iVOD / 156831

Field Value
IVOD_ID 156831
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/156831
日期 2024-11-13
會議資料.會議代碼 委員會-11-2-20-8
會議資料.會議代碼:str 第11屆第2會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第2會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2024-11-13T12:25:35+08:00
結束時間 2024-11-13T12:40:23+08:00
影片長度 00:14:48
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/cf2bdefc150f6678c35564f34280414856f61c8275d0c8f2ea236d48226e86be36b710c635f0fc7d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 12:25:35 - 12:40:23
會議時間 2024-11-13T09:00:00+08:00
會議名稱 立法院第11屆第2會期財政委員會第8次全體委員會議(事由:一、審查「貨物稅條例」11案: (一)行政院函請審議、本院台灣民眾黨黨團、委員張智倫等17人、委員賴士葆等26人、委員蔡其昌等18人、委員伍麗華Saidhai Tahovecahe等19人、委員陳冠廷等23人、委員陳菁徽等16人、委員賴惠員等18人分別擬具「貨物稅條例第十二條條文修正草案」等9案。【行政院函請審議及本院委員賴惠員等18人提案如經院會復議,則不予審查】 (二)本院委員顏寬恒等16人擬具「貨物稅條例第十二條及第十二條之三條文修正草案」案。 (三)本院委員郭國文等16人擬具「貨物稅條例第十二條及第十二條之六條文修正草案」案。 二、審查中華民國114年度中央政府總預算案有關財政部及所屬單位歲入預算部分。(僅詢答) 三、審查中華民國114年度中央政府總預算案有關財政部、國庫署、財政資訊中心歲出預算部分。(僅詢答) 四、審查中華民國114年度中央政府總預算案附屬單位預算非營業部分有關財政部主管債務基金-中央政府債務基金。(僅詢答) 【11月13日及14日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 5.24534375
transcript.pyannote[0].end 7.52346875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 7.69221875
transcript.pyannote[1].end 8.24909375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 8.48534375
transcript.pyannote[2].end 9.48096875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 14.13846875
transcript.pyannote[3].end 14.74596875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 14.88096875
transcript.pyannote[4].end 15.55596875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 15.67409375
transcript.pyannote[5].end 16.83846875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 17.39534375
transcript.pyannote[6].end 19.65659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 20.19659375
transcript.pyannote[7].end 22.40721875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 22.89659375
transcript.pyannote[8].end 25.51221875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 26.11971875
transcript.pyannote[9].end 27.62159375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 28.38096875
transcript.pyannote[10].end 29.34284375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 29.62971875
transcript.pyannote[11].end 30.70971875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 31.08096875
transcript.pyannote[12].end 32.00909375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 33.10596875
transcript.pyannote[13].end 33.69659375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 33.89909375
transcript.pyannote[14].end 35.04659375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 35.31659375
transcript.pyannote[15].end 38.70846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 39.34971875
transcript.pyannote[16].end 40.27784375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 40.61534375
transcript.pyannote[17].end 43.61909375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 44.36159375
transcript.pyannote[18].end 45.82971875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 46.74096875
transcript.pyannote[19].end 48.79971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 48.95159375
transcript.pyannote[20].end 50.63909375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 50.92596875
transcript.pyannote[21].end 53.30534375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 54.26721875
transcript.pyannote[22].end 56.46096875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 57.28784375
transcript.pyannote[23].end 59.24534375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 60.78096875
transcript.pyannote[24].end 64.45971875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 64.79721875
transcript.pyannote[25].end 65.38784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 66.41721875
transcript.pyannote[26].end 67.26096875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 68.18909375
transcript.pyannote[27].end 69.96096875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 70.50096875
transcript.pyannote[28].end 75.47909375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 76.25534375
transcript.pyannote[29].end 79.10721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 79.73159375
transcript.pyannote[30].end 81.55409375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 82.68471875
transcript.pyannote[31].end 84.18659375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 85.51971875
transcript.pyannote[32].end 87.24096875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 88.47284375
transcript.pyannote[33].end 95.18909375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 96.11721875
transcript.pyannote[34].end 97.07909375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 97.58534375
transcript.pyannote[35].end 101.73659375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 102.88409375
transcript.pyannote[36].end 104.55471875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 105.76971875
transcript.pyannote[37].end 106.52909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 106.61346875
transcript.pyannote[38].end 109.61721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 110.52846875
transcript.pyannote[39].end 111.50721875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 112.31721875
transcript.pyannote[40].end 112.78971875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 113.73471875
transcript.pyannote[41].end 115.35471875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 116.01284375
transcript.pyannote[42].end 117.24471875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 118.30784375
transcript.pyannote[43].end 120.94034375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 121.86846875
transcript.pyannote[44].end 122.91471875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 124.18034375
transcript.pyannote[45].end 125.76659375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 126.72846875
transcript.pyannote[46].end 127.82534375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 128.26409375
transcript.pyannote[47].end 129.54659375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 129.69846875
transcript.pyannote[48].end 131.60534375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 131.97659375
transcript.pyannote[49].end 133.44471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 133.76534375
transcript.pyannote[50].end 136.24596875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 137.27534375
transcript.pyannote[51].end 140.29596875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 141.13971875
transcript.pyannote[52].end 142.11846875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 142.67534375
transcript.pyannote[53].end 146.69159375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 147.63659375
transcript.pyannote[54].end 148.83471875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 150.06659375
transcript.pyannote[55].end 152.69909375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 153.52596875
transcript.pyannote[56].end 154.28534375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 154.84221875
transcript.pyannote[57].end 158.14971875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 159.04409375
transcript.pyannote[58].end 159.75284375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 160.17471875
transcript.pyannote[59].end 169.03409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 169.23659375
transcript.pyannote[60].end 170.58659375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 170.90721875
transcript.pyannote[61].end 175.02471875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 175.64909375
transcript.pyannote[62].end 178.39971875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 179.36159375
transcript.pyannote[63].end 180.71159375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 181.75784375
transcript.pyannote[64].end 183.19221875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 184.45784375
transcript.pyannote[65].end 185.21721875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 185.80784375
transcript.pyannote[66].end 188.05221875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 188.38971875
transcript.pyannote[67].end 192.64221875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 193.55346875
transcript.pyannote[68].end 194.04284375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 195.47721875
transcript.pyannote[69].end 198.88596875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 200.20221875
transcript.pyannote[70].end 202.85159375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 203.61096875
transcript.pyannote[71].end 214.27596875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 215.06909375
transcript.pyannote[72].end 216.97596875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 217.53284375
transcript.pyannote[73].end 219.35534375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 220.14846875
transcript.pyannote[74].end 224.28284375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 224.56971875
transcript.pyannote[75].end 227.43846875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 228.02909375
transcript.pyannote[76].end 232.09596875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 233.04096875
transcript.pyannote[77].end 233.61471875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 235.31909375
transcript.pyannote[78].end 235.80846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 236.63534375
transcript.pyannote[79].end 239.13284375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 240.21284375
transcript.pyannote[80].end 240.60096875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 240.97221875
transcript.pyannote[81].end 242.76096875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 243.01409375
transcript.pyannote[82].end 244.04346875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 245.57909375
transcript.pyannote[83].end 249.03846875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 249.13971875
transcript.pyannote[84].end 251.65409375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 252.48096875
transcript.pyannote[85].end 254.79284375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 255.88971875
transcript.pyannote[86].end 256.75034375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 257.67846875
transcript.pyannote[87].end 258.89346875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 260.10846875
transcript.pyannote[88].end 262.31909375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 262.50471875
transcript.pyannote[89].end 263.21346875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 263.78721875
transcript.pyannote[90].end 265.13721875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 265.54221875
transcript.pyannote[91].end 268.84971875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 269.35596875
transcript.pyannote[92].end 270.48659375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 271.56659375
transcript.pyannote[93].end 272.54534375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 275.05971875
transcript.pyannote[94].end 275.53221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 276.69659375
transcript.pyannote[95].end 277.16909375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 277.75971875
transcript.pyannote[96].end 279.05909375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 279.54846875
transcript.pyannote[97].end 279.73409375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 280.07159375
transcript.pyannote[98].end 282.41721875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 283.21034375
transcript.pyannote[99].end 284.20596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 292.84596875
transcript.pyannote[100].end 294.19596875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 294.55034375
transcript.pyannote[101].end 295.91721875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 298.60034375
transcript.pyannote[102].end 299.22471875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 300.11909375
transcript.pyannote[103].end 301.78971875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 302.16096875
transcript.pyannote[104].end 309.33284375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 309.53534375
transcript.pyannote[105].end 312.70784375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 313.18034375
transcript.pyannote[106].end 313.78784375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 314.27721875
transcript.pyannote[107].end 314.86784375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 316.47096875
transcript.pyannote[108].end 318.93471875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 321.75284375
transcript.pyannote[109].end 322.52909375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 322.52909375
transcript.pyannote[110].end 323.50784375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 327.08534375
transcript.pyannote[111].end 327.79409375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 329.19471875
transcript.pyannote[112].end 332.18159375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 332.92409375
transcript.pyannote[113].end 341.88471875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 342.61034375
transcript.pyannote[114].end 345.07409375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 345.24284375
transcript.pyannote[115].end 345.64784375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 346.50846875
transcript.pyannote[116].end 349.49534375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 349.76534375
transcript.pyannote[117].end 351.01409375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 351.46971875
transcript.pyannote[118].end 359.51909375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 360.09284375
transcript.pyannote[119].end 363.55221875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 364.04159375
transcript.pyannote[120].end 365.20596875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 365.76284375
transcript.pyannote[121].end 366.28596875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 366.72471875
transcript.pyannote[122].end 369.99846875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 370.23471875
transcript.pyannote[123].end 373.00221875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 374.08221875
transcript.pyannote[124].end 374.28471875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 374.62221875
transcript.pyannote[125].end 375.76971875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 376.91721875
transcript.pyannote[126].end 377.32221875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 378.04784375
transcript.pyannote[127].end 378.70596875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 379.54971875
transcript.pyannote[128].end 380.19096875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 380.84909375
transcript.pyannote[129].end 381.67596875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 382.90784375
transcript.pyannote[130].end 387.66659375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 388.25721875
transcript.pyannote[131].end 390.26534375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 390.83909375
transcript.pyannote[132].end 391.56471875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 392.18909375
transcript.pyannote[133].end 393.77534375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 394.92284375
transcript.pyannote[134].end 396.82971875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 397.48784375
transcript.pyannote[135].end 398.41596875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 399.10784375
transcript.pyannote[136].end 400.23846875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 401.63909375
transcript.pyannote[137].end 406.12784375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 406.70159375
transcript.pyannote[138].end 407.64659375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 408.08534375
transcript.pyannote[139].end 409.67159375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 410.16096875
transcript.pyannote[140].end 411.66284375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 412.15221875
transcript.pyannote[141].end 413.60346875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 414.56534375
transcript.pyannote[142].end 417.31596875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 418.49721875
transcript.pyannote[143].end 419.13846875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 422.39534375
transcript.pyannote[144].end 424.55534375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 424.96034375
transcript.pyannote[145].end 426.76596875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 427.25534375
transcript.pyannote[146].end 429.41534375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 429.65159375
transcript.pyannote[147].end 440.06346875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 440.63721875
transcript.pyannote[148].end 440.80596875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 441.19409375
transcript.pyannote[149].end 451.06596875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 442.89846875
transcript.pyannote[150].end 443.70846875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 451.60596875
transcript.pyannote[151].end 453.29346875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 454.74471875
transcript.pyannote[152].end 456.43221875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 456.65159375
transcript.pyannote[153].end 456.92159375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 457.39409375
transcript.pyannote[154].end 458.60909375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 459.18284375
transcript.pyannote[155].end 459.60471875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 460.78596875
transcript.pyannote[156].end 461.17409375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 462.30471875
transcript.pyannote[157].end 462.86159375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 463.67159375
transcript.pyannote[158].end 464.36346875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 464.63346875
transcript.pyannote[159].end 465.56159375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 466.79346875
transcript.pyannote[160].end 469.51034375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 469.56096875
transcript.pyannote[161].end 471.24846875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 471.75471875
transcript.pyannote[162].end 472.21034375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 472.51409375
transcript.pyannote[163].end 477.47534375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 478.50471875
transcript.pyannote[164].end 478.99409375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 480.25971875
transcript.pyannote[165].end 481.93034375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 482.25096875
transcript.pyannote[166].end 482.57159375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 483.22971875
transcript.pyannote[167].end 484.02284375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 484.07346875
transcript.pyannote[168].end 490.38471875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 488.27534375
transcript.pyannote[169].end 489.11909375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 493.89471875
transcript.pyannote[170].end 514.19534375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 514.36409375
transcript.pyannote[171].end 524.18534375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 524.92784375
transcript.pyannote[172].end 532.06596875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 532.53846875
transcript.pyannote[173].end 541.46534375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 542.12346875
transcript.pyannote[174].end 544.68846875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 545.44784375
transcript.pyannote[175].end 553.46346875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 554.07096875
transcript.pyannote[176].end 555.74159375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 556.12971875
transcript.pyannote[177].end 560.75346875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 561.20909375
transcript.pyannote[178].end 566.94659375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 567.92534375
transcript.pyannote[179].end 569.64659375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 570.52409375
transcript.pyannote[180].end 572.17784375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 573.22409375
transcript.pyannote[181].end 574.65846875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 574.79346875
transcript.pyannote[182].end 577.56096875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 578.52284375
transcript.pyannote[183].end 583.87221875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 584.32784375
transcript.pyannote[184].end 585.77909375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 586.43721875
transcript.pyannote[185].end 589.22159375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 590.57159375
transcript.pyannote[186].end 592.61346875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 592.93409375
transcript.pyannote[187].end 597.42284375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 598.31721875
transcript.pyannote[188].end 600.54471875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 600.98346875
transcript.pyannote[189].end 608.57721875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 609.23534375
transcript.pyannote[190].end 611.26034375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 611.68221875
transcript.pyannote[191].end 615.52971875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 616.13721875
transcript.pyannote[192].end 618.58409375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 619.14096875
transcript.pyannote[193].end 628.28721875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 630.09284375
transcript.pyannote[194].end 630.71721875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 631.29096875
transcript.pyannote[195].end 631.88159375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 632.80971875
transcript.pyannote[196].end 633.68721875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 634.88534375
transcript.pyannote[197].end 635.20596875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 635.61096875
transcript.pyannote[198].end 636.04971875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 636.42096875
transcript.pyannote[199].end 651.25409375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 651.87846875
transcript.pyannote[200].end 657.41346875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 658.74659375
transcript.pyannote[201].end 662.66159375
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 663.28596875
transcript.pyannote[202].end 664.39971875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 665.61471875
transcript.pyannote[203].end 666.20534375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 667.31909375
transcript.pyannote[204].end 669.27659375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 670.52534375
transcript.pyannote[205].end 684.83534375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 686.18534375
transcript.pyannote[206].end 686.80971875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 686.92784375
transcript.pyannote[207].end 689.32409375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 689.93159375
transcript.pyannote[208].end 691.39971875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 691.73721875
transcript.pyannote[209].end 694.94346875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 695.78721875
transcript.pyannote[210].end 696.19221875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 696.81659375
transcript.pyannote[211].end 697.86284375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 698.65596875
transcript.pyannote[212].end 698.89221875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 699.07784375
transcript.pyannote[213].end 700.37721875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 701.32221875
transcript.pyannote[214].end 703.26284375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 703.63409375
transcript.pyannote[215].end 704.61284375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 705.27096875
transcript.pyannote[216].end 711.22784375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 711.51471875
transcript.pyannote[217].end 711.95346875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 712.49346875
transcript.pyannote[218].end 714.43409375
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 714.90659375
transcript.pyannote[219].end 716.12159375
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 716.52659375
transcript.pyannote[220].end 724.81221875
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 725.31846875
transcript.pyannote[221].end 725.67284375
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 727.09034375
transcript.pyannote[222].end 768.48471875
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 765.59909375
transcript.pyannote[223].end 771.20159375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 772.28159375
transcript.pyannote[224].end 784.87034375
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 785.02221875
transcript.pyannote[225].end 809.65971875
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 785.07284375
transcript.pyannote[226].end 787.01346875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 787.01346875
transcript.pyannote[227].end 787.03034375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 789.03846875
transcript.pyannote[228].end 789.07221875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 790.62471875
transcript.pyannote[229].end 791.06346875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 795.36659375
transcript.pyannote[230].end 795.87284375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 805.15409375
transcript.pyannote[231].end 805.18784375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 809.98034375
transcript.pyannote[232].end 811.71846875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 812.03909375
transcript.pyannote[233].end 812.66346875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 813.67596875
transcript.pyannote[234].end 823.63221875
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 824.18909375
transcript.pyannote[235].end 827.36159375
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 828.28971875
transcript.pyannote[236].end 840.05159375
transcript.pyannote[237].speaker SPEAKER_00
transcript.pyannote[237].start 840.10221875
transcript.pyannote[237].end 867.03471875
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 861.44909375
transcript.pyannote[238].end 862.68096875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 865.33034375
transcript.pyannote[239].end 874.27409375
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 867.03471875
transcript.pyannote[240].end 867.40596875
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 867.40596875
transcript.pyannote[241].end 867.42284375
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 867.42284375
transcript.pyannote[242].end 867.81096875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 867.81096875
transcript.pyannote[243].end 868.04721875
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 868.04721875
transcript.pyannote[244].end 868.19909375
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 868.19909375
transcript.pyannote[245].end 868.24971875
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 868.24971875
transcript.pyannote[246].end 868.28346875
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 868.28346875
transcript.pyannote[247].end 870.03846875
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 870.03846875
transcript.pyannote[248].end 883.11659375
transcript.pyannote[249].speaker SPEAKER_01
transcript.pyannote[249].start 878.79659375
transcript.pyannote[249].end 878.88096875
transcript.pyannote[250].speaker SPEAKER_00
transcript.pyannote[250].start 878.88096875
transcript.pyannote[250].end 878.91471875
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 878.91471875
transcript.pyannote[251].end 880.97346875
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 880.97346875
transcript.pyannote[252].end 883.13346875
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 883.13346875
transcript.pyannote[253].end 883.48784375
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 883.48784375
transcript.pyannote[254].end 884.70284375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 884.70284375
transcript.pyannote[255].end 888.60096875
transcript.pyannote[256].speaker SPEAKER_00
transcript.pyannote[256].start 884.75346875
transcript.pyannote[256].end 885.25971875
transcript.pyannote[257].speaker SPEAKER_00
transcript.pyannote[257].start 885.54659375
transcript.pyannote[257].end 888.97221875
transcript.whisperx[0].start 5.956
transcript.whisperx[0].end 31.625
transcript.whisperx[0].text 謝謝主席 我請部長 總部長好 請請部長委員好部長 今天兩個問題第一個問題就是我上禮拜那麼我在質詢金管會彭諸葳的時候我跟他提到我們央行有一項規定就是針對我們所有
transcript.whisperx[1].start 33.334
transcript.whisperx[1].end 59.008
transcript.whisperx[1].text 銀行那貸款給建商這種空地貸款有個限令就是空地貸款必須在18個月內一年半當中取得建造來開工這是貸款的條件那這個規定行之十數年、二十年之久啦那結果我問了一下
transcript.whisperx[2].start 61.494
transcript.whisperx[2].end 87.041
transcript.whisperx[2].text 這個各銀行我就問我們九大公營行庫就是說這貸款超過18個月還沒有開工這樣子的案件有多少金額多大結果我得到的答覆哇大吃一驚嚇了一跳總金額啊銀行體系貸款
transcript.whisperx[3].start 88.87
transcript.whisperx[3].end 116.635
transcript.whisperx[3].text 九大公營行戶貸款給建商空地貸款超過18個月的金額竟然高達2180億之多啦2180億之多那當然九大公營行戶人家有的模範生像易營、像這個鍾小慶人家都是
transcript.whisperx[4].start 118.402
transcript.whisperx[4].end 146.305
transcript.whisperx[4].text 十來億而已 很小的金額啦這裡面最大金額的竟然是我們公股百分之百關股的土地銀行土地銀行光它一家就高達1173億它一家啊 等於另外八大公營行庫加起來總和
transcript.whisperx[5].start 147.897
transcript.whisperx[5].end 157.995
transcript.whisperx[5].text 還不夠他多這已經到不可思議的地步啦所以部長因為九大公營安庫董事長、總經理都你派的
transcript.whisperx[6].start 159.13
transcript.whisperx[6].end 182.538
transcript.whisperx[6].text 所以我除了要求金管會要嚴加查查以外我今天就是要問你要問九大公營行庫董事長、總經理你們對貸款給建商裡面多數都是不孝建商才會這麼做貸款去買了工地之後擺著
transcript.whisperx[7].start 184.52
transcript.whisperx[7].end 193.863
transcript.whisperx[7].text 不開工、不申請建造他擺明了就是買地、養地、圈地就是這麼簡單欸部長2000我把尾數刪掉2000億就好建地我們抓100萬一坪的就好
transcript.whisperx[8].start 204.023
transcript.whisperx[8].end 231.435
transcript.whisperx[8].text 兩千億可以買一百萬的建地買二十萬坪欸也就是說我們公營航庫體系隨時啊擺著兩千億給這些不孝建商拿去買地、全地、養地並向的助長他們炒作房地產並向的助長不孝建商拉抬房價
transcript.whisperx[9].start 233.383
transcript.whisperx[9].end 244.013
transcript.whisperx[9].text 難怪難怪我們全國各地不只首都而已喔你看這兩三年來房地產這個漲幅過去我們社會還有那麼多中產階級現在中產階級通通變成烏奴因為房地產大幅上漲啊
transcript.whisperx[10].start 260.351
transcript.whisperx[10].end 272.274
transcript.whisperx[10].text 這大幅上漲背後的幫兇竟然是我們公營航庫最大的幫兇就是土地銀行董事長站起來董事長你站起來何董張總我不曉得你們來多久啦我今天把數字跟你講1173億你怎麼解決
transcript.whisperx[11].start 292.867
transcript.whisperx[11].end 313.662
transcript.whisperx[11].text 到9月、10月好各少掉200多億額度減減個200多億這樣還不夠啦土地銀行不要拿這個當藉口我私下找你們問的時候你們說土地銀行是專業的建築公司、土地公司主席請再上來
transcript.whisperx[12].start 316.789
transcript.whisperx[12].end 345.4
transcript.whisperx[12].text 我以為主席請他坐下不會啦謝謝主席那個你們的私下答覆說你們是專業的啊專業的建築融資、土地融資沒錯你是專業沒錯你借的金額也超大沒錯你總計你這些房地的借款
transcript.whisperx[13].start 346.55
transcript.whisperx[13].end 367.902
transcript.whisperx[13].text 一兆4800億沒錯可是跟你一樣大的人家台灣銀行一兆4000也是800他多你還多你14億一兆4800億人家台灣銀行當然也不少啦也不少他預期18個月的142億142億剛好你的尾數你比他多1000億
transcript.whisperx[14].start 378.138
transcript.whisperx[14].end 392.935
transcript.whisperx[14].text 其他人家330這個我剛剛講一人是摩漢銀行他借的也不比你少耶比你少啦他大概你的一半但是人家只有12億
transcript.whisperx[15].start 394.98
transcript.whisperx[15].end 413.396
transcript.whisperx[15].text 那張瑩更不用講張瑩啊貸放債建築土地融資的一兆五千億超過你結果張瑩預期的金額也是你的尾數才148億所以你怎麼解釋這個啦所以那個那個部長
transcript.whisperx[16].start 422.452
transcript.whisperx[16].end 439.819
transcript.whisperx[16].text 你是他們政治的母親啦你拉拔他們出來的嘛所以這件事我就交給你啦好不好好 謝謝委員我想這個部分委員所說的就超過18個月還沒有動工的購地貸款這個數額確實要給處理跟控制然後也不能過度的集中是
transcript.whisperx[17].start 441.243
transcript.whisperx[17].end 465.365
transcript.whisperx[17].text 那就交給你啦好不好其他各銀行我就不多念啦那個比較多的齁超過200億的我稍微念一下何苦林董事長、王總經理你226億喔我讓你知道一下啦好不好跟義營、台汽營去學習嘛
transcript.whisperx[18].start 467.04
transcript.whisperx[18].end 489.828
transcript.whisperx[18].text 問他們人家是怎麼控管的好不好他們有當一回事啊好不好合作金庫本來在我的名單裡面你們算是模範銀行欸結果暫時把你踢除啦吼好那部長我就敲給你啦兩位董事長總經理請回吼謝謝委員我還有第二個問題
transcript.whisperx[19].start 493.939
transcript.whisperx[19].end 509.806
transcript.whisperx[19].text 今天第二個問題就要跟你談到說我們台灣我們國家我們台灣人民就是那麼慈苦耐勞我們的超額儲蓄率這幾年確實逐年創新高這非常的好我們超額儲蓄率從
transcript.whisperx[20].start 511.708
transcript.whisperx[20].end 521.819
transcript.whisperx[20].text 大概5年前開始每年2.23兆之後都突破3兆以上到了今年預期我們可能超額儲蓄3.84兆
transcript.whisperx[21].start 524.983
transcript.whisperx[21].end 535.147
transcript.whisperx[21].text 草原儲蓄率高達15.46%這個在避逆這些先進國家包括德國它才4.2%日本2.1%韓國1.8%美國更扯它是負數負1.8%那這些都是正面現在問題是說我們如何
transcript.whisperx[22].start 545.53
transcript.whisperx[22].end 571.081
transcript.whisperx[22].text 把我們國家國民辛苦所得超額的這個儲蓄率跟資金如何把它引導到能夠參與我們國家的公共建設也就是說民間參與公共建設但是隨著我們超額儲蓄增加但是民間參與公共建設這個量能都沒有明顯成長我光統計
transcript.whisperx[23].start 573.854
transcript.whisperx[23].end 588.825
transcript.whisperx[23].text 107人到現在這6年裡面從83件捧接的那一件有時候稍微增加到90幾件最高來到172件到去年才100件金額也都大概在1000出頭億今年大概去年總結1876億我為什麼跟你講這個呢就是說這裡面這個金額齁
transcript.whisperx[24].start 601.055
transcript.whisperx[24].end 627.978
transcript.whisperx[24].text 我們還是財政部還是把其他法令參與公共建設的都算進去欸欸部長我現在列給你看了這個說去年100屆1876億你是把比方說他是根據大眾捷運法他根據國有財產法他根據都市更新條例這種獎勵的你通通算進去這些不單單只是
transcript.whisperx[25].start 631.374
transcript.whisperx[25].end 650.398
transcript.whisperx[25].text 這個促進促參法的這個所以也就是說如果單就促參法而言我們那個成效更差結果促參法的推動我們不是沒花錢部長你編的這不是你編的啦你的前年他編102年到110年所謂的促參忠誠計畫花了7億2千萬
transcript.whisperx[26].start 658.783
transcript.whisperx[26].end 683.916
transcript.whisperx[26].text 花了7億2千萬就要鋪通下去你看就是剛才那個成績啊沒什麼成績那麼花了這些錢以後兔餐法占民間投資總額不到三成只占24.79%我現在表格上列給你的右下角24.79花了那些錢下去欸
transcript.whisperx[27].start 687.124
transcript.whisperx[27].end 710.86
transcript.whisperx[27].text 說只是去推動促餐法喔只是去推動喔就要花那些預算結果結論24.79%那今年又編啦部長在您任內你的任內不是今年編的啦前年編的編到114年為止要5億1000萬所以部長我就跟你說這
transcript.whisperx[28].start 712.56
transcript.whisperx[28].end 724.467
transcript.whisperx[28].text 五億1700萬這是你任內的這你責無旁貸你一定要監督這一筆錢下去推動出產法它的成效是怎樣好不好部長
transcript.whisperx[29].start 727.379
transcript.whisperx[29].end 750.954
transcript.whisperx[29].text 委員跟委員報告您提到差額儲蓄的部分確實我們是希望把民間資金都投入到國家的公共建設那促餐是其中一個方式當然也有依照非促餐法來做那同樣也是民間投資的譬如它依照電業法或者是蔣餐條例的交通建設等等都有那包含商港法也是那促餐法的部分在我們110
transcript.whisperx[30].start 752.475
transcript.whisperx[30].end 767.341
transcript.whisperx[30].text 一年修正以後展開了所謂促參2.0我們會希望做得更大的一個部分那也一直都在相關的執法也都在訂定當中我們希望這個部分會加大力道來推動促參主席我一分鐘你提完我再跟你講最後的結論是
transcript.whisperx[31].start 772.475
transcript.whisperx[31].end 787.189
transcript.whisperx[31].text 有要繼續補充嗎?我跟你講有啊你有做嘛你也編了預算是前一筆7億多的那不是你任內算再來這一筆這是你任內一直到明年這5億1000萬所以我認為這一筆預算你要嚴格去監督去推動是 是的
transcript.whisperx[32].start 791.934
transcript.whisperx[32].end 812.469
transcript.whisperx[32].text 主要的不是那幾億啦主要的是要有成效不要再讓我們看到說什麼24.79%我認為啦參與民間參與公共建設提前終止契約是一個大問題那提前終止契約這個問題齁我統計了一下我統計了一下我們大概
transcript.whisperx[33].start 813.72
transcript.whisperx[33].end 826.372
transcript.whisperx[33].text 提前解約的大概佔了12%每年大概實踐金額大概到1300億左右所以部長我是建議這樣來因為我們促產法是不是在推動我們應該納入
transcript.whisperx[34].start 828.963
transcript.whisperx[34].end 856.025
transcript.whisperx[34].text 強制仲裁這個規定也就是說如果有這些爭議的時候那趕快快速解決要不然你比方說像比方說像屏東大鵬灣現在就爛在那裡啊結果我們政府也花了那麼多錢那擺在那個地方地方的民眾看著眼看著很心急光光沒辦法起色政府也花了錢那好在那邊不知道要拖到何年何月何時所以是不是促三法應該把
transcript.whisperx[35].start 858.466
transcript.whisperx[35].end 884.438
transcript.whisperx[35].text 這個強制仲裁這個規定納進去以公共利益最大化為優先來考量好不好在初三法修正的時候曾經有想走強制仲裁但是後來因為法治上因為不符合因為仲裁必須是雙方合一但是也有說廠商提供仲裁機關不能去我們再用書面再做一般的我都會同意啦只是政府不同意啦
transcript.whisperx[36].start 884.718
transcript.whisperx[36].end 885.04
transcript.whisperx[36].text 好 謝謝委員我們再用書面跟你們補充 謝謝時間委員
gazette.lineno 1374
gazette.blocks[0][0] 王委員世堅:(12時25分)謝謝主席,我請部長。
gazette.blocks[1][0] 主席:請莊部長。
gazette.blocks[2][0] 莊部長翠雲:委員好。
gazette.blocks[3][0] 王委員世堅:部長好,今天有兩個問題,第一個問題是上禮拜我在質詢金管會彭主委的時候,我跟他提到央行有一項規定,就是針對所有銀行貸款給建商空地貸款有個限令,就是空地貸款必須在18個月內即一年半當中取得建造來開工,這是貸款的條件。這個規定行之十數年、二十年之久,我問了一下,我就問我們九大公銀行庫,就是貸款超過18個月還沒有開工的案件有多少及金額多大,結果得到的答復讓我大吃一驚、嚇了一跳,九大公銀行庫貸款給建商空地貸款超過18個月的金額竟然高達2,180億之多,當然九大公銀行庫的模範生像一銀、中小企銀,人家都是十來億而已,可以說是很小的金額,裡面最大金額的竟然是百分之百公股的土地銀行,光是土地銀行一家就高達1,173億,其他八大公銀行庫加起來總和還不夠它一家多,這已經到不可思議的地步。部長,九大公銀行庫的董事長和總經理都是你派的,所以我除了要求金管會要嚴加查察以外,我今天要問你和九大公銀行庫的董事長、總經理,你們貸款給建商裡面多數都是不肖建商才會這麼做,貸款去買了空地,之後擺著不開工、不申請建造,他擺明了就是買地、養地、圈地,就是這麼簡單!
gazette.blocks[3][1] 部長,我把尾數刪掉,2,000億就好,我們抓100萬1坪的建地就好,2,000億可以買100萬的建地買20萬坪耶,也就是說我們公營行庫體系隨時擺著2,000億給這些不肖建商拿去買地、圈地、養地,變相的助長他們炒作房地產,變相的助長不肖建商拉抬房價,難怪全國各地不只首都而已,你看這兩三年來房地產的漲幅。過去我們社會還有那麼多中產階級,現在中產階級通通變成屋奴,因為房地產大幅上漲啊,這大幅上漲背後的幫兇竟然是我們公營行庫,最大的幫兇就是土地銀行!董事長站起來,總經理站起來,何董、張總,我不曉得你們來多久了,今天我把數字跟你們講,有1,173億,你怎麼解決?
gazette.blocks[4][0] 何董事長英明:報告委員,我們已經開始在解決,到9月的時候已經少掉202億,到10月的時候少掉了260億。
gazette.blocks[5][0] 王委員世堅:到9月、10月,各少掉兩百多億?
gazette.blocks[6][0] 何董事長英明:就是額度在減。
gazette.blocks[7][0] 王委員世堅:額度減?減個兩百多億這樣還不夠啦,土地銀行不要拿這個當藉口,我私下找你們問的時候,你們說土地銀行是專業的,建築融資、土地融資……
gazette.blocks[8][0] 主席:兩位請上備詢台。
gazette.blocks[9][0] 王委員世堅:我以為主席會請他坐下。
gazette.blocks[10][0] 主席:不會啦!
gazette.blocks[11][0] 王委員世堅:謝謝主席。董事長,你們私下答復說你們是專業的,專業的建築融資、土地融資,沒錯!你是專業沒錯,你借的金額也超大沒錯,總計你這些房地的借款1兆4,805億,可是跟你一樣大的臺灣銀行是1兆4,819億,還多你14億,臺灣銀行當然也不少啦,它逾18個月未動工購地貸款是142億,剛好是你的尾數,你比它多1,000億!再看三商銀,我剛才講一銀是模範銀行,它借的比你少,大概是你的一半,但是人家只有12億;彰銀更不用講,彰銀貸放在建築土地融資的1兆5,000億超過你,結果彰銀逾期的金額也是你的尾數,才148億,所以你怎麼解釋這個?
gazette.blocks[11][1] 部長,你是他們政治的母親,你拉拔他們出來的嘛,所以這件事我就交給你,好不好?
gazette.blocks[12][0] 莊部長翠雲:謝謝委員,委員所說超過18個月還沒有動工的購地貸款,這個數額確實要處理跟控制,也不能過度的集中。
gazette.blocks[13][0] 王委員世堅:那就交給你啦,好不好?
gazette.blocks[14][0] 莊部長翠雲:是,謝謝委員。
gazette.blocks[15][0] 王委員世堅:其他各銀行,我就不多唸啦,比較多的超過200億的,我稍微唸一下。合庫林董事長、王總經理,你們是260億,我讓你們知道一下啦,好不好?跟一銀和臺企銀學習嘛,問他們是怎麼控管的,好不好?
gazette.blocks[16][0] 林董事長衍茂:是。
gazette.blocks[17][0] 王委員世堅:他們有當一回事啊!合作金庫本來在我的名單裡面算是模範銀行,現在只好暫時把你剔除啦。部長,我就交給你啦,兩位董事長、總經理請回。
gazette.blocks[17][1] 部長,我還有第二個問題。我們臺灣的人民就是那麼吃苦耐勞,我們的超額儲蓄率這幾年確實逐年創新高,這非常的好,超額儲蓄率從大概5年前開始每年2.23兆,之後都突破3兆以上,到了今年預期可能超額儲蓄3.84兆,超額儲蓄率高達15.46%,這個睥睨先進國家,包括德國才4.2%,日本2.1%,韓國1.8%,美國更扯是負數-1.8%。這些都是正面,現在問題是我們國家國民辛苦所得超額的儲蓄率跟資金,如何把它引導到能夠參與國家的公共建設?也就是民間參與公共建設,但是隨著我們超額儲蓄增加,民間參與公共建設的量能都沒有明顯成長,光是統計107年到現在,這6年裡面從107年的83件開始,有時候稍微增加到90幾件,最高來到172件,到去年才100件,金額也都大概在1,000出頭億,去年總結1,876億。
gazette.blocks[17][2] 我為什麼跟部長講這個呢?就是這裡面的金額,財政部還是把其他法令參與公共建設的都算進去。部長,我現在列給你看的是,去年100件金額是1,876億,比方說,這是根據大眾捷運法,根據國有財產法,根據都市更新條例,這種獎勵的你通通算進去,這些不單單只是促參法的金額。所以也就是單就促參法而言,我們的成效更差,這個促參法的推動,我們不是沒花錢耶,部長,這不是你編的,102年到110年所謂的促參中程計畫花了7億2,000萬,花了7億2,000萬,結果撲通下去,你看就是剛才那個成績啊,沒什麼成績。那麼花了這些錢以後,促參法占民間投資總額不到3成,只占24.79%,我在表格右下角列出這個數據,花了那些錢下去說只是去推動促參法,只是去推動喔,就要花那些預算,結果結論24.79%!今年又編了,是在部長您任內,但不是今年編的,是前年編的,編到114年為止要5億1,000萬,所以部長我就跟你說,這5億1,700萬是你任內的,這你責無旁貸,你一定要監督這一筆錢下去推動促參法的成效是怎樣,部長,好不好?
gazette.blocks[18][0] 莊部長翠雲:跟委員報告,您提到超額儲蓄的部分,確實我們是希望把民間資金都投入到國家的公共建設,促參是其中一個方式,當然也有依照非促參法來做,同樣也是民間投資的,譬如它依照電業法或者是獎參條例的交通建設等等都有,包含商港法也是。促參法的部分,我們在111年修正以後展開了所謂促參2.0,我們會希望做得更大的部分,相關的子法也都在訂定當中,我們希望這個部分會加大力道來推動促參。那還有一個金融產品……
gazette.blocks[19][0] 王委員世堅:等你說完後,我再跟你講我最後的結論,你有要繼續補充嗎?不然就我跟你講,其實你有做嘛,你也編了預算,前一筆7億多不是在你任內,再來這一筆就是你任內,一直到明年,這5億1,000萬……
gazette.blocks[20][0] 莊部長翠雲:國家的中長程計畫。
gazette.blocks[21][0] 王委員世堅:我認為這一筆預算你要嚴格去監督、推動,可不可以?
gazette.blocks[22][0] 莊部長翠雲:是的。
gazette.blocks[23][0] 王委員世堅:主要的不是那幾億,主要的是要有成效,不要再讓我們看到什麼24.79%,我認為民間參與公共建設,提前終止契約是一個大問題,提前終止契約這個問題,我統計了一下,我們提前解約的大概占了12%,每年實踐金額大概到1,300億左右。所以我是建議部長這樣,我們促參法在推動時應該納入強制仲裁這個規定,也就是如果有這些爭議的時候,要趕快快速解決,要不然比方像屏東大鵬灣現在就爛在那裡,結果我們政府也花了那麼多錢,擺在那個地方,地方的民眾眼看著也很心急,觀光沒辦法起色,政府也花了錢,耗在那邊不知要拖到何年何月何時?所以是不是促參法應該把強制仲裁這個規定納進去,以公共利益最大化為優先來考量,好不好?
gazette.blocks[24][0] 莊部長翠雲:好,謝謝,在促參法修正的時候曾經有想走強制仲裁。
gazette.blocks[25][0] 主席:部長是不是再補書面?
gazette.blocks[26][0] 莊部長翠雲:後來因為法制上不符合,因為仲裁必須是雙方合議,但是也有說廠商提出仲裁,機關不得拒絕。
gazette.blocks[27][0] 主席:部長請以書面說明。
gazette.blocks[28][0] 莊部長翠雲:我們再用書面跟委員說明。
gazette.blocks[29][0] 王委員世堅:一般都會同意,只是政府不同意。
gazette.blocks[30][0] 莊部長翠雲:謝謝委員。
gazette.blocks[31][0] 主席:謝謝王世堅委員。
gazette.blocks[31][1] 接著請羅廷瑋委員發言。
gazette.agenda.page_end 172
gazette.agenda.meet_id 委員會-11-2-20-8
gazette.agenda.speakers[0] 賴惠員
gazette.agenda.speakers[1] 王鴻薇
gazette.agenda.speakers[2] 賴士葆
gazette.agenda.speakers[3] 陳玉珍
gazette.agenda.speakers[4] 羅明才
gazette.agenda.speakers[5] 李彥秀
gazette.agenda.speakers[6] 顏寬恒
gazette.agenda.speakers[7] 陳菁徽
gazette.agenda.speakers[8] 黃珊珊
gazette.agenda.speakers[9] 林德福
gazette.agenda.speakers[10] 吳秉叡
gazette.agenda.speakers[11] 郭國文
gazette.agenda.speakers[12] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[13] 李坤城
gazette.agenda.speakers[14] 王世堅
gazette.agenda.speakers[15] 羅廷瑋
gazette.agenda.speakers[16] 羅智強
gazette.agenda.speakers[17] 洪孟楷
gazette.agenda.speakers[18] 黃國昌
gazette.agenda.speakers[19] 陳培瑜
gazette.agenda.speakers[20] 蔡其昌
gazette.agenda.page_start 13
gazette.agenda.meetingDate[0] 2024-11-13
gazette.agenda.gazette_id 11310002
gazette.agenda.agenda_lcidc_ids[0] 11310002_00003
gazette.agenda.meet_name 立法院第11屆第2會期財政委員會第8次全體委員會議紀錄
gazette.agenda.content 一、審查「貨物稅條例」11 案:( 一 ) 行政院函請審議、本院台灣民眾黨黨團、委員張智倫等 17 人、委員賴士葆等26人、委員蔡其昌等18人、委員伍麗華 Saidhai Tahovecahe 等19人、委員陳 冠廷等23人、委員陳菁徽等16人、委員賴惠員等18人分別擬具「貨物稅條例第十二條條文修正草 案」等9案、(二)本院委員顏寬恒等16人擬具「貨物稅條例第十二條及第十二條之三條文修正草 案」案、(三)本院委員郭國文等16人擬具「貨物稅條例第十二條及第十二條之六條文修正草案」 案;二、審查中華民國114年度中央政府總預算案有關財政部及所屬單位歲入預算部分。(僅詢 答);三、審查中華民國114年度中央政府總預算案有關財政部、國庫署、財政資訊中心歲出預 算部分。(僅詢答);四、審查中華民國114年度中央政府總預算案附屬單位預算非營業部分有 關財政部主管債務基金─中央政府債務基金。(僅詢答)
gazette.agenda.agenda_id 11310002_00002