IVOD_ID |
157023 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/157023 |
日期 |
2024-11-18 |
會議資料.會議代碼 |
委員會-11-2-20-9 |
會議資料.會議代碼:str |
第11屆第2會期財政委員會第9次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
2 |
會議資料.會次 |
9 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第2會期財政委員會第9次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-11-18T11:15:45+08:00 |
結束時間 |
2024-11-18T11:27:58+08:00 |
影片長度 |
00:12:13 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/37ff27132e477e87030d144f5d21d2de06883678c1ed2d0dd5656bc25be71a6763ac7a6a43004f445ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
羅明才 |
委員發言時間 |
11:15:45 - 11:27:58 |
會議時間 |
2024-11-18T09:00:00+08:00 |
會議名稱 |
立法院第11屆第2會期財政委員會第9次全體委員會議(事由:審查中華民國114年度中央政府總預算案有關財政部賦稅署、臺北國稅局、高雄國稅局、北區國稅局及所屬、中區國稅局及所屬、南區國稅局及所屬、關務署及所屬、國有財產署及所屬歲出預算部分暨融資財源調度。(僅詢答)
【預算提案截止時間:11月25日(一)中午12時】) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.36846875 |
transcript.pyannote[0].end |
1.02659375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
1.07721875 |
transcript.pyannote[1].end |
1.36409375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
1.46534375 |
transcript.pyannote[2].end |
2.35971875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
6.17346875 |
transcript.pyannote[3].end |
6.74721875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
6.74721875 |
transcript.pyannote[4].end |
7.37159375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
7.79346875 |
transcript.pyannote[5].end |
9.81846875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
10.39221875 |
transcript.pyannote[6].end |
15.06659375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
15.58971875 |
transcript.pyannote[7].end |
16.93971875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
17.96909375 |
transcript.pyannote[8].end |
23.41971875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
23.89221875 |
transcript.pyannote[9].end |
26.72721875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
27.13221875 |
transcript.pyannote[10].end |
31.01346875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
31.85721875 |
transcript.pyannote[11].end |
44.36159375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
44.88471875 |
transcript.pyannote[12].end |
45.42471875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
46.55534375 |
transcript.pyannote[13].end |
49.71096875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
50.23409375 |
transcript.pyannote[14].end |
50.72346875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
51.04409375 |
transcript.pyannote[15].end |
54.19971875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
55.56659375 |
transcript.pyannote[16].end |
93.97409375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
92.35409375 |
transcript.pyannote[17].end |
92.96159375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
93.73784375 |
transcript.pyannote[18].end |
98.81721875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
99.18846875 |
transcript.pyannote[19].end |
99.77909375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
100.15034375 |
transcript.pyannote[20].end |
107.67659375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
107.77784375 |
transcript.pyannote[21].end |
108.70596875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
109.00971875 |
transcript.pyannote[22].end |
109.02659375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
109.09409375 |
transcript.pyannote[23].end |
110.86596875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
111.40596875 |
transcript.pyannote[24].end |
112.04721875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
112.26659375 |
transcript.pyannote[25].end |
113.11034375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
113.21159375 |
transcript.pyannote[26].end |
123.21846875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
123.53909375 |
transcript.pyannote[27].end |
125.85096875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
126.12096875 |
transcript.pyannote[28].end |
129.49596875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
129.78284375 |
transcript.pyannote[29].end |
134.59221875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
134.82846875 |
transcript.pyannote[30].end |
137.32596875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
137.71409375 |
transcript.pyannote[31].end |
140.98784375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
141.44346875 |
transcript.pyannote[32].end |
143.02971875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
143.73846875 |
transcript.pyannote[33].end |
144.14346875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
144.78471875 |
transcript.pyannote[34].end |
145.44284375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
146.11784375 |
transcript.pyannote[35].end |
146.69159375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
147.67034375 |
transcript.pyannote[36].end |
148.96971875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
148.98659375 |
transcript.pyannote[37].end |
149.69534375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
149.84721875 |
transcript.pyannote[38].end |
151.51784375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
151.95659375 |
transcript.pyannote[39].end |
153.13784375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
154.15034375 |
transcript.pyannote[40].end |
161.91284375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
162.57096875 |
transcript.pyannote[41].end |
163.17846875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
162.72284375 |
transcript.pyannote[42].end |
163.02659375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
164.35971875 |
transcript.pyannote[43].end |
164.93346875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
165.28784375 |
transcript.pyannote[44].end |
166.01346875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
166.51971875 |
transcript.pyannote[45].end |
171.51471875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
171.68346875 |
transcript.pyannote[46].end |
177.11721875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
177.60659375 |
transcript.pyannote[47].end |
181.52159375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
182.04471875 |
transcript.pyannote[48].end |
183.27659375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
183.37784375 |
transcript.pyannote[49].end |
185.18346875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
185.63909375 |
transcript.pyannote[50].end |
187.15784375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
187.83284375 |
transcript.pyannote[51].end |
188.49096875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
189.06471875 |
transcript.pyannote[52].end |
189.92534375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
190.46534375 |
transcript.pyannote[53].end |
191.08971875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
191.47784375 |
transcript.pyannote[54].end |
192.00096875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
192.59159375 |
transcript.pyannote[55].end |
193.92471875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
194.05971875 |
transcript.pyannote[56].end |
196.03409375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
197.51909375 |
transcript.pyannote[57].end |
201.61971875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
202.12596875 |
transcript.pyannote[58].end |
202.75034375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
203.12159375 |
transcript.pyannote[59].end |
204.43784375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
205.29846875 |
transcript.pyannote[60].end |
206.37846875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
206.80034375 |
transcript.pyannote[61].end |
207.82971875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
208.11659375 |
transcript.pyannote[62].end |
208.89284375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
209.31471875 |
transcript.pyannote[63].end |
210.42846875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
211.87971875 |
transcript.pyannote[64].end |
212.58846875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
213.04409375 |
transcript.pyannote[65].end |
213.38159375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
214.27596875 |
transcript.pyannote[66].end |
215.13659375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
215.52471875 |
transcript.pyannote[67].end |
218.05596875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
219.57471875 |
transcript.pyannote[68].end |
222.91596875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
223.45596875 |
transcript.pyannote[69].end |
224.45159375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
224.45159375 |
transcript.pyannote[70].end |
224.46846875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
224.82284375 |
transcript.pyannote[71].end |
226.12221875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
226.78034375 |
transcript.pyannote[72].end |
230.35784375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
230.77971875 |
transcript.pyannote[73].end |
232.04534375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
232.65284375 |
transcript.pyannote[74].end |
234.34034375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
235.09971875 |
transcript.pyannote[75].end |
236.51721875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
237.34409375 |
transcript.pyannote[76].end |
238.62659375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
239.14971875 |
transcript.pyannote[77].end |
240.14534375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
240.56721875 |
transcript.pyannote[78].end |
241.44471875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
242.65971875 |
transcript.pyannote[79].end |
243.72284375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
243.77346875 |
transcript.pyannote[80].end |
244.29659375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
244.58346875 |
transcript.pyannote[81].end |
247.23284375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
248.43096875 |
transcript.pyannote[82].end |
249.07221875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
250.27034375 |
transcript.pyannote[83].end |
250.81034375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
250.82721875 |
transcript.pyannote[84].end |
252.19409375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
252.64971875 |
transcript.pyannote[85].end |
253.37534375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
252.68346875 |
transcript.pyannote[86].end |
253.78034375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
253.96596875 |
transcript.pyannote[87].end |
260.26034375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
256.09221875 |
transcript.pyannote[88].end |
256.46346875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
260.47971875 |
transcript.pyannote[89].end |
260.91846875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
261.18846875 |
transcript.pyannote[90].end |
263.26409375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
264.36096875 |
transcript.pyannote[91].end |
264.98534375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
265.37346875 |
transcript.pyannote[92].end |
266.04846875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
266.58846875 |
transcript.pyannote[93].end |
268.46159375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
268.86659375 |
transcript.pyannote[94].end |
272.24159375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
274.04721875 |
transcript.pyannote[95].end |
291.05721875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
289.84221875 |
transcript.pyannote[96].end |
292.27221875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
292.23846875 |
transcript.pyannote[97].end |
298.41471875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
294.68534375 |
transcript.pyannote[98].end |
296.28846875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
296.92971875 |
transcript.pyannote[99].end |
297.70596875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
298.41471875 |
transcript.pyannote[100].end |
308.79284375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
309.18096875 |
transcript.pyannote[101].end |
311.34096875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
311.54346875 |
transcript.pyannote[102].end |
313.51784375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
313.87221875 |
transcript.pyannote[103].end |
316.87596875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
317.56784375 |
transcript.pyannote[104].end |
318.31034375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
318.47909375 |
transcript.pyannote[105].end |
319.81221875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
320.36909375 |
transcript.pyannote[106].end |
328.26659375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
329.07659375 |
transcript.pyannote[107].end |
331.50659375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
331.87784375 |
transcript.pyannote[108].end |
334.66221875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
335.30346875 |
transcript.pyannote[109].end |
337.12596875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
337.39596875 |
transcript.pyannote[110].end |
346.49159375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
347.30159375 |
transcript.pyannote[111].end |
348.36471875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
349.12409375 |
transcript.pyannote[112].end |
349.78221875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
350.27159375 |
transcript.pyannote[113].end |
351.36846875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
351.90846875 |
transcript.pyannote[114].end |
354.87846875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
355.16534375 |
transcript.pyannote[115].end |
356.14409375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
356.86971875 |
transcript.pyannote[116].end |
359.16471875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
359.78909375 |
transcript.pyannote[117].end |
361.32471875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
364.22721875 |
transcript.pyannote[118].end |
371.43284375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
370.25159375 |
transcript.pyannote[119].end |
373.93034375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
374.45346875 |
transcript.pyannote[120].end |
381.47346875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
382.11471875 |
transcript.pyannote[121].end |
384.46034375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
385.37159375 |
transcript.pyannote[122].end |
385.96221875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
386.36721875 |
transcript.pyannote[123].end |
387.24471875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
387.46409375 |
transcript.pyannote[124].end |
388.08846875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
388.96596875 |
transcript.pyannote[125].end |
389.53971875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
390.07971875 |
transcript.pyannote[126].end |
390.55221875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
391.48034375 |
transcript.pyannote[127].end |
392.07096875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
393.31971875 |
transcript.pyannote[128].end |
394.24784375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
395.07471875 |
transcript.pyannote[129].end |
395.73284375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
396.22221875 |
transcript.pyannote[130].end |
397.08284375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
397.31909375 |
transcript.pyannote[131].end |
398.48346875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
399.10784375 |
transcript.pyannote[132].end |
399.95159375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
400.10346875 |
transcript.pyannote[133].end |
401.57159375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
402.53346875 |
transcript.pyannote[134].end |
403.66409375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
403.98471875 |
transcript.pyannote[135].end |
406.11096875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
406.83659375 |
transcript.pyannote[136].end |
407.17409375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
407.96721875 |
transcript.pyannote[137].end |
410.86971875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
412.38846875 |
transcript.pyannote[138].end |
412.86096875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
413.56971875 |
transcript.pyannote[139].end |
414.32909375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
414.58221875 |
transcript.pyannote[140].end |
415.29096875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
415.84784375 |
transcript.pyannote[141].end |
416.45534375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
416.67471875 |
transcript.pyannote[142].end |
417.99096875 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
419.23971875 |
transcript.pyannote[143].end |
419.83034375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
420.08346875 |
transcript.pyannote[144].end |
421.06221875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
421.24784375 |
transcript.pyannote[145].end |
424.35284375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
424.40346875 |
transcript.pyannote[146].end |
426.12471875 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
426.19221875 |
transcript.pyannote[147].end |
426.44534375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
426.61409375 |
transcript.pyannote[148].end |
428.33534375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
428.67284375 |
transcript.pyannote[149].end |
431.96346875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
432.57096875 |
transcript.pyannote[150].end |
434.41034375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
435.16971875 |
transcript.pyannote[151].end |
435.82784375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
436.28346875 |
transcript.pyannote[152].end |
437.85284375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
439.21971875 |
transcript.pyannote[153].end |
440.09721875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
440.62034375 |
transcript.pyannote[154].end |
442.27409375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
443.38784375 |
transcript.pyannote[155].end |
444.90659375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
445.73346875 |
transcript.pyannote[156].end |
446.20596875 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
446.56034375 |
transcript.pyannote[157].end |
451.92659375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
452.63534375 |
transcript.pyannote[158].end |
453.15846875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
453.47909375 |
transcript.pyannote[159].end |
454.37346875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
455.26784375 |
transcript.pyannote[160].end |
456.75284375 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
458.15346875 |
transcript.pyannote[161].end |
459.43596875 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
460.75221875 |
transcript.pyannote[162].end |
464.49846875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
464.44784375 |
transcript.pyannote[163].end |
467.19846875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
467.29971875 |
transcript.pyannote[164].end |
475.78784375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
476.54721875 |
transcript.pyannote[165].end |
478.77471875 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
477.67784375 |
transcript.pyannote[166].end |
482.84159375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
481.18784375 |
transcript.pyannote[167].end |
484.12409375 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
484.47846875 |
transcript.pyannote[168].end |
485.59221875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
485.45721875 |
transcript.pyannote[169].end |
486.03096875 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
486.28409375 |
transcript.pyannote[170].end |
486.90846875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
487.71846875 |
transcript.pyannote[171].end |
493.89471875 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
494.68784375 |
transcript.pyannote[172].end |
495.93659375 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
495.97034375 |
transcript.pyannote[173].end |
496.02096875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
497.13471875 |
transcript.pyannote[174].end |
497.55659375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
498.99096875 |
transcript.pyannote[175].end |
500.39159375 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
501.15096875 |
transcript.pyannote[176].end |
502.41659375 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
504.15471875 |
transcript.pyannote[177].end |
504.61034375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
504.22221875 |
transcript.pyannote[178].end |
504.77909375 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
505.06596875 |
transcript.pyannote[179].end |
506.06159375 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
505.75784375 |
transcript.pyannote[180].end |
508.45784375 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
507.76596875 |
transcript.pyannote[181].end |
511.76534375 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
512.06909375 |
transcript.pyannote[182].end |
512.74409375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
513.11534375 |
transcript.pyannote[183].end |
515.00534375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
515.86596875 |
transcript.pyannote[184].end |
517.65471875 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
518.07659375 |
transcript.pyannote[185].end |
519.00471875 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
519.59534375 |
transcript.pyannote[186].end |
520.86096875 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
521.62034375 |
transcript.pyannote[187].end |
522.73409375 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
522.97034375 |
transcript.pyannote[188].end |
528.28596875 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
528.82596875 |
transcript.pyannote[189].end |
529.87221875 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
530.29409375 |
transcript.pyannote[190].end |
532.08284375 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
532.70721875 |
transcript.pyannote[191].end |
534.47909375 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
535.77846875 |
transcript.pyannote[192].end |
539.81159375 |
transcript.pyannote[193].speaker |
SPEAKER_01 |
transcript.pyannote[193].start |
541.43159375 |
transcript.pyannote[193].end |
542.30909375 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
542.05596875 |
transcript.pyannote[194].end |
542.51159375 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
542.95034375 |
transcript.pyannote[195].end |
546.03846875 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
546.86534375 |
transcript.pyannote[196].end |
555.65721875 |
transcript.pyannote[197].speaker |
SPEAKER_00 |
transcript.pyannote[197].start |
556.39971875 |
transcript.pyannote[197].end |
557.29409375 |
transcript.pyannote[198].speaker |
SPEAKER_01 |
transcript.pyannote[198].start |
559.63971875 |
transcript.pyannote[198].end |
561.74909375 |
transcript.pyannote[199].speaker |
SPEAKER_00 |
transcript.pyannote[199].start |
561.58034375 |
transcript.pyannote[199].end |
562.94721875 |
transcript.pyannote[200].speaker |
SPEAKER_00 |
transcript.pyannote[200].start |
564.26346875 |
transcript.pyannote[200].end |
566.69346875 |
transcript.pyannote[201].speaker |
SPEAKER_00 |
transcript.pyannote[201].start |
567.09846875 |
transcript.pyannote[201].end |
568.70159375 |
transcript.pyannote[202].speaker |
SPEAKER_01 |
transcript.pyannote[202].start |
569.12346875 |
transcript.pyannote[202].end |
571.50284375 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
570.13596875 |
transcript.pyannote[203].end |
573.25784375 |
transcript.pyannote[204].speaker |
SPEAKER_01 |
transcript.pyannote[204].start |
571.94159375 |
transcript.pyannote[204].end |
576.63284375 |
transcript.pyannote[205].speaker |
SPEAKER_00 |
transcript.pyannote[205].start |
575.51909375 |
transcript.pyannote[205].end |
577.52721875 |
transcript.pyannote[206].speaker |
SPEAKER_01 |
transcript.pyannote[206].start |
577.37534375 |
transcript.pyannote[206].end |
583.38284375 |
transcript.pyannote[207].speaker |
SPEAKER_00 |
transcript.pyannote[207].start |
580.00784375 |
transcript.pyannote[207].end |
580.68284375 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
582.13409375 |
transcript.pyannote[208].end |
585.54284375 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
586.36971875 |
transcript.pyannote[209].end |
595.93784375 |
transcript.pyannote[210].speaker |
SPEAKER_00 |
transcript.pyannote[210].start |
597.11909375 |
transcript.pyannote[210].end |
600.59534375 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
601.08471875 |
transcript.pyannote[211].end |
612.15471875 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
612.52596875 |
transcript.pyannote[212].end |
613.60596875 |
transcript.pyannote[213].speaker |
SPEAKER_00 |
transcript.pyannote[213].start |
614.55096875 |
transcript.pyannote[213].end |
617.03159375 |
transcript.pyannote[214].speaker |
SPEAKER_00 |
transcript.pyannote[214].start |
617.20034375 |
transcript.pyannote[214].end |
618.02721875 |
transcript.pyannote[215].speaker |
SPEAKER_00 |
transcript.pyannote[215].start |
618.19596875 |
transcript.pyannote[215].end |
619.56284375 |
transcript.pyannote[216].speaker |
SPEAKER_00 |
transcript.pyannote[216].start |
619.93409375 |
transcript.pyannote[216].end |
622.56659375 |
transcript.pyannote[217].speaker |
SPEAKER_01 |
transcript.pyannote[217].start |
623.29221875 |
transcript.pyannote[217].end |
625.40159375 |
transcript.pyannote[218].speaker |
SPEAKER_00 |
transcript.pyannote[218].start |
625.18221875 |
transcript.pyannote[218].end |
629.14784375 |
transcript.pyannote[219].speaker |
SPEAKER_00 |
transcript.pyannote[219].start |
630.22784375 |
transcript.pyannote[219].end |
631.86471875 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
632.99534375 |
transcript.pyannote[220].end |
633.83909375 |
transcript.pyannote[221].speaker |
SPEAKER_00 |
transcript.pyannote[221].start |
634.27784375 |
transcript.pyannote[221].end |
636.47159375 |
transcript.pyannote[222].speaker |
SPEAKER_00 |
transcript.pyannote[222].start |
636.92721875 |
transcript.pyannote[222].end |
637.55159375 |
transcript.pyannote[223].speaker |
SPEAKER_00 |
transcript.pyannote[223].start |
637.75409375 |
transcript.pyannote[223].end |
639.20534375 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
640.72409375 |
transcript.pyannote[224].end |
641.29784375 |
transcript.pyannote[225].speaker |
SPEAKER_00 |
transcript.pyannote[225].start |
641.87159375 |
transcript.pyannote[225].end |
643.18784375 |
transcript.pyannote[226].speaker |
SPEAKER_00 |
transcript.pyannote[226].start |
644.03159375 |
transcript.pyannote[226].end |
659.33721875 |
transcript.pyannote[227].speaker |
SPEAKER_00 |
transcript.pyannote[227].start |
659.84346875 |
transcript.pyannote[227].end |
666.62721875 |
transcript.pyannote[228].speaker |
SPEAKER_00 |
transcript.pyannote[228].start |
667.31909375 |
transcript.pyannote[228].end |
668.24721875 |
transcript.pyannote[229].speaker |
SPEAKER_00 |
transcript.pyannote[229].start |
668.43284375 |
transcript.pyannote[229].end |
670.55909375 |
transcript.pyannote[230].speaker |
SPEAKER_00 |
transcript.pyannote[230].start |
670.77846875 |
transcript.pyannote[230].end |
671.26784375 |
transcript.pyannote[231].speaker |
SPEAKER_00 |
transcript.pyannote[231].start |
671.97659375 |
transcript.pyannote[231].end |
673.47846875 |
transcript.pyannote[232].speaker |
SPEAKER_00 |
transcript.pyannote[232].start |
673.98471875 |
transcript.pyannote[232].end |
674.72721875 |
transcript.pyannote[233].speaker |
SPEAKER_00 |
transcript.pyannote[233].start |
675.09846875 |
transcript.pyannote[233].end |
676.36409375 |
transcript.pyannote[234].speaker |
SPEAKER_00 |
transcript.pyannote[234].start |
676.76909375 |
transcript.pyannote[234].end |
680.80221875 |
transcript.pyannote[235].speaker |
SPEAKER_00 |
transcript.pyannote[235].start |
681.13971875 |
transcript.pyannote[235].end |
681.91596875 |
transcript.pyannote[236].speaker |
SPEAKER_00 |
transcript.pyannote[236].start |
682.70909375 |
transcript.pyannote[236].end |
684.31221875 |
transcript.pyannote[237].speaker |
SPEAKER_00 |
transcript.pyannote[237].start |
684.63284375 |
transcript.pyannote[237].end |
689.15534375 |
transcript.pyannote[238].speaker |
SPEAKER_00 |
transcript.pyannote[238].start |
690.04971875 |
transcript.pyannote[238].end |
691.04534375 |
transcript.pyannote[239].speaker |
SPEAKER_00 |
transcript.pyannote[239].start |
691.50096875 |
transcript.pyannote[239].end |
692.07471875 |
transcript.pyannote[240].speaker |
SPEAKER_00 |
transcript.pyannote[240].start |
692.53034375 |
transcript.pyannote[240].end |
694.38659375 |
transcript.pyannote[241].speaker |
SPEAKER_00 |
transcript.pyannote[241].start |
695.16284375 |
transcript.pyannote[241].end |
699.01034375 |
transcript.pyannote[242].speaker |
SPEAKER_01 |
transcript.pyannote[242].start |
699.01034375 |
transcript.pyannote[242].end |
708.59534375 |
transcript.pyannote[243].speaker |
SPEAKER_00 |
transcript.pyannote[243].start |
706.73909375 |
transcript.pyannote[243].end |
714.87284375 |
transcript.pyannote[244].speaker |
SPEAKER_01 |
transcript.pyannote[244].start |
710.16471875 |
transcript.pyannote[244].end |
711.51471875 |
transcript.pyannote[245].speaker |
SPEAKER_00 |
transcript.pyannote[245].start |
715.34534375 |
transcript.pyannote[245].end |
720.69471875 |
transcript.pyannote[246].speaker |
SPEAKER_00 |
transcript.pyannote[246].start |
721.31909375 |
transcript.pyannote[246].end |
722.17971875 |
transcript.pyannote[247].speaker |
SPEAKER_01 |
transcript.pyannote[247].start |
721.43721875 |
transcript.pyannote[247].end |
723.39471875 |
transcript.pyannote[248].speaker |
SPEAKER_01 |
transcript.pyannote[248].start |
725.09909375 |
transcript.pyannote[248].end |
726.11159375 |
transcript.pyannote[249].speaker |
SPEAKER_01 |
transcript.pyannote[249].start |
726.51659375 |
transcript.pyannote[249].end |
727.84971875 |
transcript.whisperx[0].start |
0.669 |
transcript.whisperx[0].end |
26.26 |
transcript.whisperx[0].text |
莊部長有請莊部長莊部長委員好你看起來慈眉善目最重要的還是要體恤所有老百姓的辛苦現在物價飆漲事實上很多基層的老百姓很多年輕人是叫苦連天一個便當以前六七十塊 |
transcript.whisperx[1].start |
27.322 |
transcript.whisperx[1].end |
53.911 |
transcript.whisperx[1].text |
現在一個便當可能就要130、150實在是很辛苦所以我們看到今年的稅收又超徵接近快三四千億拜託可不可以優先考量一下把這個錢平均的發給每一個民眾一人一萬塊的紅包拜託拜託好不好 |
transcript.whisperx[2].start |
56.353 |
transcript.whisperx[2].end |
60.9 |
transcript.whisperx[2].text |
我想這個部分大家都很重視所謂的財政紀律所以這個部分對於時增數超過預算數的部分我們會先從減少舉債增加還債 |
transcript.whisperx[3].start |
67.148 |
transcript.whisperx[3].end |
67.288 |
transcript.whisperx[3].text |
上一次啊 |
transcript.whisperx[4].start |
95.064 |
transcript.whisperx[4].end |
111.649 |
transcript.whisperx[4].text |
發了6千塊、1萬塊其實民眾很有感因為總是聊勝於無那至少對年輕人來講心裡是很安定的因為外在的環境變動如果1萬塊 |
transcript.whisperx[5].start |
113.359 |
transcript.whisperx[5].end |
142.498 |
transcript.whisperx[5].text |
放在自己的口袋裡又溫暖冬天又到了實際上又可以自己來支配使用這才是對全民真正的照顧我們在這裡審總預算我們看到一筆下去國防支出可能就是5000億甚至因為現在川普當選了還叫我們要提高國防軍費那個都是天文數字 |
transcript.whisperx[6].start |
143.799 |
transcript.whisperx[6].end |
158.972 |
transcript.whisperx[6].text |
那與其很快就通過這些民眾感覺不到的這個數字倒不如回歸給一點溫暖給民眾本席在這裡還是再次拜託部長你好好來審酌一下現在 |
transcript.whisperx[7].start |
164.417 |
transcript.whisperx[7].end |
187.058 |
transcript.whisperx[7].text |
川普當選了那事實上臺灣的整個經濟的局勢上上下下面對未來可能又有很大的衝擊跟變化那在114年的總預算裡面有沒有什麼樣大環境改變的時候部長想要去做的 |
transcript.whisperx[8].start |
187.878 |
transcript.whisperx[8].end |
209.713 |
transcript.whisperx[8].text |
比如說剛剛講到物價飆漲所有的公股銀行今年的薪資會不會再調升今年就是明年了會不會有這樣的一個準備另外我看到一個是很辛苦的有一些這個國營的銀行每個月的 |
transcript.whisperx[9].start |
214.355 |
transcript.whisperx[9].end |
240.915 |
transcript.whisperx[9].text |
餐飲費部長你知道他們一個月餐飲費多少錢是兩千是到三千吧七百塊你查一下有人是三千那個是民營的這個銀行辦公股銀行公股的銀行幾十年沒調他的餐飲費一個月是多少七百塊 |
transcript.whisperx[10].start |
243.214 |
transcript.whisperx[10].end |
271.328 |
transcript.whisperx[10].text |
700塊的話部長那大概一天的話餐飲費是多少錢?30港?22天大概就是不到30塊部長那請問將心比心啊你如果是這些國營銀行的員工一天只有不到30塊的飲食用餐費你覺得這個夠嗎? |
transcript.whisperx[11].start |
274.238 |
transcript.whisperx[11].end |
275.659 |
transcript.whisperx[11].text |
這不是光光你現在你現在當部長 |
transcript.whisperx[12].start |
302.495 |
transcript.whisperx[12].end |
328.064 |
transcript.whisperx[12].text |
那過去過去一年兩年三年四年我們是希望一個永續的經營團隊你現在做其實很重要我看到現在民間的這些聘用這些金融人員啊薪資啊又高福利條件又好所以你造成現在這個階段你入局啊你要招新人啊你招不到啦好的人招到也留不住啊 |
transcript.whisperx[13].start |
329.141 |
transcript.whisperx[13].end |
354.279 |
transcript.whisperx[13].text |
你光是講這個餐飲費好了最基本的吃便當一想到他就沒有心情做下去了別人同樣同工同酬外面吃的是大魚大肉不要說大魚大肉就一個便當可能是150塊國營的這些銀行的人員每天面對中午吃便當是25塊不到30塊 |
transcript.whisperx[14].start |
356.886 |
transcript.whisperx[14].end |
358.867 |
transcript.whisperx[14].text |
那另外一個就是川普的時代已經來臨了我覺得在這個總預算裡面是看起來都很保守 |
transcript.whisperx[15].start |
385.424 |
transcript.whisperx[15].end |
405.354 |
transcript.whisperx[15].text |
那就是保守有餘開創不足比如說移政稅好了移政稅我們看到在去年度第3款地方政府遺產及贈與稅短少補助4億7千萬那 |
transcript.whisperx[16].start |
413.652 |
transcript.whisperx[16].end |
441.772 |
transcript.whisperx[16].text |
其實一陣稅以前最低稅率是幾%10%目前是多少最低限率也是10%然後有15跟20有10、15、20不過如果說要鼓勵臺商或者更多的資金回來配合這個金管會彭主委推動的讓臺灣打造成為一個 |
transcript.whisperx[17].start |
444.024 |
transcript.whisperx[17].end |
456.553 |
transcript.whisperx[17].text |
資產管理中心部長你需不需要更多的臺商或者世界的有錢人回來臺灣因為川普當選臺灣比較不會戰爭了吧這個句話對不對我們當然歡迎臺商回臺來投資是移政稅會不會重新再調整為10% |
transcript.whisperx[18].start |
467.389 |
transcript.whisperx[18].end |
467.99 |
transcript.whisperx[18].text |
新加坡有沒有移政稅? |
transcript.whisperx[19].start |
497.192 |
transcript.whisperx[19].end |
520.164 |
transcript.whisperx[19].text |
有沒有?新加坡沒有移政稅啊?香港有沒有移政稅?所以在這一個一個新的布局的稱號所以我說川普當選你有很多制度你應該去想一想是不是應該要充分的來討論一下我們希望愛台灣 |
transcript.whisperx[20].start |
521.693 |
transcript.whisperx[20].end |
545.628 |
transcript.whisperx[20].text |
做大台灣做強台灣然後多多照顧這些年輕人你看看在新加坡新加坡啊他大學畢業平均的薪資大概是多少一畢業進入這些企業單位薪水是多少大概是八九萬九萬的新台幣 |
transcript.whisperx[21].start |
546.923 |
transcript.whisperx[21].end |
552.845 |
transcript.whisperx[21].text |
好,我們現在公營這個機關的這些招新人員的時候,大學畢業考進來的話,底薪是多少?各個公司應該不太一樣,對。好,隨便你講兩間。臺營多少?臺營新進的員工?進菜啦,進菜講幾句。 |
transcript.whisperx[22].start |
569.195 |
transcript.whisperx[22].end |
574.7 |
transcript.whisperx[22].text |
大學畢業剛考進來啦剛考進來應該4、5萬吧差不多吧4萬沒有到4萬啦你們大概是3萬多啦不管啦我的意思就是說你3萬多人家新加坡就是9萬人才大量的流失啊 |
transcript.whisperx[23].start |
597.179 |
transcript.whisperx[23].end |
622.39 |
transcript.whisperx[23].text |
沒有的話你去調查看啊臺大職工系每次畢業的大概200個學生大概一半以上可能跑去香港跑去新加坡人才沒有留在臺灣不為臺灣的企業所留用好可惜啊所以部長希望你好好來思考一下包括川普當選以後國安基金現在的規模是多少 |
transcript.whisperx[24].start |
623.659 |
transcript.whisperx[24].end |
639.207 |
transcript.whisperx[24].text |
目前是五千億五千億要不要思考調高到一兆以上讓台灣更有韌性讓台灣面對各種挑戰的時候可以更加從容的應付所以部長我覺得 |
transcript.whisperx[25].start |
644.193 |
transcript.whisperx[25].end |
671.058 |
transcript.whisperx[25].text |
財政部部長不是只有管錢進出進出過路財神而已啊其實你的一舉一動可以帶動臺灣10年20年包括離島可能是一個長遠的一個發展所以拜託部長在稅制上好好思考一下怎麼樣對臺灣是最大的幫助包括剛剛所講的那個以外還有 |
transcript.whisperx[26].start |
672.011 |
transcript.whisperx[26].end |
694.245 |
transcript.whisperx[26].text |
全世界沒有娛樂稅啊娛樂稅要不要重新調整還也有一個對你們稅收最穩定你們最開心的政交稅當沖現在的擠來不及當沖降稅現在已經快11月一晃就12月了你今年年底的日落條款就到了 |
transcript.whisperx[27].start |
696.143 |
transcript.whisperx[27].end |
721.6 |
transcript.whisperx[27].text |
當沖降稅年底之前會不會過?你有沒有把握?目前案子在大院當然是由大院來進度是由大院我們也希望能夠在今年年底前能夠定案那明年才可以順利的舉動我們下午才要再協商而已協商要送到院會還要待多久的冷凍期啊所以希望部長可以思考一下剛剛以上本席所說的質詢加油謝謝 |
transcript.whisperx[28].start |
725.63 |
transcript.whisperx[28].end |
727.698 |
transcript.whisperx[28].text |
謝謝劉委員 接著我們請鍾嘉斌委員 |
gazette.lineno |
828 |
gazette.blocks[0][0] |
羅委員明才:(11時15分)主席、各位委員、出列席官員,大家好。主席,有請財政部莊部長。 |
gazette.blocks[1][0] |
主席:有請莊部長。 |
gazette.blocks[2][0] |
莊部長翠雲:委員好。 |
gazette.blocks[3][0] |
羅委員明才:莊部長,你看起來慈眉善目,最重要的還是要體恤所有老百姓的辛苦,現在物價飆漲,事實上很多基層的老百姓、很多年輕人是叫苦連天啊,一個便當以前六十、七十塊,現在一個便當可能就要130、150,實在是很辛苦。我們看到今年的稅收又超徵接近三、四千億,拜託,可不可以優先考量一下,把這個錢平均的發給每一個民眾1人1萬塊的紅包,拜託、拜託,好不好? |
gazette.blocks[4][0] |
莊部長翠雲:委員,我想這個部分,大家都很重視所謂的財政紀律,所以對於實徵數超過預算數的部分,我們會先從減少舉債、增加還債,然後納入歲計賸餘來做。委員剛剛提到,有些民眾生活的辛苦,我們認為進入國庫以後,再由國庫做資源的調配去幫助一些真的需要幫助的民眾。我們在社福支出上,事實上整個支出占了歲出大概有26%、27%,是占了最高,所以我們希望這個錢能夠給真正需要幫助的民眾,我想這個部分一直是政府努力在做的。 |
gazette.blocks[5][0] |
羅委員明才:部長,上一次發了6,000塊,1萬塊,其實民眾很有感,因為總是聊勝於無,至少對年輕人來講心裡是很安定的,因為外在的環境變動,如果1萬塊放在自己的口袋裡又溫暖,冬天又到了,實際上又可以自己來支配使用,這才是對全民真正的照顧。我們在這裡審總預算,我們看到一筆下去國防支出可能就是五千億,甚至因為現在川普當選了,還叫我們要提高國防經費,那個都是天文數字。與其很快就通過這些民眾感覺不到的數字,倒不如回歸給民眾一點溫暖,本席在這裡還是再次拜託部長,你好好來斟酌一下。 |
gazette.blocks[6][0] |
莊部長翠雲:謝謝委員。 |
gazette.blocks[7][0] |
羅委員明才:現在川普當選了,事實上臺灣整個經濟的局勢上上下下,面對未來可能又有很大的衝擊跟變化,在114年的總預算裡面,有沒有什麼大環境改變的時候部長想要去做的?譬如說剛剛講到物價飆漲,所有的公股銀行今年的薪資會不會再調升,今年就是明年啦,會不會有這樣的準備?另外,我看到一個很辛苦的,有一些國營的銀行每個月的餐飲費,部長,你知道他們一個月餐飲費多少錢? |
gazette.blocks[8][0] |
莊部長翠雲:大概是2,400至到3,000吧?我知道…… |
gazette.blocks[9][0] |
羅委員明才:700塊,你查一下,有人是3,000,那個是民營的銀行、半公股銀行,但公股銀行幾十年沒調,他的餐飲費一個月是多少?700塊。部長,700塊的話,大概一天的餐飲費是多少錢?30天。 |
gazette.blocks[10][0] |
莊部長翠雲:除以22天,約三十幾塊。 |
gazette.blocks[11][0] |
羅委員明才:就是不到30塊。部長,請將心比心,你如果是這些國營銀行的員工,一天只有不到30塊的飲食、用餐費,你覺得這個夠嗎? |
gazette.blocks[12][0] |
莊部長翠雲:跟委員報告,對於國營事業裡面的員工福利,有一些是由行政院統一規範的,有一些是公司內部可以去做思考的,比如說他們都有職工福利委員會,類似這樣的可以去做因應,我想這個部分涉及到…… |
gazette.blocks[13][0] |
羅委員明才:不管嘛,你是大家長。 |
gazette.blocks[14][0] |
莊部長翠雲:我當然是支持對於國營事業的員工在福利上應該多予照顧。 |
gazette.blocks[15][0] |
羅委員明才:部長,你要照顧一下,因為這不是光光……你現在當部長,那過去一年、兩年、三年、四年,我們是希望一個永續的經營團隊,你現在做其實很重要,我看到現在民間聘用這些金融人員薪資又高,福利條件又好,所以造成現在這個階段你錄取、招新人,你招不到啦,好的人招到也留不住。光是講這個餐飲費好了,最基本的吃便當,一想到這個,他就沒有心情做下去了,別人同樣同工同酬,外面吃的是大魚大肉,不要說大魚大肉,一個便當可能是150塊,這些國營銀行的人員每天中午吃便當是25塊,不到30塊。部長,不到30塊要吃什麼?總不能每天吃泡麵吧! |
gazette.blocks[16][0] |
莊部長翠雲:國營事業、我們的相關機構要對員工的福利多予照顧,部裡面基本上是支持的。 |
gazette.blocks[17][0] |
羅委員明才:好,謝謝,趕快想出一個方法來。另外一個就是川普的時代已經來臨了,我覺得在總預算裡面看起來都很保守,那就是保守有餘,開創不足。比如說遺贈稅好了,我們看到在去年度,書面報告(三)地方政府遺產及贈與稅短少補助4億7,000萬,其實遺贈稅以前最低稅率是幾%? |
gazette.blocks[18][0] |
莊部長翠雲:10%。 |
gazette.blocks[19][0] |
羅委員明才:目前是多少? |
gazette.blocks[20][0] |
莊部長翠雲:最低稅率也是10%,然後有15%跟20%。 |
gazette.blocks[21][0] |
羅委員明才:有10%、15%、20%? |
gazette.blocks[22][0] |
莊部長翠雲:對。 |
gazette.blocks[23][0] |
羅委員明才:不過,如果說要鼓勵臺商或者更多的資金回來,配合金管會彭主委推動的,讓臺灣打造成為一個資產管理中心。部長,你需不需要更多的臺商或者世界的有錢人回來臺灣?因為川普當選,臺灣比較不會戰爭了吧!這句話對不對? |
gazette.blocks[24][0] |
莊部長翠雲:我們當然歡迎臺商回臺來投資。 |
gazette.blocks[25][0] |
羅委員明才:遺贈稅會不會重新再調整為10%? |
gazette.blocks[26][0] |
莊部長翠雲:在遺贈稅裡面,上一次調高稅率以後,它的金額是會撥入到長照基金裡面去。 |
gazette.blocks[27][0] |
羅委員明才:可是過去的歷史…… |
gazette.blocks[28][0] |
莊部長翠雲:長照基金,我們人口老化的話,讓他們可以有更好的照顧。 |
gazette.blocks[29][0] |
羅委員明才:比例低,回來的錢會更多啊! |
gazette.blocks[30][0] |
莊部長翠雲:對啊、是啊。 |
gazette.blocks[31][0] |
羅委員明才:而且如果臺灣以後不會發生戰爭,那更應該要有另外一個思維。請問新加坡有沒有遺贈稅? |
gazette.blocks[32][0] |
莊部長翠雲:新加坡有沒有遺贈稅…… |
gazette.blocks[33][0] |
羅委員明才:有沒有? |
gazette.blocks[34][0] |
宋署長秀玲:好像沒有。 |
gazette.blocks[35][0] |
羅委員明才:新加坡沒有遺贈稅,香港有沒有遺贈稅? |
gazette.blocks[36][0] |
莊部長翠雲:每一個國家的稅制不同。 |
gazette.blocks[37][0] |
羅委員明才:一個新的布局的參考,所以我說川普當選,有很多制度你應該去想一想,是不是應該要充分的來討論一下?我們希望愛臺灣、做大臺灣、做強臺灣,然後多多照顧這些年輕人。你看看在新加坡,新加坡大學畢業的平均薪資大概是多少?一畢業進入這些企業單位的薪水是多少?部長,大概是新臺幣八、九萬,那我們現在公營機關在招新人員的時候,大學畢業考進來的話,底薪是多少? |
gazette.blocks[38][0] |
莊部長翠雲:各個公司應該不太一樣。 |
gazette.blocks[39][0] |
羅委員明才:隨便你講兩間,臺銀多少?臺銀新進的員工,你隨便講幾間。 |
gazette.blocks[40][0] |
莊部長翠雲:隨便講? |
gazette.blocks[41][0] |
羅委員明才:你認真講,土銀的話是多少? |
gazette.blocks[42][0] |
莊部長翠雲:跟他進來的階級也有不同。 |
gazette.blocks[43][0] |
羅委員明才:沒有,大學畢業剛考進來啦。 |
gazette.blocks[44][0] |
莊部長翠雲:剛考進來應該差不多四、五萬吧! |
gazette.blocks[45][0] |
羅委員明才:幾萬? |
gazette.blocks[46][0] |
莊部長翠雲:4萬。 |
gazette.blocks[47][0] |
羅委員明才:沒有到4萬,你們大概是三萬多,不管啦,我的意思就是說,你們是三萬多,人家新加坡薪水是9萬,人才大量的流失,不然你去查查看啊,臺大資工系每次畢業大概200個學生,大概一半以上可能跑去香港、跑去新加坡,人才沒有留在臺灣,不為臺灣的企業所留用,好可惜,所以希望部長好好來思考一下,包括川普當選以後,國安基金現在的規模是多少? |
gazette.blocks[48][0] |
莊部長翠雲:目前是5,000億。 |
gazette.blocks[49][0] |
羅委員明才:5,000億,要不要思考調高到1兆以上,讓臺灣更有韌性,讓臺灣面對各種挑戰的時候,可以更加從容的應付?所以部長,我覺得財政部部長不是只有管錢進出,過路財神而已,其實你的一舉一動可以帶動臺灣10年、20年,包括離島,可能是一個長遠的發展,所以拜託部長在稅制上好好思考一下,怎麼樣對臺灣是最大的幫助。包括剛剛所講的以外,還有全世界沒有娛樂稅,那娛樂稅要不要重新調整?還有一個,對你們稅收最穩定、你們最開心的證交稅,當沖現在來得及、來不及?當沖降稅,現在已經快11月,一晃就12月了,你今年年底的日落條款就到了,當沖降稅年底之前會不會過?你有沒有把握? |
gazette.blocks[50][0] |
莊部長翠雲:目前案子在大院,當然是由大院來……進度是由大院……我們也希望在今年年底以前能夠定案,明年才可以順利推動。 |
gazette.blocks[51][0] |
羅委員明才:快來不及了,我們下午才要再協商而已,協商要送到院會,還要多久的冷凍期?所以希望部長可以思考一下以上本席的質詢,加油!謝謝。 |
gazette.blocks[52][0] |
莊部長翠雲:謝謝委員的期許,謝謝。 |
gazette.blocks[53][0] |
主席:謝謝羅委員,接著我們請鍾佳濱委員。 |
gazette.agenda.page_end |
212 |
gazette.agenda.meet_id |
委員會-11-2-20-9 |
gazette.agenda.speakers[0] |
陳玉珍 |
gazette.agenda.speakers[1] |
林德福 |
gazette.agenda.speakers[2] |
吳秉叡 |
gazette.agenda.speakers[3] |
賴士葆 |
gazette.agenda.speakers[4] |
郭國文 |
gazette.agenda.speakers[5] |
賴惠員 |
gazette.agenda.speakers[6] |
王鴻薇 |
gazette.agenda.speakers[7] |
顏寬恒 |
gazette.agenda.speakers[8] |
李坤城 |
gazette.agenda.speakers[9] |
李彥秀 |
gazette.agenda.speakers[10] |
羅明才 |
gazette.agenda.speakers[11] |
鍾佳濱 |
gazette.agenda.speakers[12] |
黃珊珊 |
gazette.agenda.speakers[13] |
伍麗華Saidhai‧Tahovecahe |
gazette.agenda.speakers[14] |
王世堅 |
gazette.agenda.page_start |
133 |
gazette.agenda.meetingDate[0] |
2024-11-18 |
gazette.agenda.gazette_id |
11310101 |
gazette.agenda.agenda_lcidc_ids[0] |
11310101_00004 |
gazette.agenda.meet_name |
立法院第11屆第2會期財政委員會第9次全體委員會議紀錄 |
gazette.agenda.content |
審查中華民國114年度中央政府總預算案有關財政部賦稅署、臺北國稅局、高雄國稅局、北區國
稅局及所屬、中區國稅局及所屬、南區國稅局及所屬、關務署及所屬、國有財產署及所屬歲出預
算部分暨融資財源調度(僅詢答) |
gazette.agenda.agenda_id |
11310101_00003 |