iVOD / 157459

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/4b9db3dc7042177a073d247733d5f3bd9efc61e85f95edfbf8386334ca12ce89c918614e2a6c40d45ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:29:19 - 09:38:26
影片長度 547
會議時間 2024-11-27T09:00:00+08:00
會議名稱 立法院第11屆第2會期財政、經濟委員會第1次聯席會議(事由:審查中華民國113年度中央政府總預算追加預算案。(詢答及處理) 【預算提案截止時間:11月26日(二)中午12時】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.77346875
transcript.pyannote[0].end 2.56221875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 3.03471875
transcript.pyannote[1].end 4.23284375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 14.93159375
transcript.pyannote[2].end 22.39034375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 22.82909375
transcript.pyannote[3].end 23.95971875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 24.39846875
transcript.pyannote[4].end 25.68096875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 26.27159375
transcript.pyannote[5].end 28.38096875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 28.93784375
transcript.pyannote[6].end 32.31284375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 32.49846875
transcript.pyannote[7].end 33.98346875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 34.79346875
transcript.pyannote[8].end 35.97471875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 36.53159375
transcript.pyannote[9].end 38.15159375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 38.55659375
transcript.pyannote[10].end 39.94034375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 40.54784375
transcript.pyannote[11].end 40.93596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 41.81346875
transcript.pyannote[12].end 43.48409375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 44.36159375
transcript.pyannote[13].end 45.30659375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 46.36971875
transcript.pyannote[14].end 46.90971875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 47.70284375
transcript.pyannote[15].end 50.03159375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 49.42409375
transcript.pyannote[16].end 51.56721875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 51.17909375
transcript.pyannote[17].end 51.55034375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 51.56721875
transcript.pyannote[18].end 66.99096875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 57.40596875
transcript.pyannote[19].end 57.65909375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 65.74221875
transcript.pyannote[20].end 67.95284375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 68.20596875
transcript.pyannote[21].end 70.09596875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 70.28159375
transcript.pyannote[22].end 70.61909375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 70.61909375
transcript.pyannote[23].end 71.95221875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 70.65284375
transcript.pyannote[24].end 71.09159375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 72.94784375
transcript.pyannote[25].end 76.77846875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 77.31846875
transcript.pyannote[26].end 80.03534375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 80.33909375
transcript.pyannote[27].end 80.76096875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 81.45284375
transcript.pyannote[28].end 86.61659375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 82.90409375
transcript.pyannote[29].end 84.15284375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 86.41409375
transcript.pyannote[30].end 88.25346875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 89.31659375
transcript.pyannote[31].end 91.66221875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 93.51846875
transcript.pyannote[32].end 96.57284375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 96.57284375
transcript.pyannote[33].end 96.60659375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 98.15909375
transcript.pyannote[34].end 125.68221875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 124.60221875
transcript.pyannote[35].end 126.82971875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 125.76659375
transcript.pyannote[36].end 126.61034375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 127.11659375
transcript.pyannote[37].end 135.50346875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 136.43159375
transcript.pyannote[38].end 137.00534375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 137.89971875
transcript.pyannote[39].end 140.09346875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 140.34659375
transcript.pyannote[40].end 147.73784375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 146.35409375
transcript.pyannote[41].end 150.82596875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 149.00346875
transcript.pyannote[42].end 149.50971875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 150.13409375
transcript.pyannote[43].end 161.67659375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 162.73971875
transcript.pyannote[44].end 167.97096875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 164.56221875
transcript.pyannote[45].end 166.09784375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 168.39284375
transcript.pyannote[46].end 174.46784375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 168.96659375
transcript.pyannote[47].end 169.37159375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 170.36721875
transcript.pyannote[48].end 171.39659375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 174.73784375
transcript.pyannote[49].end 176.22284375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 177.52221875
transcript.pyannote[50].end 178.45034375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 179.74971875
transcript.pyannote[51].end 185.67284375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 183.63096875
transcript.pyannote[52].end 184.22159375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 186.90471875
transcript.pyannote[53].end 187.49534375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 187.84971875
transcript.pyannote[54].end 188.87909375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 189.72284375
transcript.pyannote[55].end 191.25846875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 191.54534375
transcript.pyannote[56].end 193.19909375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 193.77284375
transcript.pyannote[57].end 196.91159375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 197.26596875
transcript.pyannote[58].end 203.18909375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 200.91096875
transcript.pyannote[59].end 201.23159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 203.18909375
transcript.pyannote[60].end 203.61096875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 203.20596875
transcript.pyannote[61].end 203.22284375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 203.61096875
transcript.pyannote[62].end 205.56846875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 206.04096875
transcript.pyannote[63].end 207.52596875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 208.09971875
transcript.pyannote[64].end 209.63534375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 210.02346875
transcript.pyannote[65].end 211.99784375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 212.52096875
transcript.pyannote[66].end 216.45284375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 217.04346875
transcript.pyannote[67].end 222.74721875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 222.84846875
transcript.pyannote[68].end 223.89471875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 224.77221875
transcript.pyannote[69].end 227.01659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 227.28659375
transcript.pyannote[70].end 231.45471875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 231.48846875
transcript.pyannote[71].end 232.73721875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 232.73721875
transcript.pyannote[72].end 236.06159375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 232.99034375
transcript.pyannote[73].end 233.44596875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 234.88034375
transcript.pyannote[74].end 257.42534375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 257.79659375
transcript.pyannote[75].end 261.34034375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 262.43721875
transcript.pyannote[76].end 278.97471875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 275.76846875
transcript.pyannote[77].end 276.37596875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 278.97471875
transcript.pyannote[78].end 284.12159375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 284.57721875
transcript.pyannote[79].end 287.32784375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 287.32784375
transcript.pyannote[80].end 287.44596875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 287.44596875
transcript.pyannote[81].end 294.17909375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 287.49659375
transcript.pyannote[82].end 287.53034375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 287.53034375
transcript.pyannote[83].end 287.56409375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 294.73596875
transcript.pyannote[84].end 300.47346875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 300.47346875
transcript.pyannote[85].end 310.37909375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 309.51846875
transcript.pyannote[86].end 313.02846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 313.02846875
transcript.pyannote[87].end 321.39846875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 322.07346875
transcript.pyannote[88].end 322.12409375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 322.12409375
transcript.pyannote[89].end 324.16596875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 324.16596875
transcript.pyannote[90].end 324.18284375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 324.18284375
transcript.pyannote[91].end 324.21659375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 324.21659375
transcript.pyannote[92].end 324.45284375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 324.45284375
transcript.pyannote[93].end 330.13971875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 324.46971875
transcript.pyannote[94].end 324.80721875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 330.51096875
transcript.pyannote[95].end 331.18596875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 330.66284375
transcript.pyannote[96].end 333.21096875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 332.72159375
transcript.pyannote[97].end 339.21846875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 339.43784375
transcript.pyannote[98].end 339.97784375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 340.46721875
transcript.pyannote[99].end 346.22159375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 345.86721875
transcript.pyannote[100].end 350.84534375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 350.84534375
transcript.pyannote[101].end 351.26721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 351.43596875
transcript.pyannote[102].end 353.61284375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 353.86596875
transcript.pyannote[103].end 357.35909375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 357.62909375
transcript.pyannote[104].end 359.23221875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 359.56971875
transcript.pyannote[105].end 361.18971875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 361.45971875
transcript.pyannote[106].end 362.26971875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 363.40034375
transcript.pyannote[107].end 364.63221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 365.47596875
transcript.pyannote[108].end 367.36596875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 367.60221875
transcript.pyannote[109].end 371.87159375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 372.68159375
transcript.pyannote[110].end 374.53784375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 374.62221875
transcript.pyannote[111].end 376.83284375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 377.54159375
transcript.pyannote[112].end 381.03471875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 381.03471875
transcript.pyannote[113].end 381.74346875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 382.35096875
transcript.pyannote[114].end 386.89034375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 387.78471875
transcript.pyannote[115].end 387.80159375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 387.80159375
transcript.pyannote[116].end 402.66846875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 395.02409375
transcript.pyannote[117].end 395.29409375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 403.03971875
transcript.pyannote[118].end 404.57534375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 404.57534375
transcript.pyannote[119].end 415.20659375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 411.54471875
transcript.pyannote[120].end 413.65409375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 414.39659375
transcript.pyannote[121].end 426.86721875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 426.86721875
transcript.pyannote[122].end 429.51659375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 429.82034375
transcript.pyannote[123].end 432.04784375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 432.09846875
transcript.pyannote[124].end 447.42096875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 448.19721875
transcript.pyannote[125].end 454.76159375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 455.28471875
transcript.pyannote[126].end 461.61284375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 461.79846875
transcript.pyannote[127].end 463.36784375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 463.94159375
transcript.pyannote[128].end 465.73034375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 466.21971875
transcript.pyannote[129].end 484.64721875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 484.64721875
transcript.pyannote[130].end 500.69534375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 500.89784375
transcript.pyannote[131].end 503.09159375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 503.29409375
transcript.pyannote[132].end 517.31721875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 517.62096875
transcript.pyannote[133].end 518.98784375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 519.10596875
transcript.pyannote[134].end 520.77659375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 521.77221875
transcript.pyannote[135].end 522.46409375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 522.53159375
transcript.pyannote[136].end 525.11346875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 525.72096875
transcript.pyannote[137].end 529.26471875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 529.43346875
transcript.pyannote[138].end 531.39096875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 532.09971875
transcript.pyannote[139].end 537.29721875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 537.29721875
transcript.pyannote[140].end 537.66846875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 537.66846875
transcript.pyannote[141].end 537.75284375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 537.75284375
transcript.pyannote[142].end 537.76971875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 537.76971875
transcript.pyannote[143].end 538.47846875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 540.28409375
transcript.pyannote[144].end 543.92909375
transcript.whisperx[0].start 0.782
transcript.whisperx[0].end 1.183
transcript.whisperx[0].text 財政部副部長
transcript.whisperx[1].start 14.96
transcript.whisperx[1].end 20.244
transcript.whisperx[1].text 委員長 你說剛剛報告裡面講說今天這個預算會編列為暫時的這個是因為暫時是1000億是因為112年度的這個稅計剩餘要經過審計部審定之後才能夠事實上是不會根本就是超過
transcript.whisperx[2].start 41.874
transcript.whisperx[2].end 45.222
transcript.whisperx[2].text 一百一十二年的稅基正餘(什麼時候審定啊(
transcript.whisperx[3].start 47.791
transcript.whisperx[3].end 68.858
transcript.whisperx[3].text 一般都是在七月的時候審定那今年七月已經過了已經過了十個月了那因為在當時在編這個追加預算的時間是在七月之前但是你現在已經知道了啊現在已經確定所以我們在報告裡面講因為在編列這個追加預算案的時候審計部的那個還沒有審定所以我們在編列他審定的時候稅計剩餘是多少稅計剩餘這個可能多少112年度的
transcript.whisperx[4].start 73.238
transcript.whisperx[4].end 79.6
transcript.whisperx[4].text 704470444億元稅計剩餘7044億元是12年是不是12年那請那個陳主席長112年的稅計剩餘有7000多億那不是打破歷年紀錄以前最高就4000多億而已啊
transcript.whisperx[5].start 98.243
transcript.whisperx[5].end 124.949
transcript.whisperx[5].text 委員一百一十二年當年度是2790然後他有把歷年的累積剩餘再加上來到一百一十二年度累積剩餘是7044那因為有一些的部分就是轉帳之後到目前為止剩下一百五十八億因為也有編了一百一十四年度的預算包括這一筆一千億如果放算經濟我們到目前為止是剩下一百五十八億以上請回座
transcript.whisperx[6].start 127.19
transcript.whisperx[6].end 132.775
transcript.whisperx[6].text 部長,所以你資料弄錯了。因為歷年的稅率剩餘有的已經花掉了以前的那個裡面也有這個
transcript.whisperx[7].start 138.51
transcript.whisperx[7].end 160.759
transcript.whisperx[7].text 轉發因為那個在疫情期間也撥補然後另外又補貼國人一個人年幾千塊那個你都忘掉了嗎?是是我想我們剛剛沒有把這個前面講清楚是好112年稅率剩餘是2700多億當然有一些用在後面的預算有一些之前有一些規劃預算但是再加上這一千億的撥補
transcript.whisperx[8].start 162.776
transcript.whisperx[8].end 163.116
transcript.whisperx[8].text 委員長 前幾天
transcript.whisperx[9].start 189.778
transcript.whisperx[9].end 198.761
transcript.whisperx[9].text 你的報告裡面講到說跟韓國比起來我們的工業用電就是在調整價格之後我們是4.27元韓國是4.77元明顯還比他低了0.5元可是前幾天我怎麼看到媒體的報導台積電有高層當然沒有講誰在抱怨說這個電費太高已經失去國際競爭力
transcript.whisperx[10].start 217.088
transcript.whisperx[10].end 223.47
transcript.whisperx[10].text 那難道我們比相同經濟條件工業生產國家的工業用地要高嗎?費用要高嗎?
transcript.whisperx[11].start 228.268
transcript.whisperx[11].end 247.276
transcript.whisperx[11].text 臺積電所在的廠有好幾個但是沒有韓國所以日本的電力比我們低他現在在九州投資接下來會拿到確實的電價我們也在跟九州電力做了解因為日本對於不同的工業的用電的價格
transcript.whisperx[12].start 248.536
transcript.whisperx[12].end 259.811
transcript.whisperx[12].text 其實他的那個試算表非常複雜(比台灣複雜非常的多(他到底是適用了什麼級距(有怎樣的優惠(我想我們會確定去了解(但是我要跟委員報告我想說(
transcript.whisperx[13].start 262.483
transcript.whisperx[13].end 284.548
transcript.whisperx[13].text 吳秉叡
transcript.whisperx[14].start 284.548
transcript.whisperx[14].end 286.91
transcript.whisperx[14].text 我跟委員報告這一點是這個樣子我們基本上還是會再跟國內的業者做一些比對跟查證
transcript.whisperx[15].start 309.728
transcript.whisperx[15].end 329.808
transcript.whisperx[15].text 還是因為台積電有一些他必須要用綠能的用電所以他自己去跟人家短購短購的比較貴那個綠能短購的部分這個就跟不同的案場有很大的差距我想這不太容易比較是所以這件事情要釐清啦因為台積電是一個全國都矚目的公司他一旦這樣講的話你們不馬上出來澄清
transcript.whisperx[16].start 330.469
transcript.whisperx[16].end 351.374
transcript.whisperx[16].text 吳秉叡吳秉叡吳秉叡吳秉叡
transcript.whisperx[17].start 351.534
transcript.whisperx[17].end 371.643
transcript.whisperx[17].text 其實我是這樣講是得罪人啦但是一個每年賺上兆以上公司的錢賺上兆以上錢的公司他生產的地方在台電在台灣他適當的在這個生產的成本裡面我相信這個電價在他生產的成本裡面是微不足道
transcript.whisperx[18].start 372.688
transcript.whisperx[18].end 373.048
transcript.whisperx[18].text 他們不是主動講的
transcript.whisperx[19].start 387.807
transcript.whisperx[19].end 406.118
transcript.whisperx[19].text 吳秉叡
transcript.whisperx[20].start 406.218
transcript.whisperx[20].end 429.195
transcript.whisperx[20].text 委員報告就是美國的工業電價一向都是全世界非常非常低但是因為美國是能源生產國很特別啦美國是能源生產國他的頁油鹽、天然氣將來川普當選之後他現在要恢復生產他根本就沒有什麼他的運輸成本跟台灣的能源的運輸成本是沒有辦法比較嘛沒錯我們需不需要加上去沒有錯
transcript.whisperx[21].start 429.918
transcript.whisperx[21].end 454.314
transcript.whisperx[21].text 是啊 所以我是覺得要這些東西就是要溝通的不要到突然之間丟出一句話說這個太貴了事實上台灣的工業用電調整我們認為要符合你的成本我們不能拿人民的納稅權去補貼這些賺錢的企業如果這個產業是台灣集聚要發展然後他目前是處於比較困頓的階段那我們贊成
transcript.whisperx[22].start 455.336
transcript.whisperx[22].end 480.739
transcript.whisperx[22].text 如果這個公司已經大賺錢了,要拿國家的稅金去補貼這樣子的大賺錢的公司,我覺得這個要慎重思考。不知道這樣看觀點你同不同意?報告委員,就是說我們其實您講的同意的,因為我們其實在電價審議會審查的時候,其實都有這些橫評考量,這跟委員報告。那目前來看,其實台電最多的累積虧損是積累在2022年跟2023年。
transcript.whisperx[23].start 486.763
transcript.whisperx[23].end 502.793
transcript.whisperx[23].text 川普當選對你們是大利多,因為他恢復美國的業油鹽跟天然氣的生產之後,我們的國際之間的能源,就是這些所謂的石化能源,它的價格,大家的預估是它會下降,會降到比現在的這個油價還要再低。
transcript.whisperx[24].start 503.453
transcript.whisperx[24].end 530.718
transcript.whisperx[24].text 所以這當然是利多成本的部分會減少但是我是覺得說跟社會的溝通隨時都要注意因為我們這麼大的公司很多事情要忙有的時候會疏於疏忽跟社會的溝通但是這個大家看這個資料看這個媒體會雞飛成石大家如果都是看到就這樣講沒看到台電怎麼講真的會誤會說你們是不是在賺這些這些工業大的生產公司的電錢
transcript.whisperx[25].start 532.145
transcript.whisperx[25].end 542.897
transcript.whisperx[25].text 跟委員報告我們其實當天就有做一些澄清但確實聲量不夠我們會再加強好加油謝謝好接下來我們請耐斯堡委員質詢
IVOD_ID 157459
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157459
日期 2024-11-27
會議資料.會議代碼 聯席會議-11-2-20,19-1
會議資料.屆 11
會議資料.會期 2
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 20
會議資料.委員會代碼[1] 19
會議資料.標題 第11屆第2會期財政、經濟委員會第1次聯席會議
影片種類 Clip
開始時間 2024-11-27T09:29:19+08:00
結束時間 2024-11-27T09:38:26+08:00
支援功能[0] ai-transcript