iVOD / 157023

Field Value
IVOD_ID 157023
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157023
日期 2024-11-18
會議資料.會議代碼 委員會-11-2-20-9
會議資料.會議代碼:str 第11屆第2會期財政委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第2會期財政委員會第9次全體委員會議
影片種類 Clip
開始時間 2024-11-18T11:15:45+08:00
結束時間 2024-11-18T11:27:58+08:00
影片長度 00:12:13
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/37ff27132e477e87030d144f5d21d2de06883678c1ed2d0dd5656bc25be71a6763ac7a6a43004f445ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 11:15:45 - 11:27:58
會議時間 2024-11-18T09:00:00+08:00
會議名稱 立法院第11屆第2會期財政委員會第9次全體委員會議(事由:審查中華民國114年度中央政府總預算案有關財政部賦稅署、臺北國稅局、高雄國稅局、北區國稅局及所屬、中區國稅局及所屬、南區國稅局及所屬、關務署及所屬、國有財產署及所屬歲出預算部分暨融資財源調度。(僅詢答) 【預算提案截止時間:11月25日(一)中午12時】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.36846875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 1.07721875
transcript.pyannote[1].end 1.36409375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 1.46534375
transcript.pyannote[2].end 2.35971875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 6.17346875
transcript.pyannote[3].end 6.74721875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 6.74721875
transcript.pyannote[4].end 7.37159375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 7.79346875
transcript.pyannote[5].end 9.81846875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 10.39221875
transcript.pyannote[6].end 15.06659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 15.58971875
transcript.pyannote[7].end 16.93971875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 17.96909375
transcript.pyannote[8].end 23.41971875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 23.89221875
transcript.pyannote[9].end 26.72721875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 27.13221875
transcript.pyannote[10].end 31.01346875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 31.85721875
transcript.pyannote[11].end 44.36159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 44.88471875
transcript.pyannote[12].end 45.42471875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 46.55534375
transcript.pyannote[13].end 49.71096875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 50.23409375
transcript.pyannote[14].end 50.72346875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 51.04409375
transcript.pyannote[15].end 54.19971875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 55.56659375
transcript.pyannote[16].end 93.97409375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 92.35409375
transcript.pyannote[17].end 92.96159375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 93.73784375
transcript.pyannote[18].end 98.81721875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 99.18846875
transcript.pyannote[19].end 99.77909375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 100.15034375
transcript.pyannote[20].end 107.67659375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 107.77784375
transcript.pyannote[21].end 108.70596875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 109.00971875
transcript.pyannote[22].end 109.02659375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 109.09409375
transcript.pyannote[23].end 110.86596875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 111.40596875
transcript.pyannote[24].end 112.04721875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 112.26659375
transcript.pyannote[25].end 113.11034375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 113.21159375
transcript.pyannote[26].end 123.21846875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 123.53909375
transcript.pyannote[27].end 125.85096875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 126.12096875
transcript.pyannote[28].end 129.49596875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 129.78284375
transcript.pyannote[29].end 134.59221875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 134.82846875
transcript.pyannote[30].end 137.32596875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 137.71409375
transcript.pyannote[31].end 140.98784375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 141.44346875
transcript.pyannote[32].end 143.02971875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 143.73846875
transcript.pyannote[33].end 144.14346875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 144.78471875
transcript.pyannote[34].end 145.44284375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 146.11784375
transcript.pyannote[35].end 146.69159375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 147.67034375
transcript.pyannote[36].end 148.96971875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 148.98659375
transcript.pyannote[37].end 149.69534375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 149.84721875
transcript.pyannote[38].end 151.51784375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 151.95659375
transcript.pyannote[39].end 153.13784375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 154.15034375
transcript.pyannote[40].end 161.91284375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 162.57096875
transcript.pyannote[41].end 163.17846875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 162.72284375
transcript.pyannote[42].end 163.02659375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 164.35971875
transcript.pyannote[43].end 164.93346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 165.28784375
transcript.pyannote[44].end 166.01346875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 166.51971875
transcript.pyannote[45].end 171.51471875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 171.68346875
transcript.pyannote[46].end 177.11721875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 177.60659375
transcript.pyannote[47].end 181.52159375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 182.04471875
transcript.pyannote[48].end 183.27659375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 183.37784375
transcript.pyannote[49].end 185.18346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 185.63909375
transcript.pyannote[50].end 187.15784375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 187.83284375
transcript.pyannote[51].end 188.49096875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 189.06471875
transcript.pyannote[52].end 189.92534375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 190.46534375
transcript.pyannote[53].end 191.08971875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 191.47784375
transcript.pyannote[54].end 192.00096875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 192.59159375
transcript.pyannote[55].end 193.92471875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 194.05971875
transcript.pyannote[56].end 196.03409375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 197.51909375
transcript.pyannote[57].end 201.61971875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 202.12596875
transcript.pyannote[58].end 202.75034375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 203.12159375
transcript.pyannote[59].end 204.43784375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 205.29846875
transcript.pyannote[60].end 206.37846875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 206.80034375
transcript.pyannote[61].end 207.82971875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 208.11659375
transcript.pyannote[62].end 208.89284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 209.31471875
transcript.pyannote[63].end 210.42846875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 211.87971875
transcript.pyannote[64].end 212.58846875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 213.04409375
transcript.pyannote[65].end 213.38159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 214.27596875
transcript.pyannote[66].end 215.13659375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 215.52471875
transcript.pyannote[67].end 218.05596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 219.57471875
transcript.pyannote[68].end 222.91596875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 223.45596875
transcript.pyannote[69].end 224.45159375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 224.45159375
transcript.pyannote[70].end 224.46846875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 224.82284375
transcript.pyannote[71].end 226.12221875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 226.78034375
transcript.pyannote[72].end 230.35784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 230.77971875
transcript.pyannote[73].end 232.04534375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 232.65284375
transcript.pyannote[74].end 234.34034375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 235.09971875
transcript.pyannote[75].end 236.51721875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 237.34409375
transcript.pyannote[76].end 238.62659375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 239.14971875
transcript.pyannote[77].end 240.14534375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 240.56721875
transcript.pyannote[78].end 241.44471875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 242.65971875
transcript.pyannote[79].end 243.72284375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 243.77346875
transcript.pyannote[80].end 244.29659375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 244.58346875
transcript.pyannote[81].end 247.23284375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 248.43096875
transcript.pyannote[82].end 249.07221875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 250.27034375
transcript.pyannote[83].end 250.81034375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 250.82721875
transcript.pyannote[84].end 252.19409375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 252.64971875
transcript.pyannote[85].end 253.37534375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 252.68346875
transcript.pyannote[86].end 253.78034375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 253.96596875
transcript.pyannote[87].end 260.26034375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 256.09221875
transcript.pyannote[88].end 256.46346875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 260.47971875
transcript.pyannote[89].end 260.91846875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 261.18846875
transcript.pyannote[90].end 263.26409375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 264.36096875
transcript.pyannote[91].end 264.98534375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 265.37346875
transcript.pyannote[92].end 266.04846875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 266.58846875
transcript.pyannote[93].end 268.46159375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 268.86659375
transcript.pyannote[94].end 272.24159375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 274.04721875
transcript.pyannote[95].end 291.05721875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 289.84221875
transcript.pyannote[96].end 292.27221875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 292.23846875
transcript.pyannote[97].end 298.41471875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 294.68534375
transcript.pyannote[98].end 296.28846875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 296.92971875
transcript.pyannote[99].end 297.70596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 298.41471875
transcript.pyannote[100].end 308.79284375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 309.18096875
transcript.pyannote[101].end 311.34096875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 311.54346875
transcript.pyannote[102].end 313.51784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 313.87221875
transcript.pyannote[103].end 316.87596875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 317.56784375
transcript.pyannote[104].end 318.31034375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 318.47909375
transcript.pyannote[105].end 319.81221875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 320.36909375
transcript.pyannote[106].end 328.26659375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 329.07659375
transcript.pyannote[107].end 331.50659375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 331.87784375
transcript.pyannote[108].end 334.66221875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 335.30346875
transcript.pyannote[109].end 337.12596875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 337.39596875
transcript.pyannote[110].end 346.49159375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 347.30159375
transcript.pyannote[111].end 348.36471875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 349.12409375
transcript.pyannote[112].end 349.78221875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 350.27159375
transcript.pyannote[113].end 351.36846875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 351.90846875
transcript.pyannote[114].end 354.87846875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 355.16534375
transcript.pyannote[115].end 356.14409375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 356.86971875
transcript.pyannote[116].end 359.16471875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 359.78909375
transcript.pyannote[117].end 361.32471875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 364.22721875
transcript.pyannote[118].end 371.43284375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 370.25159375
transcript.pyannote[119].end 373.93034375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 374.45346875
transcript.pyannote[120].end 381.47346875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 382.11471875
transcript.pyannote[121].end 384.46034375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 385.37159375
transcript.pyannote[122].end 385.96221875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 386.36721875
transcript.pyannote[123].end 387.24471875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 387.46409375
transcript.pyannote[124].end 388.08846875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 388.96596875
transcript.pyannote[125].end 389.53971875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 390.07971875
transcript.pyannote[126].end 390.55221875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 391.48034375
transcript.pyannote[127].end 392.07096875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 393.31971875
transcript.pyannote[128].end 394.24784375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 395.07471875
transcript.pyannote[129].end 395.73284375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 396.22221875
transcript.pyannote[130].end 397.08284375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 397.31909375
transcript.pyannote[131].end 398.48346875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 399.10784375
transcript.pyannote[132].end 399.95159375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 400.10346875
transcript.pyannote[133].end 401.57159375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 402.53346875
transcript.pyannote[134].end 403.66409375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 403.98471875
transcript.pyannote[135].end 406.11096875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 406.83659375
transcript.pyannote[136].end 407.17409375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 407.96721875
transcript.pyannote[137].end 410.86971875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 412.38846875
transcript.pyannote[138].end 412.86096875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 413.56971875
transcript.pyannote[139].end 414.32909375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 414.58221875
transcript.pyannote[140].end 415.29096875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 415.84784375
transcript.pyannote[141].end 416.45534375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 416.67471875
transcript.pyannote[142].end 417.99096875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 419.23971875
transcript.pyannote[143].end 419.83034375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 420.08346875
transcript.pyannote[144].end 421.06221875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 421.24784375
transcript.pyannote[145].end 424.35284375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 424.40346875
transcript.pyannote[146].end 426.12471875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 426.19221875
transcript.pyannote[147].end 426.44534375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 426.61409375
transcript.pyannote[148].end 428.33534375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 428.67284375
transcript.pyannote[149].end 431.96346875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 432.57096875
transcript.pyannote[150].end 434.41034375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 435.16971875
transcript.pyannote[151].end 435.82784375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 436.28346875
transcript.pyannote[152].end 437.85284375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 439.21971875
transcript.pyannote[153].end 440.09721875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 440.62034375
transcript.pyannote[154].end 442.27409375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 443.38784375
transcript.pyannote[155].end 444.90659375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 445.73346875
transcript.pyannote[156].end 446.20596875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 446.56034375
transcript.pyannote[157].end 451.92659375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 452.63534375
transcript.pyannote[158].end 453.15846875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 453.47909375
transcript.pyannote[159].end 454.37346875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 455.26784375
transcript.pyannote[160].end 456.75284375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 458.15346875
transcript.pyannote[161].end 459.43596875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 460.75221875
transcript.pyannote[162].end 464.49846875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 464.44784375
transcript.pyannote[163].end 467.19846875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 467.29971875
transcript.pyannote[164].end 475.78784375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 476.54721875
transcript.pyannote[165].end 478.77471875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 477.67784375
transcript.pyannote[166].end 482.84159375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 481.18784375
transcript.pyannote[167].end 484.12409375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 484.47846875
transcript.pyannote[168].end 485.59221875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 485.45721875
transcript.pyannote[169].end 486.03096875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 486.28409375
transcript.pyannote[170].end 486.90846875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 487.71846875
transcript.pyannote[171].end 493.89471875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 494.68784375
transcript.pyannote[172].end 495.93659375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 495.97034375
transcript.pyannote[173].end 496.02096875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 497.13471875
transcript.pyannote[174].end 497.55659375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 498.99096875
transcript.pyannote[175].end 500.39159375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 501.15096875
transcript.pyannote[176].end 502.41659375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 504.15471875
transcript.pyannote[177].end 504.61034375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 504.22221875
transcript.pyannote[178].end 504.77909375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 505.06596875
transcript.pyannote[179].end 506.06159375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 505.75784375
transcript.pyannote[180].end 508.45784375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 507.76596875
transcript.pyannote[181].end 511.76534375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 512.06909375
transcript.pyannote[182].end 512.74409375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 513.11534375
transcript.pyannote[183].end 515.00534375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 515.86596875
transcript.pyannote[184].end 517.65471875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 518.07659375
transcript.pyannote[185].end 519.00471875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 519.59534375
transcript.pyannote[186].end 520.86096875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 521.62034375
transcript.pyannote[187].end 522.73409375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 522.97034375
transcript.pyannote[188].end 528.28596875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 528.82596875
transcript.pyannote[189].end 529.87221875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 530.29409375
transcript.pyannote[190].end 532.08284375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 532.70721875
transcript.pyannote[191].end 534.47909375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 535.77846875
transcript.pyannote[192].end 539.81159375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 541.43159375
transcript.pyannote[193].end 542.30909375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 542.05596875
transcript.pyannote[194].end 542.51159375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 542.95034375
transcript.pyannote[195].end 546.03846875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 546.86534375
transcript.pyannote[196].end 555.65721875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 556.39971875
transcript.pyannote[197].end 557.29409375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 559.63971875
transcript.pyannote[198].end 561.74909375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 561.58034375
transcript.pyannote[199].end 562.94721875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 564.26346875
transcript.pyannote[200].end 566.69346875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 567.09846875
transcript.pyannote[201].end 568.70159375
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 569.12346875
transcript.pyannote[202].end 571.50284375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 570.13596875
transcript.pyannote[203].end 573.25784375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 571.94159375
transcript.pyannote[204].end 576.63284375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 575.51909375
transcript.pyannote[205].end 577.52721875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 577.37534375
transcript.pyannote[206].end 583.38284375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 580.00784375
transcript.pyannote[207].end 580.68284375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 582.13409375
transcript.pyannote[208].end 585.54284375
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 586.36971875
transcript.pyannote[209].end 595.93784375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 597.11909375
transcript.pyannote[210].end 600.59534375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 601.08471875
transcript.pyannote[211].end 612.15471875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 612.52596875
transcript.pyannote[212].end 613.60596875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 614.55096875
transcript.pyannote[213].end 617.03159375
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 617.20034375
transcript.pyannote[214].end 618.02721875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 618.19596875
transcript.pyannote[215].end 619.56284375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 619.93409375
transcript.pyannote[216].end 622.56659375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 623.29221875
transcript.pyannote[217].end 625.40159375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 625.18221875
transcript.pyannote[218].end 629.14784375
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 630.22784375
transcript.pyannote[219].end 631.86471875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 632.99534375
transcript.pyannote[220].end 633.83909375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 634.27784375
transcript.pyannote[221].end 636.47159375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 636.92721875
transcript.pyannote[222].end 637.55159375
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 637.75409375
transcript.pyannote[223].end 639.20534375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 640.72409375
transcript.pyannote[224].end 641.29784375
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 641.87159375
transcript.pyannote[225].end 643.18784375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 644.03159375
transcript.pyannote[226].end 659.33721875
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 659.84346875
transcript.pyannote[227].end 666.62721875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 667.31909375
transcript.pyannote[228].end 668.24721875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 668.43284375
transcript.pyannote[229].end 670.55909375
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 670.77846875
transcript.pyannote[230].end 671.26784375
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 671.97659375
transcript.pyannote[231].end 673.47846875
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 673.98471875
transcript.pyannote[232].end 674.72721875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 675.09846875
transcript.pyannote[233].end 676.36409375
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 676.76909375
transcript.pyannote[234].end 680.80221875
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 681.13971875
transcript.pyannote[235].end 681.91596875
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 682.70909375
transcript.pyannote[236].end 684.31221875
transcript.pyannote[237].speaker SPEAKER_00
transcript.pyannote[237].start 684.63284375
transcript.pyannote[237].end 689.15534375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 690.04971875
transcript.pyannote[238].end 691.04534375
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 691.50096875
transcript.pyannote[239].end 692.07471875
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 692.53034375
transcript.pyannote[240].end 694.38659375
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 695.16284375
transcript.pyannote[241].end 699.01034375
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 699.01034375
transcript.pyannote[242].end 708.59534375
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 706.73909375
transcript.pyannote[243].end 714.87284375
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 710.16471875
transcript.pyannote[244].end 711.51471875
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 715.34534375
transcript.pyannote[245].end 720.69471875
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 721.31909375
transcript.pyannote[246].end 722.17971875
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 721.43721875
transcript.pyannote[247].end 723.39471875
transcript.pyannote[248].speaker SPEAKER_01
transcript.pyannote[248].start 725.09909375
transcript.pyannote[248].end 726.11159375
transcript.pyannote[249].speaker SPEAKER_01
transcript.pyannote[249].start 726.51659375
transcript.pyannote[249].end 727.84971875
transcript.whisperx[0].start 0.669
transcript.whisperx[0].end 26.26
transcript.whisperx[0].text 莊部長有請莊部長莊部長委員好你看起來慈眉善目最重要的還是要體恤所有老百姓的辛苦現在物價飆漲事實上很多基層的老百姓很多年輕人是叫苦連天一個便當以前六七十塊
transcript.whisperx[1].start 27.322
transcript.whisperx[1].end 53.911
transcript.whisperx[1].text 現在一個便當可能就要130、150實在是很辛苦所以我們看到今年的稅收又超徵接近快三四千億拜託可不可以優先考量一下把這個錢平均的發給每一個民眾一人一萬塊的紅包拜託拜託好不好
transcript.whisperx[2].start 56.353
transcript.whisperx[2].end 60.9
transcript.whisperx[2].text 我想這個部分大家都很重視所謂的財政紀律所以這個部分對於時增數超過預算數的部分我們會先從減少舉債增加還債
transcript.whisperx[3].start 67.148
transcript.whisperx[3].end 67.288
transcript.whisperx[3].text 上一次啊
transcript.whisperx[4].start 95.064
transcript.whisperx[4].end 111.649
transcript.whisperx[4].text 發了6千塊、1萬塊其實民眾很有感因為總是聊勝於無那至少對年輕人來講心裡是很安定的因為外在的環境變動如果1萬塊
transcript.whisperx[5].start 113.359
transcript.whisperx[5].end 142.498
transcript.whisperx[5].text 放在自己的口袋裡又溫暖冬天又到了實際上又可以自己來支配使用這才是對全民真正的照顧我們在這裡審總預算我們看到一筆下去國防支出可能就是5000億甚至因為現在川普當選了還叫我們要提高國防軍費那個都是天文數字
transcript.whisperx[6].start 143.799
transcript.whisperx[6].end 158.972
transcript.whisperx[6].text 那與其很快就通過這些民眾感覺不到的這個數字倒不如回歸給一點溫暖給民眾本席在這裡還是再次拜託部長你好好來審酌一下現在
transcript.whisperx[7].start 164.417
transcript.whisperx[7].end 187.058
transcript.whisperx[7].text 川普當選了那事實上臺灣的整個經濟的局勢上上下下面對未來可能又有很大的衝擊跟變化那在114年的總預算裡面有沒有什麼樣大環境改變的時候部長想要去做的
transcript.whisperx[8].start 187.878
transcript.whisperx[8].end 209.713
transcript.whisperx[8].text 比如說剛剛講到物價飆漲所有的公股銀行今年的薪資會不會再調升今年就是明年了會不會有這樣的一個準備另外我看到一個是很辛苦的有一些這個國營的銀行每個月的
transcript.whisperx[9].start 214.355
transcript.whisperx[9].end 240.915
transcript.whisperx[9].text 餐飲費部長你知道他們一個月餐飲費多少錢是兩千是到三千吧七百塊你查一下有人是三千那個是民營的這個銀行辦公股銀行公股的銀行幾十年沒調他的餐飲費一個月是多少七百塊
transcript.whisperx[10].start 243.214
transcript.whisperx[10].end 271.328
transcript.whisperx[10].text 700塊的話部長那大概一天的話餐飲費是多少錢?30港?22天大概就是不到30塊部長那請問將心比心啊你如果是這些國營銀行的員工一天只有不到30塊的飲食用餐費你覺得這個夠嗎?
transcript.whisperx[11].start 274.238
transcript.whisperx[11].end 275.659
transcript.whisperx[11].text 這不是光光你現在你現在當部長
transcript.whisperx[12].start 302.495
transcript.whisperx[12].end 328.064
transcript.whisperx[12].text 那過去過去一年兩年三年四年我們是希望一個永續的經營團隊你現在做其實很重要我看到現在民間的這些聘用這些金融人員啊薪資啊又高福利條件又好所以你造成現在這個階段你入局啊你要招新人啊你招不到啦好的人招到也留不住啊
transcript.whisperx[13].start 329.141
transcript.whisperx[13].end 354.279
transcript.whisperx[13].text 你光是講這個餐飲費好了最基本的吃便當一想到他就沒有心情做下去了別人同樣同工同酬外面吃的是大魚大肉不要說大魚大肉就一個便當可能是150塊國營的這些銀行的人員每天面對中午吃便當是25塊不到30塊
transcript.whisperx[14].start 356.886
transcript.whisperx[14].end 358.867
transcript.whisperx[14].text 那另外一個就是川普的時代已經來臨了我覺得在這個總預算裡面是看起來都很保守
transcript.whisperx[15].start 385.424
transcript.whisperx[15].end 405.354
transcript.whisperx[15].text 那就是保守有餘開創不足比如說移政稅好了移政稅我們看到在去年度第3款地方政府遺產及贈與稅短少補助4億7千萬那
transcript.whisperx[16].start 413.652
transcript.whisperx[16].end 441.772
transcript.whisperx[16].text 其實一陣稅以前最低稅率是幾%10%目前是多少最低限率也是10%然後有15跟20有10、15、20不過如果說要鼓勵臺商或者更多的資金回來配合這個金管會彭主委推動的讓臺灣打造成為一個
transcript.whisperx[17].start 444.024
transcript.whisperx[17].end 456.553
transcript.whisperx[17].text 資產管理中心部長你需不需要更多的臺商或者世界的有錢人回來臺灣因為川普當選臺灣比較不會戰爭了吧這個句話對不對我們當然歡迎臺商回臺來投資是移政稅會不會重新再調整為10%
transcript.whisperx[18].start 467.389
transcript.whisperx[18].end 467.99
transcript.whisperx[18].text 新加坡有沒有移政稅?
transcript.whisperx[19].start 497.192
transcript.whisperx[19].end 520.164
transcript.whisperx[19].text 有沒有?新加坡沒有移政稅啊?香港有沒有移政稅?所以在這一個一個新的布局的稱號所以我說川普當選你有很多制度你應該去想一想是不是應該要充分的來討論一下我們希望愛台灣
transcript.whisperx[20].start 521.693
transcript.whisperx[20].end 545.628
transcript.whisperx[20].text 做大台灣做強台灣然後多多照顧這些年輕人你看看在新加坡新加坡啊他大學畢業平均的薪資大概是多少一畢業進入這些企業單位薪水是多少大概是八九萬九萬的新台幣
transcript.whisperx[21].start 546.923
transcript.whisperx[21].end 552.845
transcript.whisperx[21].text 好,我們現在公營這個機關的這些招新人員的時候,大學畢業考進來的話,底薪是多少?各個公司應該不太一樣,對。好,隨便你講兩間。臺營多少?臺營新進的員工?進菜啦,進菜講幾句。
transcript.whisperx[22].start 569.195
transcript.whisperx[22].end 574.7
transcript.whisperx[22].text 大學畢業剛考進來啦剛考進來應該4、5萬吧差不多吧4萬沒有到4萬啦你們大概是3萬多啦不管啦我的意思就是說你3萬多人家新加坡就是9萬人才大量的流失啊
transcript.whisperx[23].start 597.179
transcript.whisperx[23].end 622.39
transcript.whisperx[23].text 沒有的話你去調查看啊臺大職工系每次畢業的大概200個學生大概一半以上可能跑去香港跑去新加坡人才沒有留在臺灣不為臺灣的企業所留用好可惜啊所以部長希望你好好來思考一下包括川普當選以後國安基金現在的規模是多少
transcript.whisperx[24].start 623.659
transcript.whisperx[24].end 639.207
transcript.whisperx[24].text 目前是五千億五千億要不要思考調高到一兆以上讓台灣更有韌性讓台灣面對各種挑戰的時候可以更加從容的應付所以部長我覺得
transcript.whisperx[25].start 644.193
transcript.whisperx[25].end 671.058
transcript.whisperx[25].text 財政部部長不是只有管錢進出進出過路財神而已啊其實你的一舉一動可以帶動臺灣10年20年包括離島可能是一個長遠的一個發展所以拜託部長在稅制上好好思考一下怎麼樣對臺灣是最大的幫助包括剛剛所講的那個以外還有
transcript.whisperx[26].start 672.011
transcript.whisperx[26].end 694.245
transcript.whisperx[26].text 全世界沒有娛樂稅啊娛樂稅要不要重新調整還也有一個對你們稅收最穩定你們最開心的政交稅當沖現在的擠來不及當沖降稅現在已經快11月一晃就12月了你今年年底的日落條款就到了
transcript.whisperx[27].start 696.143
transcript.whisperx[27].end 721.6
transcript.whisperx[27].text 當沖降稅年底之前會不會過?你有沒有把握?目前案子在大院當然是由大院來進度是由大院我們也希望能夠在今年年底前能夠定案那明年才可以順利的舉動我們下午才要再協商而已協商要送到院會還要待多久的冷凍期啊所以希望部長可以思考一下剛剛以上本席所說的質詢加油謝謝
transcript.whisperx[28].start 725.63
transcript.whisperx[28].end 727.698
transcript.whisperx[28].text 謝謝劉委員 接著我們請鍾嘉斌委員
gazette.lineno 828
gazette.blocks[0][0] 羅委員明才:(11時15分)主席、各位委員、出列席官員,大家好。主席,有請財政部莊部長。
gazette.blocks[1][0] 主席:有請莊部長。
gazette.blocks[2][0] 莊部長翠雲:委員好。
gazette.blocks[3][0] 羅委員明才:莊部長,你看起來慈眉善目,最重要的還是要體恤所有老百姓的辛苦,現在物價飆漲,事實上很多基層的老百姓、很多年輕人是叫苦連天啊,一個便當以前六十、七十塊,現在一個便當可能就要130、150,實在是很辛苦。我們看到今年的稅收又超徵接近三、四千億,拜託,可不可以優先考量一下,把這個錢平均的發給每一個民眾1人1萬塊的紅包,拜託、拜託,好不好?
gazette.blocks[4][0] 莊部長翠雲:委員,我想這個部分,大家都很重視所謂的財政紀律,所以對於實徵數超過預算數的部分,我們會先從減少舉債、增加還債,然後納入歲計賸餘來做。委員剛剛提到,有些民眾生活的辛苦,我們認為進入國庫以後,再由國庫做資源的調配去幫助一些真的需要幫助的民眾。我們在社福支出上,事實上整個支出占了歲出大概有26%、27%,是占了最高,所以我們希望這個錢能夠給真正需要幫助的民眾,我想這個部分一直是政府努力在做的。
gazette.blocks[5][0] 羅委員明才:部長,上一次發了6,000塊,1萬塊,其實民眾很有感,因為總是聊勝於無,至少對年輕人來講心裡是很安定的,因為外在的環境變動,如果1萬塊放在自己的口袋裡又溫暖,冬天又到了,實際上又可以自己來支配使用,這才是對全民真正的照顧。我們在這裡審總預算,我們看到一筆下去國防支出可能就是五千億,甚至因為現在川普當選了,還叫我們要提高國防經費,那個都是天文數字。與其很快就通過這些民眾感覺不到的數字,倒不如回歸給民眾一點溫暖,本席在這裡還是再次拜託部長,你好好來斟酌一下。
gazette.blocks[6][0] 莊部長翠雲:謝謝委員。
gazette.blocks[7][0] 羅委員明才:現在川普當選了,事實上臺灣整個經濟的局勢上上下下,面對未來可能又有很大的衝擊跟變化,在114年的總預算裡面,有沒有什麼大環境改變的時候部長想要去做的?譬如說剛剛講到物價飆漲,所有的公股銀行今年的薪資會不會再調升,今年就是明年啦,會不會有這樣的準備?另外,我看到一個很辛苦的,有一些國營的銀行每個月的餐飲費,部長,你知道他們一個月餐飲費多少錢?
gazette.blocks[8][0] 莊部長翠雲:大概是2,400至到3,000吧?我知道……
gazette.blocks[9][0] 羅委員明才:700塊,你查一下,有人是3,000,那個是民營的銀行、半公股銀行,但公股銀行幾十年沒調,他的餐飲費一個月是多少?700塊。部長,700塊的話,大概一天的餐飲費是多少錢?30天。
gazette.blocks[10][0] 莊部長翠雲:除以22天,約三十幾塊。
gazette.blocks[11][0] 羅委員明才:就是不到30塊。部長,請將心比心,你如果是這些國營銀行的員工,一天只有不到30塊的飲食、用餐費,你覺得這個夠嗎?
gazette.blocks[12][0] 莊部長翠雲:跟委員報告,對於國營事業裡面的員工福利,有一些是由行政院統一規範的,有一些是公司內部可以去做思考的,比如說他們都有職工福利委員會,類似這樣的可以去做因應,我想這個部分涉及到……
gazette.blocks[13][0] 羅委員明才:不管嘛,你是大家長。
gazette.blocks[14][0] 莊部長翠雲:我當然是支持對於國營事業的員工在福利上應該多予照顧。
gazette.blocks[15][0] 羅委員明才:部長,你要照顧一下,因為這不是光光……你現在當部長,那過去一年、兩年、三年、四年,我們是希望一個永續的經營團隊,你現在做其實很重要,我看到現在民間聘用這些金融人員薪資又高,福利條件又好,所以造成現在這個階段你錄取、招新人,你招不到啦,好的人招到也留不住。光是講這個餐飲費好了,最基本的吃便當,一想到這個,他就沒有心情做下去了,別人同樣同工同酬,外面吃的是大魚大肉,不要說大魚大肉,一個便當可能是150塊,這些國營銀行的人員每天中午吃便當是25塊,不到30塊。部長,不到30塊要吃什麼?總不能每天吃泡麵吧!
gazette.blocks[16][0] 莊部長翠雲:國營事業、我們的相關機構要對員工的福利多予照顧,部裡面基本上是支持的。
gazette.blocks[17][0] 羅委員明才:好,謝謝,趕快想出一個方法來。另外一個就是川普的時代已經來臨了,我覺得在總預算裡面看起來都很保守,那就是保守有餘,開創不足。比如說遺贈稅好了,我們看到在去年度,書面報告(三)地方政府遺產及贈與稅短少補助4億7,000萬,其實遺贈稅以前最低稅率是幾%?
gazette.blocks[18][0] 莊部長翠雲:10%。
gazette.blocks[19][0] 羅委員明才:目前是多少?
gazette.blocks[20][0] 莊部長翠雲:最低稅率也是10%,然後有15%跟20%。
gazette.blocks[21][0] 羅委員明才:有10%、15%、20%?
gazette.blocks[22][0] 莊部長翠雲:對。
gazette.blocks[23][0] 羅委員明才:不過,如果說要鼓勵臺商或者更多的資金回來,配合金管會彭主委推動的,讓臺灣打造成為一個資產管理中心。部長,你需不需要更多的臺商或者世界的有錢人回來臺灣?因為川普當選,臺灣比較不會戰爭了吧!這句話對不對?
gazette.blocks[24][0] 莊部長翠雲:我們當然歡迎臺商回臺來投資。
gazette.blocks[25][0] 羅委員明才:遺贈稅會不會重新再調整為10%?
gazette.blocks[26][0] 莊部長翠雲:在遺贈稅裡面,上一次調高稅率以後,它的金額是會撥入到長照基金裡面去。
gazette.blocks[27][0] 羅委員明才:可是過去的歷史……
gazette.blocks[28][0] 莊部長翠雲:長照基金,我們人口老化的話,讓他們可以有更好的照顧。
gazette.blocks[29][0] 羅委員明才:比例低,回來的錢會更多啊!
gazette.blocks[30][0] 莊部長翠雲:對啊、是啊。
gazette.blocks[31][0] 羅委員明才:而且如果臺灣以後不會發生戰爭,那更應該要有另外一個思維。請問新加坡有沒有遺贈稅?
gazette.blocks[32][0] 莊部長翠雲:新加坡有沒有遺贈稅……
gazette.blocks[33][0] 羅委員明才:有沒有?
gazette.blocks[34][0] 宋署長秀玲:好像沒有。
gazette.blocks[35][0] 羅委員明才:新加坡沒有遺贈稅,香港有沒有遺贈稅?
gazette.blocks[36][0] 莊部長翠雲:每一個國家的稅制不同。
gazette.blocks[37][0] 羅委員明才:一個新的布局的參考,所以我說川普當選,有很多制度你應該去想一想,是不是應該要充分的來討論一下?我們希望愛臺灣、做大臺灣、做強臺灣,然後多多照顧這些年輕人。你看看在新加坡,新加坡大學畢業的平均薪資大概是多少?一畢業進入這些企業單位的薪水是多少?部長,大概是新臺幣八、九萬,那我們現在公營機關在招新人員的時候,大學畢業考進來的話,底薪是多少?
gazette.blocks[38][0] 莊部長翠雲:各個公司應該不太一樣。
gazette.blocks[39][0] 羅委員明才:隨便你講兩間,臺銀多少?臺銀新進的員工,你隨便講幾間。
gazette.blocks[40][0] 莊部長翠雲:隨便講?
gazette.blocks[41][0] 羅委員明才:你認真講,土銀的話是多少?
gazette.blocks[42][0] 莊部長翠雲:跟他進來的階級也有不同。
gazette.blocks[43][0] 羅委員明才:沒有,大學畢業剛考進來啦。
gazette.blocks[44][0] 莊部長翠雲:剛考進來應該差不多四、五萬吧!
gazette.blocks[45][0] 羅委員明才:幾萬?
gazette.blocks[46][0] 莊部長翠雲:4萬。
gazette.blocks[47][0] 羅委員明才:沒有到4萬,你們大概是三萬多,不管啦,我的意思就是說,你們是三萬多,人家新加坡薪水是9萬,人才大量的流失,不然你去查查看啊,臺大資工系每次畢業大概200個學生,大概一半以上可能跑去香港、跑去新加坡,人才沒有留在臺灣,不為臺灣的企業所留用,好可惜,所以希望部長好好來思考一下,包括川普當選以後,國安基金現在的規模是多少?
gazette.blocks[48][0] 莊部長翠雲:目前是5,000億。
gazette.blocks[49][0] 羅委員明才:5,000億,要不要思考調高到1兆以上,讓臺灣更有韌性,讓臺灣面對各種挑戰的時候,可以更加從容的應付?所以部長,我覺得財政部部長不是只有管錢進出,過路財神而已,其實你的一舉一動可以帶動臺灣10年、20年,包括離島,可能是一個長遠的發展,所以拜託部長在稅制上好好思考一下,怎麼樣對臺灣是最大的幫助。包括剛剛所講的以外,還有全世界沒有娛樂稅,那娛樂稅要不要重新調整?還有一個,對你們稅收最穩定、你們最開心的證交稅,當沖現在來得及、來不及?當沖降稅,現在已經快11月,一晃就12月了,你今年年底的日落條款就到了,當沖降稅年底之前會不會過?你有沒有把握?
gazette.blocks[50][0] 莊部長翠雲:目前案子在大院,當然是由大院來……進度是由大院……我們也希望在今年年底以前能夠定案,明年才可以順利推動。
gazette.blocks[51][0] 羅委員明才:快來不及了,我們下午才要再協商而已,協商要送到院會,還要多久的冷凍期?所以希望部長可以思考一下以上本席的質詢,加油!謝謝。
gazette.blocks[52][0] 莊部長翠雲:謝謝委員的期許,謝謝。
gazette.blocks[53][0] 主席:謝謝羅委員,接著我們請鍾佳濱委員。
gazette.agenda.page_end 212
gazette.agenda.meet_id 委員會-11-2-20-9
gazette.agenda.speakers[0] 陳玉珍
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 郭國文
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 王鴻薇
gazette.agenda.speakers[7] 顏寬恒
gazette.agenda.speakers[8] 李坤城
gazette.agenda.speakers[9] 李彥秀
gazette.agenda.speakers[10] 羅明才
gazette.agenda.speakers[11] 鍾佳濱
gazette.agenda.speakers[12] 黃珊珊
gazette.agenda.speakers[13] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[14] 王世堅
gazette.agenda.page_start 133
gazette.agenda.meetingDate[0] 2024-11-18
gazette.agenda.gazette_id 11310101
gazette.agenda.agenda_lcidc_ids[0] 11310101_00004
gazette.agenda.meet_name 立法院第11屆第2會期財政委員會第9次全體委員會議紀錄
gazette.agenda.content 審查中華民國114年度中央政府總預算案有關財政部賦稅署、臺北國稅局、高雄國稅局、北區國 稅局及所屬、中區國稅局及所屬、南區國稅局及所屬、關務署及所屬、國有財產署及所屬歲出預 算部分暨融資財源調度(僅詢答)
gazette.agenda.agenda_id 11310101_00003