iVOD / 157157

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/be8492a9d81d8eab3834dd1ac20a7c76e934a6858ea79529aee312d9b2381ac3ba8a105b9bd18edd5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅智強
委員發言時間 11:43:45 - 11:48:53
影片長度 308
會議時間 2024-11-20T09:00:00+08:00
會議名稱 立法院第11屆第2會期經濟委員會第15次全體委員會議(事由:審查114年度中央政府總預算案附屬單位預算營業部分關於經濟部主管:台灣電力股份有限公司、台灣自來水股份有限公司。(詢答))
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 7.40534375
transcript.pyannote[0].end 13.68284375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 19.28534375
transcript.pyannote[1].end 19.77471875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 20.46659375
transcript.pyannote[2].end 21.12471875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 21.74909375
transcript.pyannote[3].end 29.17409375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 32.39721875
transcript.pyannote[4].end 33.22409375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 33.81471875
transcript.pyannote[5].end 40.76721875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 33.91596875
transcript.pyannote[6].end 34.91159375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 41.84721875
transcript.pyannote[7].end 42.03284375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 42.03284375
transcript.pyannote[8].end 44.02409375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 44.61471875
transcript.pyannote[9].end 46.43721875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 46.84221875
transcript.pyannote[10].end 52.81596875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 53.64284375
transcript.pyannote[11].end 57.13596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 57.52409375
transcript.pyannote[12].end 64.47659375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 62.92409375
transcript.pyannote[13].end 63.22784375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 64.91534375
transcript.pyannote[14].end 65.33721875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 65.50596875
transcript.pyannote[15].end 72.69471875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 72.89721875
transcript.pyannote[16].end 75.00659375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 81.40221875
transcript.pyannote[17].end 82.87034375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 82.87034375
transcript.pyannote[18].end 83.42721875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 84.27096875
transcript.pyannote[19].end 95.18909375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 95.52659375
transcript.pyannote[20].end 98.09159375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 98.69909375
transcript.pyannote[21].end 99.47534375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 99.62721875
transcript.pyannote[22].end 102.76596875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 103.03596875
transcript.pyannote[23].end 116.92409375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 107.50784375
transcript.pyannote[24].end 107.91284375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 115.25346875
transcript.pyannote[25].end 115.62471875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 117.17721875
transcript.pyannote[26].end 130.93034375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 117.75096875
transcript.pyannote[27].end 119.32034375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 120.95721875
transcript.pyannote[28].end 121.22721875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 131.43659375
transcript.pyannote[29].end 131.80784375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 132.29721875
transcript.pyannote[30].end 140.80221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 141.29159375
transcript.pyannote[31].end 143.06346875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 143.06346875
transcript.pyannote[32].end 144.88596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 144.88596875
transcript.pyannote[33].end 145.51034375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 145.98284375
transcript.pyannote[34].end 152.07471875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 152.80034375
transcript.pyannote[35].end 153.28971875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 154.16721875
transcript.pyannote[36].end 155.87159375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 155.77034375
transcript.pyannote[37].end 158.09909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 159.04409375
transcript.pyannote[38].end 163.43159375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 163.90409375
transcript.pyannote[39].end 169.59096875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 170.19846875
transcript.pyannote[40].end 190.78596875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 190.92096875
transcript.pyannote[41].end 192.30471875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 192.30471875
transcript.pyannote[42].end 192.89534375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 193.24971875
transcript.pyannote[43].end 199.13909375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 199.72971875
transcript.pyannote[44].end 200.25284375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 201.01221875
transcript.pyannote[45].end 201.53534375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 201.53534375
transcript.pyannote[46].end 201.78846875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 202.29471875
transcript.pyannote[47].end 204.26909375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 204.52221875
transcript.pyannote[48].end 205.51784375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 204.75846875
transcript.pyannote[49].end 205.36596875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 205.83846875
transcript.pyannote[50].end 209.71971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 209.93909375
transcript.pyannote[51].end 209.98971875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 209.98971875
transcript.pyannote[52].end 210.83346875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 210.83346875
transcript.pyannote[53].end 211.03596875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 211.03596875
transcript.pyannote[54].end 212.95971875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 213.26346875
transcript.pyannote[55].end 214.86659375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 215.42346875
transcript.pyannote[56].end 216.75659375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 217.11096875
transcript.pyannote[57].end 218.24159375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 217.75221875
transcript.pyannote[58].end 222.30846875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 221.78534375
transcript.pyannote[59].end 224.21534375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 224.21534375
transcript.pyannote[60].end 224.85659375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 224.33346875
transcript.pyannote[61].end 231.33659375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 227.30346875
transcript.pyannote[62].end 227.65784375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 230.29034375
transcript.pyannote[63].end 230.69534375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 231.33659375
transcript.pyannote[64].end 233.34471875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 231.35346875
transcript.pyannote[65].end 231.67409375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 233.00721875
transcript.pyannote[66].end 233.41221875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 233.41221875
transcript.pyannote[67].end 233.44596875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 234.30659375
transcript.pyannote[68].end 236.55096875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 234.45846875
transcript.pyannote[69].end 238.94721875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 239.80784375
transcript.pyannote[70].end 244.88721875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 240.06096875
transcript.pyannote[71].end 241.96784375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 244.88721875
transcript.pyannote[72].end 245.56221875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 245.03909375
transcript.pyannote[73].end 278.41784375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 278.63721875
transcript.pyannote[74].end 279.21096875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 279.29534375
transcript.pyannote[75].end 287.78346875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 284.62784375
transcript.pyannote[76].end 285.11721875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 288.00284375
transcript.pyannote[77].end 290.65221875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 288.03659375
transcript.pyannote[78].end 288.47534375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 289.84221875
transcript.pyannote[79].end 307.96596875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 296.82846875
transcript.pyannote[80].end 297.53721875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 297.97596875
transcript.pyannote[81].end 298.00971875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 306.07596875
transcript.pyannote[82].end 306.29534375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 306.32909375
transcript.pyannote[83].end 306.90284375
transcript.whisperx[0].start 7.478
transcript.whisperx[0].end 24.155
transcript.whisperx[0].text 主席有請郭部長跟曾董事長請經濟部郭部長、台電曾董事長委員好部長、董事長台中火力發電廠一起燃氣計畫的兩部燃氣機組預計何時上線?
transcript.whisperx[1].start 34.78
transcript.whisperx[1].end 38.565
transcript.whisperx[1].text 明年中火第一部燃氣機組上線,那是不是就可以同時去減煤了?
transcript.whisperx[2].start 54.115
transcript.whisperx[2].end 74.793
transcript.whisperx[2].text 跟委員報告,就是說中火已經從它原來的1800萬噸的用煤量降到現在1200萬噸的用煤量,它其實是已經先降了。好,我再想請教,台電預估今年的燃煤用量是2450萬公噸,然後那明年是多少?
transcript.whisperx[3].start 81.431
transcript.whisperx[3].end 95.668
transcript.whisperx[3].text 大概2200萬左右我想之前齁您是講是說你現在剛剛講是2026年嘛可是我剛剛看到我的資料是說你說等到2031年中火第二期的第一部燃氣機組上線齁才開始減煤300萬噸嘛
transcript.whisperx[4].start 98.737
transcript.whisperx[4].end 116.55
transcript.whisperx[4].text 是這個意思嗎?跟委員報告那個是我們在環評上面跟環評委員會提出來的屋頂的限制方案但是我調度上面只要調得過我們其實就會開始慢慢的只要用電量成長的幅度沒有特別高
transcript.whisperx[5].start 117.75
transcript.whisperx[5].end 130.893
transcript.whisperx[5].text 其實是個屋頂我們只要調度可行我們就會逐步的來減煤那明年最明年主要是麥寮要下去所以麥寮那邊大概會減掉500萬噸那我想請教我們回到中火的問題中火10部燃煤機組的裝置發電容量是5500那個百萬瓦嘛對不對550萬千瓦
transcript.whisperx[6].start 146.058
transcript.whisperx[6].end 150.183
transcript.whisperx[6].text 那2023年實際發電量是3600MW嘛對不對百萬瓦2023年實際發電量應該是270億度左右
transcript.whisperx[7].start 159.039
transcript.whisperx[7].end 175.877
transcript.whisperx[7].text 嗯好沒關係我看你的計算基準就是用的那個單位不一樣那我要重點是什麼重點是講就是說實際上以所謂的實際發電量來對比所謂的中火一期的兩部燃氣機組
transcript.whisperx[8].start 177.558
transcript.whisperx[8].end 200.109
transcript.whisperx[8].text 加上這個2026年可以完成的中加民營燃氣廠的裝置容量,核氣大概就是3200百萬瓦,是嗎?每個瓦?對,3200每個瓦。那其實就跟新增的燃氣發電量幾乎跟現在中火燃煤發電量差不多,沒錯吧?
transcript.whisperx[9].start 201.352
transcript.whisperx[9].end 211.961
transcript.whisperx[9].text 呃,不到差不多啦,這少400左右啦少400左右那個,那個因為中火現在是5500MW我講的是實際發電量,不是講裝置容量那個實際不是3600實際是多少
transcript.whisperx[10].start 217.923
transcript.whisperx[10].end 233.218
transcript.whisperx[10].text 要用一致的單位我才有辦法跟你比較,因為手上我沒有幾億度的電。我不知道委員拿到那個3600MW是什麼基準,但是我們基本上都是用煤量直接相關的。你裝置發電一般也未必用到嘛,對不對?
transcript.whisperx[11].start 233.218
transcript.whisperx[11].end 236.541
transcript.whisperx[11].text 是。所以你用這個公司算一下還是多少?
transcript.whisperx[12].start 236.541
transcript.whisperx[12].end 236.882
transcript.whisperx[12].text 我們是5500MW。
transcript.whisperx[13].start 240.261
transcript.whisperx[13].end 266.724
transcript.whisperx[13].text 你歸後再把實際數字給我好不好因為我這個也是從台電資料抓下來的那你的數字跟我說跟我不一樣那你把實際數字給我那所以我的問題是為什麼既然以所謂的發電量來看我講不是裝置容量那為什麼不能在一期的兩部燃氣機組上線的時候就開始及早減煤一定要做到2034年才能夠做到中火無煤化我覺得
transcript.whisperx[14].start 267.384
transcript.whisperx[14].end 285.464
transcript.whisperx[14].text 我是認為你們的做法端可以再積極一點因為台中其實承擔這麼大的一個火力發電產生的所謂的一個排碳對台中人來講也不是很公平沒錯吧那個我跟委員報告就是說台中市的一年的用電度數是340億度那中火發電度數是270億度事實上中間有個
transcript.whisperx[15].start 290.408
transcript.whisperx[15].end 304.855
transcript.whisperx[15].text 我要講就是說今天對台中的人來說的話實際上台中火力發電廠真的是舉世聞名阿沒錯吧你對那個台中的那個燃氣也好燃煤也好實際上造成台中空氣上的負擔我覺得這一點請你們再積極一點以上謝謝
IVOD_ID 157157
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157157
日期 2024-11-20
會議資料.會議代碼 委員會-11-2-19-15
會議資料.屆 11
會議資料.會期 2
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.標題 第11屆第2會期經濟委員會第15次全體委員會議
影片種類 Clip
開始時間 2024-11-20T11:43:45+08:00
結束時間 2024-11-20T11:48:53+08:00
支援功能[0] ai-transcript