.pyannote[125].end |
467.53596875 |
transcript.pyannote[126].speaker |
SPEAKER_02 |
transcript.pyannote[126].start |
467.82284375 |
transcript.pyannote[126].end |
468.12659375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
468.12659375 |
transcript.pyannote[127].end |
468.53159375 |
transcript.pyannote[128].speaker |
SPEAKER_02 |
transcript.pyannote[128].start |
468.53159375 |
transcript.pyannote[128].end |
468.54846875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
468.54846875 |
transcript.pyannote[129].end |
468.61596875 |
transcript.pyannote[130].speaker |
SPEAKER_02 |
transcript.pyannote[130].start |
468.61596875 |
transcript.pyannote[130].end |
468.97034375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
468.97034375 |
transcript.pyannote[131].end |
469.02096875 |
transcript.pyannote[132].speaker |
SPEAKER_02 |
transcript.pyannote[132].start |
469.02096875 |
transcript.pyannote[132].end |
469.03784375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
469.03784375 |
transcript.pyannote[133].end |
473.32409375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
473.32409375 |
transcript.pyannote[134].end |
473.61096875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
473.61096875 |
transcript.pyannote[135].end |
476.96909375 |
transcript.pyannote[136].speaker |
SPEAKER_02 |
transcript.pyannote[136].start |
476.96909375 |
transcript.pyannote[136].end |
489.65909375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
485.47409375 |
transcript.pyannote[137].end |
489.92909375 |
transcript.whisperx[0].start |
11.496 |
transcript.whisperx[0].end |
12.116 |
transcript.whisperx[0].text |
請王總經理 |
transcript.whisperx[1].start |
45.018 |
transcript.whisperx[1].end |
45.679 |
transcript.whisperx[1].text |
國務卿好 國務卿好 國務卿好 |
transcript.whisperx[2].start |
68.652 |
transcript.whisperx[2].end |
69.473 |
transcript.whisperx[2].text |
大型的部份等等。 |
transcript.whisperx[3].start |
85.055 |
transcript.whisperx[3].end |
111.484 |
transcript.whisperx[3].text |
換了智慧電表之後我們要做的就是要去做一個管理嘛就說來看一下是說哪一些機關有比較異常的使用狀況嘛所以我們先講啊勞動部北分署這個昨天勞動部新任部長到那個北分署長的辦公室去講是說爆料真的布置過當啊那甚至也有媒體之前報導講是說還有用綠植栽牆啊有利植物生長所以在辦公室內設軌道燈導致電費暴漲 |
transcript.whisperx[4].start |
114.67 |
transcript.whisperx[4].end |
131.346 |
transcript.whisperx[4].text |
那過去到現在既然我們現在各部門也都已經有做這個智慧電表了難道我們沒有一些管理機制是可以去看是說哪一個部門他用電的狀況確實跟他的人員也好或說跟他的相關配置也好是不符合比例的嗎 |
transcript.whisperx[5].start |
134.811 |
transcript.whisperx[5].end |
147.735 |
transcript.whisperx[5].text |
總不能說都要一般老百姓你們要節電用電不能要省電小機關學校要隨手關燈結果反而我們的大部會尤其是大關冷氣開直栽牆做軌道燈做 |
transcript.whisperx[6].start |
149.896 |
transcript.whisperx[6].end |
168.132 |
transcript.whisperx[6].text |
來部長這個大概是這個特案特例啦特例還是通例我現在我是很懷疑耶部長或者是署長的辦公室都有自摘牆是啊我想應該不至於那麼大家那麼敢嘛阿我跟委員報告我們現在做這個智慧電表意思就是去monitor |
transcript.whisperx[7].start |
168.812 |
transcript.whisperx[7].end |
188.773 |
transcript.whisperx[7].text |
他現在的用電方式 那我們如果可以改善 那麼將來可以進步多少我們現在都還在建立標本 我現在跟委員報告 也請委員能夠幫忙因為我們現在所有公務機關 要做這些事情都要透過採購法很麻煩 有什麼比較好的方法 可以比較快來落實 |
transcript.whisperx[8].start |
191.704 |
transcript.whisperx[8].end |
201.807 |
transcript.whisperx[8].text |
市長本席給建議你應該是先盤點一下是說我們用電的比如說哪幾個部會是用電大戶然後尤其是比較特殊他你怎麼會這個部會或是說哪個辦公室他都是列為前幾名然後來去做檢討嗎我們有10大標竿的這個包括醫院 |
transcript.whisperx[9].start |
217.951 |
transcript.whisperx[9].end |
241.5 |
transcript.whisperx[9].text |
這同質性比較高的產業我們都有標出來醫院學校公共機構 這個資料能不能公布還是說能不能來讓國人知道也要求他們做改善 這個沒有問題這個我們我們是已經都是公開的資料我們要選哪幾個產業那哪幾家公司 產業是一個部分我現在講說以公部門以身作則 |
transcript.whisperx[10].start |
242.74 |
transcript.whisperx[10].end |
269.087 |
transcript.whisperx[10].text |
對 我們在講說公部門以身作則 不然我之前還看到是說我們台電的董事長說官邸八台冷氣都不敢吹所以有人是這個樣子 那有人是有人是浪費用電 那我們當然要抓出來 所以因為部長你是產業界出身 我想你一定很了解本席現在講的 就說我怎麼樣用數字化管理去看各部會的狀況 所以這樣的資料可以提供什麼時候 |
transcript.whisperx[11].start |
274.735 |
transcript.whisperx[11].end |
296.578 |
transcript.whisperx[11].text |
議員議員議員議員 |
transcript.whisperx[12].start |
297.148 |
transcript.whisperx[12].end |
307.986 |
transcript.whisperx[12].text |
本席有查到還有很多的民眾是沒有換成智慧電表但是從去年今年一直都有所謂的超錯電表的新聞 |
transcript.whisperx[13].start |
309.224 |
transcript.whisperx[13].end |
312.988 |
transcript.whisperx[13].text |
臺中8月114戶傳統電表超錯苗栗頭份也有超錯的問題本席最近辦公室也接獲有民眾說同期一樣的空間 |
transcript.whisperx[14].start |
328.407 |
transcript.whisperx[14].end |
342.153 |
transcript.whisperx[14].text |
他的電費就比去年多了一千多塊那當然第一時間他跟台電反映台電講是說因為我們電價有漲啊等等相關他說但是他的數字沒有變所以這會衍生什麼這樣的狀況 |
transcript.whisperx[15].start |
343.854 |
transcript.whisperx[15].end |
344.414 |
transcript.whisperx[15].text |
這是一般老百姓大家面臨到問題 |
transcript.whisperx[16].start |
373.926 |
transcript.whisperx[16].end |
401.502 |
transcript.whisperx[16].text |
電視你台電在用阿 台電在跟我們說啦所以說你會變成是說到底我今天多用多少電那那個轉盤一直在轉如果說他沒有換成智慧電表是傳統電表的話他就一直在轉阿那你真的已經去問收到帳單的時候已經是兩個月前一個月前的事情了那個時候的那個數字跟現在數字也不一樣民眾會變成沒有辦法去確實或是查核說他到底有沒有超錯的一個狀況 |
transcript.whisperx[17].start |
402.703 |
transcript.whisperx[17].end |
423.115 |
transcript.whisperx[17].text |
但是部長我要提出來是說從2022年2023年到2024年每年其實都有因為民眾認為說他的帳單真的是太異常了他就申訴最後鍥而不捨所以說才發現說是超錯那但是這個是民眾鍥而不捨啊你有一般的民眾可能他覺得說多一千塊 |
transcript.whisperx[18].start |
424.482 |
transcript.whisperx[18].end |
430.805 |
transcript.whisperx[18].text |
臺電不會錯啦!臺電政府機關國營企業不會錯啦!他就攪了!應該會導入AI下去確認用這個大資料來比對然後來精進、來集合這些臺電做還是經濟部做?臺電會做 |
transcript.whisperx[19].start |
451.038 |
transcript.whisperx[19].end |
477.395 |
transcript.whisperx[19].text |
部長 本市也提一下啦 內機內控就像如同你的工廠管理 良率的部分該抽檢也要抽檢啊 要多少 譬如說這件事要抽檢 適時的抽檢 不定時的抽檢用這樣子的良率來去回推說是不是我們是正常的 這個部分是不是能夠研究一個辦法這個可以 這個我們用標準局去做correlation就可以了 我們就直接做這個外部跟內部的correlation就可以了 |
transcript.whisperx[20].start |
477.955 |
transcript.whisperx[20].end |
484.063 |
transcript.whisperx[20].text |
那針對AI或是這個你的標準局的這個部分是不是這個做法能夠提供給本席一個月內提供報告給本席 |
IVOD_ID |
157540 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/157540 |
日期 |
2024-11-27 |
會議資料.會議代碼 |
委員會-11-2-19-17 |
會議資料.屆 |
11 |
會議資料.會期 |
2 |
會議資料.會次 |
17 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.標題 |
第11屆第2會期經濟委員會第17次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-11-27T12:39:37+08:00 |
結束時間 |
2024-11-27T12:47:52+08:00 |
支援功能[0] |
ai-transcript |